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• Elastic scattering

•     Form factors

• Surprises in their Q2 dependence

• Density distributions in a hadron

• Lattice techniques

• Three-point functions via sequential source method

• Extraction of matrix elements

Lecture 1   -   Recap



• Extracting matrix elements from Lattice three-point functions

• Extracting form factors from matrix elements

• Lattice nucleon form factors

• Compare with experiment

• Investigation of systematic errors

• Flavour dependence

• Lattice pion form factor

• Twisted boundary conditions

• Other hadron form factors

Lecture 2   -   all about Form Factors



• Recall hadronic form of the nucleon 3pt function

• Need to remove time dependence and wave function amplitudes

•     Form a ratios with the nucleon 2pt function

• E.g.
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• Using the relation for spinors

• We can write the two point function as

• Use                         to maximise overlap with positive parity forward propagating state

ū(~p,�0)�u(~p,�) = Tr�(E�4 � i~p · ~� +m)
1

2

✓
1� �5�4

~p · ~s
EM

+ i�5
~� · ~s
m

◆
���0

G2(t, ~p) =
X

s

p
Zsnk(~p)

q
Z

src
(~p)

2E~p
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• Similarly for the three-point function, if we express the nucleon matrix element under 
study as

• E.g., for the EM current

• Then we have

• where
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• If we consider the particular case

• then the contribution from F2 to the matrix element drops out (proportional to q)

• Euclideanisation

•

Example
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• Then the three-point function is now

• with

• and

Example
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• So our ratio determines
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Other Useful Combinations

• Certain combinations of parameters and kinematics give access to the form factors

• It is possible to have several choices giving access to the form factors at a fixed Q2 

•       Overdetermined set of simultaneous equations that can be solved for
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More detailed look at lattice results to follow
Typical Examples
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Some Recent Works

• Review: Ph. Hägler, 0912.5483

• QCDSF: 1106.3580

• ETMC: 1102.2208

• LHPC: 1001.3620

• RBC/UKQCD: 0904.2039

• CSSM: hep-lat/0604022

Nucleon

Pion

[Not an exhaustive list]

• Mainz: 1109.0196

• PACS-CS: 1102.3652

• JLQCD/TWQCD: 0905.2465

• ETMC: 0812.4042

• RBC/UKQCD: 0804.3971

• QCDSF: hep-lat/0608021



Electromagnetic Form Factors
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If a nucleon was a point-like object with no internal structure, 
a probe would simply measure its e.g. charge for all q2
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If a nucleon was a point-like object with no internal structure, 
a probe would simply measure its e.g. charge for all q2
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Electromagnetic Form Factors
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Scaling of Form Factors
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Scaling of Form Factors
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coupled integral equations for QCD’s Green functions
that provide access to emergent phenomena of non-
perturbative QCD, such as dynamical chiral symme-
try breaking and confinement [98]. The DSEs admit a
symmetry-preserving truncation scheme that enables a
unified description of meson and baryon properties. The
approach has already achieved considerable success in
the pseudoscalar meson sector [19]. The prediction of
nucleon form factors in the DSE approach involves the
solution of a Poincaré-covariant Faddeev equation. In
the calculations of [17], dressed quarks form the elemen-
tary degrees of freedom and correlations between them
are expressed via scalar and axial vector diquarks. The
only variable parameters in this approach are the diquark
masses, fixed to reproduce the nucleon and ∆ masses,
and a diquark charge radius r+1 embodying the electro-
magnetic structure of the diquark correlations. A dif-
ferent approach to DSE-based form factor calculations
effects binding of the nucleon through a single dressed
gluon exchange between any two quarks [18] without ex-
plicit diquark degrees of freedom. In this calculation, the
only parameters are a scale fixed to reproduce the pion
decay constant and a dimensionless width parameter η
describing the infrared behavior of the effective coupling
strength of the quark-quark interaction.

The predictions of several DSE-based calculations for
the proton Sachs form factor ratio R = µpG

p
E/G

p
M are

shown in Figure 16. The quark-diquark model calcula-
tion [17] underpredicts the data at low Q2 but agrees rea-
sonably well at higher Q2. The disagreement at low Q2 is
attributed to the omission of meson cloud effects. The ad-
dition of dynamically generated, momentum-dependent
dressed-quark anomalous magnetic moments [99] that be-
come large at infrared momenta improves the description
of R at low Q2. The three-quark model calculation [18]
agrees with the data at low Q2, but underpredicts the
data at higher Q2, becoming numerically unreliable for
Q2 ! 7 GeV2.

The deficiencies of the DSE approach, including the ap-
proximation schemes required to make the calculations
analytically tractable and the omission of meson-cloud
effects, are evident in the disagreement between the pre-
dicted form factors and the experimental data, which is
more severe than in the various models described above,
which have more adjustable parameters. The advantage
of the approach is that it provides a systematically im-
provable framework for the ab initio evaluation of hadron
properties in continuum non-perturbative QCD, that is
complementary to discretized lattice simulations. As fun-
damental measurable properties of nucleon structure, the
electromagnetic form factors are essential to the feedback
between theory and experiment required to make further
progress in this direction.
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FIG. 16. (color online) Predictions of DSE-based calcula-
tions for R = µpG

p
E/G

p
M compared to experimental data

from cross section [5, 80, 81] (empty circles) and polariza-
tion [1, 2, 25] (filled circles) experiments, where the results of
[2] are replaced by those of the present work. The results of
[17] (Cloët09) are shown for a particular choice of the diquark
charge radius. The curve from [99] (Chang11) is that of [17]
with the addition of dressed quark anomalous magnetic mo-
ments. The results of [18] (Eichmann11) are shown for two
values of η, showing the weak sensitivity of the form factor
results to this parameter.

7. AdS/QCD

In the past decade, theoretical activity has flourished
in modeling QCD from the conjecture of the anti-de
Sitter space/conformal field theory (AdS/CFT) corre-
spondence [133–135], a mapping between weakly coupled
gravitational theories in curved five-dimensional space-
time and strongly coupled gauge theories in flat four-
dimensional space-time. Since QCD is not a conformal
field theory, the symmetry of the anti-de Sitter space
is broken by applying a boundary condition. Brodsky
and de Teramond [136] have calculated F1 for the pro-
ton and neutron and emphasized the agreement of the
predicted Q2F1 dependence with the data. Abidin and
Carlson [137] have calculated both proton and neutron F1

and F2 along with the tensor form factors using both hard
and soft wall boundary conditions. This model predicts
the same asymptotic Q2 dependence as the dimensional
scaling of pQCD, but does not reproduce the detailed
features of the data in the presently measured Q2 region.
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• Sachs form factors reasonably described by 
a dipole

• with

• But deviations seen, particularly at large Q2 

Q2 Parameterisation
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MD ⇥ 0.71 GeV
µp = 2.79 µN

µn = �1.91 µN
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FIG. 17. (color online) Comparison of selected theoretical predictions to data for all four nucleon FFs at space-like Q2. Theory
curves are [15] (Diehl05), [18] (Eichmann11), [72] (Lomon06), [91] (Gross08) and [94] (Santopinto10). Gp

E data are from
[5, 80, 81, 100–105] (cross section data, empty circles) and [1, 2, 25, 49–53, 106] (polarization data, filled circles), where the
results of [2] have been replaced by the results of the present work (Table IV).Gp

M data are from [5, 80, 81, 100–102, 104, 105, 107–

109]. Gn
E data are from [20, 110–121]. Gn

M data are from [21, 122–132]. GD =
(

1 +Q2/Λ2
)−2

, with Λ2 = 0.71 GeV2, is the
standard dipole form factor.

8. World nucleon form factor data compared to theory

Figure 17 summarizes the theoretical interpretation
of the nucleon electromagnetic form factors, with rep-
resentative examples from each of the classes of models
discussed compared to the world data for all four nu-
cleon electromagnetic form factors. Published results for
R = µpG

p
E/G

p
M were converted to Gp

E values using the
global fit of Gp

E and Gp
M from [43], updated to use the R

values of the present work, a change that does not notice-
ably affect Gp

M . Except at very low Q2, the contribution
of the uncertainty in Gp

M to the resulting uncertainty in
Gp

E is negligible. At this juncture, it is worth recalling
that the Gp

E results extracted from cross section data are
believed to be unreliable at high Q2 due to incompletely
understood TPEX corrections, which have not been ap-
plied to the data shown in Figures 14-17. Except for the
DSE calculation of [18], all of the models shown describe

existing data very well, which is to be expected given that
the parameters of the models are fitted to reproduce the
data. However, their predictions tend to diverge when
extrapolated outside the Q2 range of the data. That
the DSE-based calculation of [18] fails to describe the
data as well as the other calculations is not surprising,
since it represents a more fundamental ab initio approach
with virtually no adjustable parameters, but requires ap-
proximations that are not yet well-controlled. Significant
progress in the quality of the predictions is nonetheless
evident, as the data expose the weaknesses of different
approximation schemes. Since the hard scattering mech-
anism leading to the asymptotic pQCD scaling relations
is not expected to dominate the form factor behavior at
presently accessible Q2 values, phenomenological mod-
els and the ambitious ongoing efforts in lattice QCD and
DSE calculations are of paramount importance to under-
standing the internal structure and dynamics of the nu-
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that the Gp
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believed to be unreliable at high Q2 due to incompletely
understood TPEX corrections, which have not been ap-
plied to the data shown in Figures 14-17. Except for the
DSE calculation of [18], all of the models shown describe

existing data very well, which is to be expected given that
the parameters of the models are fitted to reproduce the
data. However, their predictions tend to diverge when
extrapolated outside the Q2 range of the data. That
the DSE-based calculation of [18] fails to describe the
data as well as the other calculations is not surprising,
since it represents a more fundamental ab initio approach
with virtually no adjustable parameters, but requires ap-
proximations that are not yet well-controlled. Significant
progress in the quality of the predictions is nonetheless
evident, as the data expose the weaknesses of different
approximation schemes. Since the hard scattering mech-
anism leading to the asymptotic pQCD scaling relations
is not expected to dominate the form factor behavior at
presently accessible Q2 values, phenomenological mod-
els and the ambitious ongoing efforts in lattice QCD and
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• Kelly proposed a simple parameterisation for the form factors

• with n=1 and a0=1 for 
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[Phys. Rev. C 66, 065203 (2002)]
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Simple parametrization of nucleon form factors

J. J. Kelly
Department of Physics, University of Maryland, College Park, Maryland 20742, USA

(Received 29 September 2004; published 8 December 2004)

This Brief Report provides simple parametrizations of the nucleon electromagnetic form factors using
functions of Q2 that are consistent with dimensional scaling at high Q2. Good fits require only four parameters
each for GEp, GMp, and GMn and only two for GEn.

DOI: 10.1103/PhysRevC.70.068202 PACS number(s): 14.20.Dh, 13.40.Gp

Nucleon electromagnetic form factors are needed for
many calculations in nuclear physics. Hence, it would be
useful to have a simple parametrization that accurately rep-
resents the data over a wide range of Q2 with reasonable
behavior for both Q2→0 and Q2→!. To obtain reasonable
behavior at low Q2 the power-series representation should
involve only even powers of Q. At high Q2 dimensional scal-
ing rules require G"Q−4 apart from slowly varying logarith-
mic corrections that can be ignored safely for most applica-
tions. However, the most common parametrizations violate
one or both of these conditions. Often one uses the reciprocal
of a polynomial in Q [1–3], but then the rms radius cannot be
determined because such a parametrization includes unphysi-
cal odd powers of Q. This problem can be circumvented
using the reciprocal of a polynomial in Q2, but to obtain
good fits for Q2 in the several !GeV/c"2 range one must use
so many terms that the form factor falls too rapidly at large
Q2 [4]. Yet another parametrization is based upon a
continued-fraction expansion in Q2 [5,6], but the limiting
Q−4 behavior is usually not enforced because the required
parameter constraints become quite cumbersome. In Ref. [7]
I proposed a parametrization based upon charge and magne-
tization densities that was designed to enforce both condi-
tions, but the representations in terms of Fourier-Bessel or

Laguerre-Gaussian expansions require a fairly large number
of parameters and are somewhat difficult to implement in
calculations that are not based upon densities. In this Brief
Report, I propose a much simpler parametrization that is
suitable for a wide variety of calculations.
Perhaps the simplest parametrization takes the form

G!Q2" "

#
k=0

n

ak#k

1 +#
k=1

n+2

bk#k
, !1"

where both numerator and denominator are polynomials in
#=Q2 /4mp

2 and where the degree of the denominator is larger
than that of the numerator to ensure that G"Q−4 for large
Q2. For magnetic form factors we include a factor of $ on
the right-hand side, such that a0$1 if the data for low Q2 are
normalized accurately. With n=1 and a0=1, this parametri-
zation provides excellent fits to GEp, GMp /$p, and GMn /$n
using only four parameters each. However, this approach is
less successful for GEn because the existing data are still too
limited. Therefore, for GEn I continue to use the Galster pa-
rametrization [8],

FIG. 1. Fits to nucleon electromagnetic form factors. For GEn, data using recoil or target polarization [16–22] are shown as filled circles
while data obtained from the deuteron quadrupole form factor [23] are shown as open circles.

PHYSICAL REVIEW C 70, 068202 (2004)

0556-2813/2004/70(6)/068202(3)/$22.50 ©2004 The American Physical Society068202-1

[Recent work: Cloët & Miller, 1204.4422] 

Q2 Parameterisation



Form Factor Radii & Magnetic Moments

Search for non-analytic behaviour predicted by Chiral Perturbation 
Theory

✤  Form factor radii:

✤  Magnetic moment      /anomalous magnetic momentµ �
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Lattice Nucleon Form Factors



• In the following slides, we will be looking at lattice results for the EM form factors of 
the proton which can be compared with the experimental results

• We need to be careful of systematic errors that could affect our results

• Finite lattice spacing

• Large quark masses

• Finite volume

• Contamination from excited states

• Will focus on recent results from QCDSF

Systematics of a Lattice Calculation

PRD 84, 074507 (2011) [arXiv:1106.3580]



mp≥0.8GeV

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Q2 @GeV2D

F 1
u-
d

mp£0.4GeV

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Q2 @GeV2D

F 1
u-
d

0.8GeV≥mp≥0.4GeV

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Q2 @GeV2D

F 1
u-
d

Comparison With Experiment Fu�d
1 (Q2)

• Isovector Dirac form factor

• Darker colours             lighter masses

• Grey band             parameterisation of 
experimental data

• Lattice results lie above experiment 
with smaller slope
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mpâL≥3.4
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• Scan available datasets for bins with constant mπ,  but with 3 or more different lattice 
spacings, a

• Plot results as a function of a2

Systematic Errors

No visible dependence on a
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Lattice Spacing

Grey band: parameterisation of experimental data



• Small volume correction 
accounted for by 
exponential factor

• Scan datasets for bins with constant mπ
  but with 2 or more spatial volumes, L

• Plot results as a function of L
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Grey band: parameterisation of experimental data

Systematic Errors



• For small values of Euclidean time, effects from excited states may adversely affect 
the extraction of physical observable from the lattice, e.g. 

C2pt(t) = A0e
�M0t + A1e

�M1t + . . .
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• Require distances between source (t=0)- operator insertion (τ) - sink (tsnk) >>1

• Simulate with multiple tsnk’s on a single dataset to test the validity of our original 
choice tsnk=13
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Excited State Contamination
Systematic Errors



• Systematics appear to be under control

• Finite lattice spacing     √

• Large quark masses

• Finite volume    √

• Contamination from excited states     √

• Remaining discrepancy must come from unphysical quark masses

Systematic Errors
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�u�d • Isovector Dirac radius (squared)

• Isovector Pauli radius (squared)

• Isovector anomalous magnetic moment

• Dirac radius: different experimental 
values



• Radii suppressed at large masses and small volumes

• Hint of sharp rise at small masses

• r2 approaching experimental result

•              shows clear curvature at small masses

• Can the remaining discrepancy be due to the (still) unphysically large quark masses?

• Contact with ChPT?

�u�d

Light Quark Mass Dependence
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• Popular expressions from Phys. Rev. D71, 034508 (2005)  (SSE)

• But are they valid up to                                                  ?

• Check by: Varying unknown parameters over a “reasonable” range and extrapolate up 
from the chiral limit with the only constraint provided by the experimental point

m� < 300 MeV



• Rapidly decreasing isovector Dirac ms radius as pion mass increases

• Overlap with the lattice data points at mπ ≈ 250 . . . 300 MeV

• Similar observations for Pauli radius and anomalous magnetic moment

• Isoscalar r1 indicates form not valid past physical pion mass

Dirac Radius
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• Individual flavour contributions not accessible directly in experiment

• Must be derived from a combination of proton and neutron form factors 

• (assuming charge symmetry  up = dn )

• On the lattice we compute the individual quark contributions directly

Flavour Distribution

F p =
2

3
F p
u � 1

3
F p
d

Fn = �1

3
F p
u +

2

3
F p
d



Flavour Distribution
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• d-quark contribution to F1(Q2) falls off 
faster than the u-quark contribution

• Effect is enhanced at lighter quark 
masses



Flavour Distribution rd
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• In terms of charge radii, the d-quark in the proton has a larger charge radius than 
the u-quark



up down

rd
1,2 > ru

1,2

Ph. Hägler (QCDSF) [PRL 98, 222001 (2007)]

Implications for Transverse Densities
q(b2

⇤) =
�

d2q⇤ e�i⌅b�·q�F1(q2)Recall:



Pion Form Factor

h⇡(p0)|Jµ(~q)|⇡(p)i = PµF⇡(q
2)

q2 = �Q2 = (p0 � p)2

Pµ = p0µ + pµ



• Asymptotic normalisation known from                    decay

• Allows to study the transition from the soft to hard regimes

• Low Q2: measured directly by scattering high energy pions from atomic electrons [CERN]

• High Q2: quasi-elastic scattering off virtual pions [DESY & JLab]

• Model dependence

Pion Form Factor

⇤ � µ + ⇥

F�(Q2 �⇥) =
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07/05/2009 10:27CHROMA: simple_meson_seqsrc_w.cc Source File

Page 7 of 7http://usqcd.jlab.org/usqcd-software/chroma/chroma/docs/doxygen/html/simple__meson__seqsrc__w_8cc-source.html

00500     }

00501 

00502 

00503     //! Register all the factories

00504     bool registerAll() 

00505     {

00506       bool success = true; 

00507       if (! registered)

00508       {

00509         //! Register all the factories

00510         success &= Chroma::TheWilsonHadronSeqSourceFactory::Instance().registerObject(string("a0-a0"), 

00511                                                                                       mesA0A01SeqSrc);

00512 

00513         success &= Chroma::TheWilsonHadronSeqSourceFactory::Instance().registerObject(string("a0-rho_x_1"), 

00514                                                                                       mesA0RhoX1SeqSrc);

00515 

00516         success &= Chroma::TheWilsonHadronSeqSourceFactory::Instance().registerObject(string("a0-rho_y_1"),

00517                                                                                       mesA0RhoY1SeqSrc);

00518       

00519         success &= Chroma::TheWilsonHadronSeqSourceFactory::Instance().registerObject(string("a0-b1_z"),

00520                                                                                       mesA0B1Z1SeqSrc);

00521       

00522         success &= Chroma::TheWilsonHadronSeqSourceFactory::Instance().registerObject(string("a0-rho_z_1"),

00523                                                                                       mesA0RhoZ1SeqSrc);

00524       

00525         success &= Chroma::TheWilsonHadronSeqSourceFactory::Instance().registerObject(string("a0-b1_y"),

00526                                                                                       mesA01B1Y1SeqSrc);

00527       

00528         success &= Chroma::TheWilsonHadronSeqSourceFactory::Instance().registerObject(string("a0-b1_x"),

00529                                                                                       mesA01B1X1SeqSrc);

00530       

00531         success &= Chroma::TheWilsonHadronSeqSourceFactory::Instance().registerObject(string("a0-pion_2"),

00532                                                                                       mesA01Pion2SeqSrc);

00533       

00534         success &= Chroma::TheWilsonHadronSeqSourceFactory::Instance().registerObject(string("a0-a0_2"),

00535                                                                                       mesA0A02SeqSrc);

00536       

00537         success &= Chroma::TheWilsonHadronSeqSourceFactory::Instance().registerObject(string("a0-rho_x_2"),

00538                                                                                       mesA0RhoX2SeqSrc);

00539       

00540         success &= Chroma::TheWilsonHadronSeqSourceFactory::Instance().registerObject(string("a0-rho_y_2"),

00541                                                                                       mesA0RhoY2SeqSrc);

00542       

00543         success &= Chroma::TheWilsonHadronSeqSourceFactory::Instance().registerObject(string("a0-a1_z"),

00544                                                                                       mesA0A1Z1SeqSrc);

00545        

00546         success &= Chroma::TheWilsonHadronSeqSourceFactory::Instance().registerObject(string("a0-rho_z_2"),

00547                                                                                       mesA0RhoZ2SeqSrc);

00548        

00549         success &= Chroma::TheWilsonHadronSeqSourceFactory::Instance().registerObject(string("a0-a1_y"),

00550                                                                                       mesA0A1Y1SeqSrc);

00551        

00552         success &= Chroma::TheWilsonHadronSeqSourceFactory::Instance().registerObject(string("a0-a1_x"),

00553                                                                                       mesA0A1X1SeqSrc);

00554        

00555         success &= Chroma::TheWilsonHadronSeqSourceFactory::Instance().registerObject(string("a0-pion_1"),

00556                                                                                       mesA0Pion1SeqSrc);

00557 

00558         success &= Chroma::TheWilsonHadronSeqSourceFactory::Instance().registerObject(string("pion_1-pion_1"),

00559                                                                                       mesPion1Pion1SeqSrc);

00560 

00561         // keep for historical purposes

00562         success &= Chroma::TheWilsonHadronSeqSourceFactory::Instance().registerObject(string("pion"),

00563                                                                                       mesPion1Pion1SeqSrc);

00564 

00565         registered = true;

00566       }

00567       return success;

00568     }

00569 

00570   }  // end namespace SimpleMesonSeqSourceEnv

00571 

00572 }  // end namespace Chroma

00573 

00574 

00575   

Generated on Thu May 7 04:34:13 2009 for CHROMA by   1.4.7

simple_meson_seqsrc_w.cc



Pion Form Factor
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Pion Form Factor
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affects determination of:
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L
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Minimum lattice momentum:



Discretised Momentum
• On a periodic lattice with spatial volume L3, quark fields satisfy

• so we see that momenta are discretised in units of 

• For typical lattices, smallest non-zero momentum ~400-500 MeV

• Poor momentum resolution

• Can affect phenomenological observables e.g. form factors

�(x + �ei L) = �(x), i = 1, 2, 3
�

d4p e�ip(x+�ei L)�̃(p) =
�

d4p e�ipx�̃(p), i = 1, 2, 3

pi =
2�

L
ni, i = 1, 2, 3



Accessing small momenta: 
	 	 (partially) twisted boundary conditions
• On a periodic lattice with spatial volume L3, quark fields satisfy

• so we see that momenta are discretised in units of

• Modify boundary conditions on the valence quarks

• allows to tune the momenta continuously

• For a meson with quark flavours (1,2)

�(x + �ei L) = �(x), i = 1, 2, 3
�

d4p e�ip(x+�ei L)�̃(p) =
�

d4p e�ipx�̃(p), i = 1, 2, 3

pi =
2�

L
ni, i = 1, 2, 3

�(x + �ei L) = ei�i�(x), i = 1, 2, 3

pi =
2�

L
ni +

�i

L
, i = 1, 2, 3

�p =
2�

L
�n +

(��1 � ��2)
L



Implementation
• Make a unitary Abelian transformation on the fields

• Phase factor cancels in all terms of the lattice fermion action except the spatial 
hopping term

• In practice, compute quark propagator with gauge links

• Twisted boundary conditions for sea quarks requires generating new set of gauge 
fields for each twist

• only twist valence quarks           partially twisted boundary conditions

• Introduces an additional finite size effect that is, however, exponentially 
suppressed

�(x) �� U(�, x)�̃(x) = e
i��·�x

L �̃(x)

�̃(x)
�
ei

a�i
L Ui(x)(1� �i)�̃(x + î) + e�i

a�i
L U†

i (x� î)(1 + �i)�̃(x� î)
�

{Ui(x)} �� {ei
a�i
L Ui(x)}



Additional Finite Volume Effects
(dispersion relation)
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Figure 1: The plots in the first line illustrate the results for the dispersion relation for the
π and the ρ (empty and full symbols respectively) for the two choices of the quark mass. In
the second line we show the corresponding relative error as a function of the momentum.

κ = 0.13500 κ = 0.13550

π ρ π ρ

χ2/d.o.f |(20) 0.3 1.0 0.6 1.7

χ2/d.o.f |(21) 1.8 2.5 0.9 2.1

∆2 from (20) 0.0040(1) 0.0042(2) 0.0040(1) 0.0048(4)

Table 2: χ2/d.o.f. for the lattice data with respect the expectations eqs. (20) and (21) with
∆2 = a2/L2 = 0.0039 (first two rows) and the results obtained from a fit to (20) with ∆2

left as a parameter of the fit (third row).
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Figure 2: Magnified view of the dispersion relation of fig. 1 in the interval |!plat| ∈ [0, 2π].
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Figure 3: The first line shows the results for the π and ρ decay constant (empty and
full symbols respectively) and the second line shows the matrix element (16) for the two
choices of the quark mass. In each plot the horizontal lines represent the central value at
!plat = !θ1 = !θ2 = 0.
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Implementation

• Use different (twisted) boundary conditions when computing the propagators either 
side of the current

• E.g. One possibility would be

In order to extract the matrix element 〈Pf (!pf ) |V4(0) |Pi(!pi) 〉 effectively, it is conve-

nient to define the three ratios:

R1, PiPf
(!pi, !pf ) = 4

√

EiEf

√

CPiPf
(t,!pi,!pf ) CPf Pi

(t,!pf ,!pi)

CPi
(T/2,!pi) CPf

(T/2,!pf ) ,

R2, PiPf
(!pi, !pf ) = 2

√

EiEf

√

CPiPf
(t,!pi,!pf ) CPf Pi

(t,!pf ,!pi)

CPiPi
(t,!pi,!pi) CPf Pf

(t,!pf ,!pf ) ,

R3, PiPf
(!pi, !pf ) = 4

√

EiEf
CPiPf

(t,!pi,!pf )

CPf
(T/2,!pf )

√

CPi
(T/2−t,!pi) CPf

(t,!pf ) CPf
(T/2,!pf )

CPf
(T/2−t,!pf ) CPi

(t,!pi) CPi
(T/2,!pi)

.

(2.8)

For sufficiently large t and T/2− t, so that only the lightest mesons contribute significantly

to each of the correlation functions, each of the three ratios is independent of t and is

equal to the matrix element 〈Pf (!pf ) |V4(0) |Pi(!pi) 〉. Here we are assuming that t is in the

forward half of the lattice 0 < t < T/2. The correlation functions for t in the backward half,

T/2 < t < T are readily related to those in the forward half and hence can be combined

with them to construct the ratios in (2.8). We discuss the quality of the plateaus and the

numerical determination of the form factors in section 3.

2.3 The Pion’s Form Factor with Twisted Boundary Conditions

A sketch of the quark-flow diagram for the transition in eq. (2.1), with the final-state meson

Pf composed of valence quarks (q1q̄3) and the initial-state meson with valence quarks (q2q̄3)

is as follows:

q2 q1

q3

Vµ

Pi Pf

For K"3 decays, specifically for the decay K̄0 → π+#νl, each of the three valence has a

different flavour, q1 = u, q2 = s and q3 = d, and the partially twisted theory can be readily

constructed as discussed in ref. [13]. We can therefore introduce three independent twisting

angles for the three flavours. For the electromagnetic form factor of the pion however, q1

has the same flavour as q2, nevertheless it is still possible to use partially twisted boundary

conditions to evaluate the form factor, with three different twisting angles for the three

valence quarks, as we now explain 3.

(a) We start by imagining that we evaluate the matrix element 〈π(pf ) |Vµ |π(pi)〉 in

an infinite volume in full QCD with 3 flavours of sea quarks. We assume isospin

symmetry, and it will be important to note that in this case G-parity implies that

only the isovector component of the electromagnetic current couples to pions. When

we consider partially quenched QCD below, this will imply that the vector current is

composed of valence quark fields.

3In the numerical work described in section 3 we choose to keep the twisting angle of the spectator quark

(!θ3) equal to zero.
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Figure 2: f ππ(q2) from a 243×64 lattice with mπ = 330 MeV using partially twisted bc’s.

On the right of Fig. 2 we have a zoom into the low Q2 = −q2 region. The triangles are our
lattice data points for a pion with mπ = 330MeV, and the magenta diamonds are experimental data
points for the physical pion.

Because our values of Q2 are very small, we apply NLO chiral perturbation theory (ChPT).
In NLO ChPT, the pion form factor depends only on a single low energy constant (LEC) (Lr9 for
SU(3), or lr6 for SU(2))

f ππSU(2),NLO(q2) = 1+
1
f 2

[

−2lr6 q2+4H̃ (m2π ,q2,µ2)
]

(4.1)

f ππSU(3),NLO(q2) = 1+
1
f 20

[

4Lr9 q2+4H̃ (m2π ,q2,µ2)+2H̃ (m2K ,q2,µ2)
]

(4.2)

where

H̃ (m2,q2,µ2) =
m2H(q2/m2)

32π2
−

q2

192π2
log m

2

µ2
(4.3)

and

H(x) ≡−
4
3

+
5
18
x−

(x−4)
6

√

x−4
x
log

(

√

(x−4)/x +1
√

(x−4)/x −1

)

(4.4)

with H(x) = −x/6+O(x3/2) for small x. Provided our pion mass is light enough, we can use the
q2 dependence of f ππ(q2) to extract this LEC. The grey dashed curve on the right hand of Fig. 2
shows our SU(2) fit to the mπ = 330MeV pion form factor data.

Once the LEC is determined from this fit, we insert the physical pion mass in (4.1) to obtain
the solid blue curve. In addition we also represent the PDG world average [2] for the charge radius
using the black dashed line. Our best estimate for the pion charge radius comes from the SU(2)
NLO ChPT fit to the three lowest Q2 points and is

〈r2π〉 = 0.418(31) fm2 . (4.5)

The fact that our result is in agreement with experiment, 〈r2π〉 = 0.452(11) fm2 [2], gives us confi-
dence that we are in a regime where chiral perturbation theory is applicable.

5
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data set maximum Q2 linear quadratic cubic pole

B 0.013 GeV2 0.354(28)(11) − − 0.361(29)(12)

B 0.022 GeV2 0.354(26)(11) 0.353(35)(11) − 0.364(27)(12)

B 0.035 GeV2 0.353(25)(11) 0.355(32)(11) 0.351(41)(11) 0.366(27)(12)

C 0.150 GeV2 0.332(28)(11) 0.387(44)(13) 0.406(56)(13) 0.382(37)(12)

Table 3: Results for 〈r2
π〉330 MeV obtained by fitting to linear, quadratic or cubic functions of Q2

and by using the pole ansatz (3.10). In the first row we use only the single point at the lowest
value of Q2 (Q2 = 0.013 GeV2), in the second we use the two points at the lowest values of Q2

(Q2 = 0.013 GeV2 and Q2 = 0.022 GeV2) and in the third row we use the points at the lowest
three values of Q2 (Q2 = 0.013 GeV2, Q2 = 0.022 GeV2 and Q2 = 0.035 GeV2). The final row
corresponds to fits to all 9 points with Q2 ≤ Q2

min
. The two quoted errors are statistical and that

due to the uncertainty in the lattice spacing.

to the precise form of the fitting function. To illustrate this we present in tab. 3 the results

obtained by fitting our results for the form factor at the lowest three values of Q2 to the

pole form (3.10) as well as to linear, quadratic and cubic polynomials. In the final row of

tab. 3 we present the value of 〈r2
π〉330 MeV obtained by applying the same fits to all 9 points

up to Q2
min.

3.5 Comparison of the cost of using point source and Z(2)-wall source propa-

gators

In this study we have used two different formulations of the source in the computation of

the quark propagators. The correlation functions on data set A have been computed from

point source propagators while the correlation functions on data sets B and C have been

computed using the noise source technique briefly described in section 3.3.

In this section we compare the relative computational cost of each approach in order to

achieve similar statistical errors for standard observables relevant for the phenomenology

of light mesons. In a very similar recent study [4] such a comparison was carried out for the

meson spectrum on a 163 × 32 lattice also using Nf = 2+1 Domain Wall fermions and the

Iwasaki gauge action. On this smaller volume the inverse lattice spacing was found to be

a−1 = 1.63(3)GeV and the study was performed using a pion with mass amπ ≈ 0.44. The

statistical error on the pseudoscalar and vector meson correlation functions was studied at

a fixed computational cost, i.e. at a fixed number of inversions of the Dirac matrix. It was

found that the stochastic (one-end) approach offers a factor of two reduction in the error

and a definite improvement in plateau quality over the traditional point source technique.

Preliminary results indicating similar improvements were also reported by ETMC in [3].

Here we compare the costs for both approaches on a larger volume and for a much smaller

pion mass. In particular we perform the comparison for amπ, ZV and fππ(q2 = –Q2
min).

Table 4 shows the results for each quantity for data sets A and C. In the second column we

give the number of inversions of the Dirac matrix that were carried out in each case. For

one measurement 12 inversions are necessary in the case of point source propagators while

only one inversion is necessary when using the noise source technique. On data set A we

– 10 –
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Figure 2: f ππ(q2) from a 243×64 lattice with mπ = 330 MeV using partially twisted bc’s.

On the right of Fig. 2 we have a zoom into the low Q2 = −q2 region. The triangles are our
lattice data points for a pion with mπ = 330MeV, and the magenta diamonds are experimental data
points for the physical pion.

Because our values of Q2 are very small, we apply NLO chiral perturbation theory (ChPT).
In NLO ChPT, the pion form factor depends only on a single low energy constant (LEC) (Lr9 for
SU(3), or lr6 for SU(2))

f ππSU(2),NLO(q2) = 1+
1
f 2

[

−2lr6 q2+4H̃ (m2π ,q2,µ2)
]

(4.1)

f ππSU(3),NLO(q2) = 1+
1
f 20

[

4Lr9 q2+4H̃ (m2π ,q2,µ2)+2H̃ (m2K ,q2,µ2)
]

(4.2)

where

H̃ (m2,q2,µ2) =
m2H(q2/m2)

32π2
−

q2

192π2
log m

2

µ2
(4.3)

and

H(x) ≡−
4
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(x−4)
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√
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x
log

(

√

(x−4)/x +1
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)

(4.4)

with H(x) = −x/6+O(x3/2) for small x. Provided our pion mass is light enough, we can use the
q2 dependence of f ππ(q2) to extract this LEC. The grey dashed curve on the right hand of Fig. 2
shows our SU(2) fit to the mπ = 330MeV pion form factor data.

Once the LEC is determined from this fit, we insert the physical pion mass in (4.1) to obtain
the solid blue curve. In addition we also represent the PDG world average [2] for the charge radius
using the black dashed line. Our best estimate for the pion charge radius comes from the SU(2)
NLO ChPT fit to the three lowest Q2 points and is

〈r2π〉 = 0.418(31) fm2 . (4.5)

The fact that our result is in agreement with experiment, 〈r2π〉 = 0.452(11) fm2 [2], gives us confi-
dence that we are in a regime where chiral perturbation theory is applicable.
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Figure 2: f ππ(q2) from a 243×64 lattice with mπ = 330 MeV using partially twisted bc’s.

On the right of Fig. 2 we have a zoom into the low Q2 = −q2 region. The triangles are our
lattice data points for a pion with mπ = 330MeV, and the magenta diamonds are experimental data
points for the physical pion.

Because our values of Q2 are very small, we apply NLO chiral perturbation theory (ChPT).
In NLO ChPT, the pion form factor depends only on a single low energy constant (LEC) (Lr9 for
SU(3), or lr6 for SU(2))

f ππSU(2),NLO(q2) = 1+
1
f 2

[

−2lr6 q2+4H̃ (m2π ,q2,µ2)
]

(4.1)

f ππSU(3),NLO(q2) = 1+
1
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[
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with H(x) = −x/6+O(x3/2) for small x. Provided our pion mass is light enough, we can use the
q2 dependence of f ππ(q2) to extract this LEC. The grey dashed curve on the right hand of Fig. 2
shows our SU(2) fit to the mπ = 330MeV pion form factor data.

Once the LEC is determined from this fit, we insert the physical pion mass in (4.1) to obtain
the solid blue curve. In addition we also represent the PDG world average [2] for the charge radius
using the black dashed line. Our best estimate for the pion charge radius comes from the SU(2)
NLO ChPT fit to the three lowest Q2 points and is

〈r2π〉 = 0.418(31) fm2 . (4.5)

The fact that our result is in agreement with experiment, 〈r2π〉 = 0.452(11) fm2 [2], gives us confi-
dence that we are in a regime where chiral perturbation theory is applicable.
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• Many choices of twist angles giving access 
to extremely small Q2

• Radii results increasing towards the 
experimental point at smaller quark masses
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Figure 1: Results for the pion form factor for the lightest quark mass for each lattice
spacing compared with the results from PACS-CS [15], ETMC [16] and UKQCD [17], as
well as the experimental results from [18]. The right figure is the inset in the top left-hand
corner.
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Figure 2: Left: Results for the pion charge radius extracted from linear fits to fππ(q2) in

the region (r0 q)2 ≤ −0.15 against (mπ r0)
2 together with results from other collabora-

tions. Right: Results for !6 against (mπ r0)
2.

If χPT to NLO were a good description for the mass range of our simulations we would
expect !6 to be constant, which is apparently not the case. This observation is consistent
with the findings of earlier studies as e.g. in [15, 16]. To make a statement on

〈

r2
π

〉

at the
physical point we thus envisage to use χPT to NNLO. In addition, finite volume effects
as well as lattice artefacts, which might still be present in our analysis, are not taken into
account so far. The discussion of the corresponding analysis of both, χPT to NNLO and
finite volume effects and lattice artefacts, is postponed to a later publication.

Conclusions: In this proceedings article we have given an overview on our ongoing de-
termination of the electromagnetic form factor of the pion in lattice QCD. We use twisted
boundary conditions to attain a high density of measurements around q2 = 0 which allows
us to extract the charge radius without residual model dependence. We have compared
our measurements to χPT at NLO and conclude that NLO is insufficient to describe the
data in this mass range consistently. In the final analysis we are going to compare our mea-
surements to χPT at NNLO and perform detailed studies on cut-off effects, finite volume
effects and contributions to the form factor from excited states.
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expect !6 to be constant, which is apparently not the case. This observation is consistent
with the findings of earlier studies as e.g. in [15, 16]. To make a statement on
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at the
physical point we thus envisage to use χPT to NNLO. In addition, finite volume effects
as well as lattice artefacts, which might still be present in our analysis, are not taken into
account so far. The discussion of the corresponding analysis of both, χPT to NNLO and
finite volume effects and lattice artefacts, is postponed to a later publication.

Conclusions: In this proceedings article we have given an overview on our ongoing de-
termination of the electromagnetic form factor of the pion in lattice QCD. We use twisted
boundary conditions to attain a high density of measurements around q2 = 0 which allows
us to extract the charge radius without residual model dependence. We have compared
our measurements to χPT at NLO and conclude that NLO is insufficient to describe the
data in this mass range consistently. In the final analysis we are going to compare our mea-
surements to χPT at NNLO and perform detailed studies on cut-off effects, finite volume
effects and contributions to the form factor from excited states.
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Conclusions: In this proceedings article we have given an overview on our ongoing de-
termination of the electromagnetic form factor of the pion in lattice QCD. We use twisted
boundary conditions to attain a high density of measurements around q2 = 0 which allows
us to extract the charge radius without residual model dependence. We have compared
our measurements to χPT at NLO and conclude that NLO is insufficient to describe the
data in this mass range consistently. In the final analysis we are going to compare our mea-
surements to χPT at NNLO and perform detailed studies on cut-off effects, finite volume
effects and contributions to the form factor from excited states.
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• Pion and nucleon form factors have received the most attention

• Small amount of work on form factors of other hadrons, e.g.

• Hyperons

• Delta

• Rho

•                     transition

• Non-zero quadrupole moment                 hadron deformation
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