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A Broad and Balanced

Physics Nuclear Physics Agenda

Phase transition(s) at early times,  Production of most Matter under
light sources at later times  elements in the cosmos ~ extreme conditions

Nuclel and their reactions: The structure of, and
Energy, Medical Isotopes, National Security,..

Search for
New Physics

- forces between, nucleons

Atome: Shuckln

—normous range of length scales involved !
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Nuclear Physics iIs Diverse
N Application and Impact

NMR Search for New Physics,

e.g. dark matter, neutrino properties

(Magnetic Resonance Imaging)
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| —— Computing is Essential
Physics

IN Nuclear Physics Research

......

.....

Human

Experiment Creativity

Computation
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Nuclear Physics HPC Thrusts

Cold QCD

(lattice QCD)

Hot QCD

Nuclear Structure Accelerators

and Reactions
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Electrons and Nuclel Protons and Neutrons Quarks and Gluons

Quantum Chromodynamics

Monday, August 20, 2012



Quantum Chromodynamics:

The Underlying Theory of Nuclear Physics g

T )L.' lﬂ()f'j¢".v:
+ Rl -V(©)

> A

Thinking

electric charges EM waves

Experiment

QCD is Non-Linear
and essentially Quantum

color charges Excited Glue
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Quantum Fluctuations and
Quark and Gluon Confinement

F~2x10°N

The Quantum Vacuum Gluon Energy Density
Topological Charge Density Flux-Tubes between color charges
(Massimo DiPierro) (Derek Leinweber)
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Computational Nuclear Cold QCD

Physics

Nature is finely tuned

capacity
resources

I exotics
J_effergon Lab

The Quantum Vacuum capability
A resources
L ~ 4 tm
At ~ 6 x 10724 3
X - '; .
Topological Charge Density CapaCIty
(Massimo DiPierro) resources
™ = = ) 1’-;5[ V
EDM EDM
. | Time + 5 N & - .
" Reversal Q"{tm o —
= CNERED = °
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Partial ) Unification of Nuclear Physics
- Quantifiable Uncertainties

\3-;‘5“‘5 ./

“ B e T Qe M Be / /‘,-
FORCE ATTRACTION Many-Body Methods
m EFT, LatticeEFT,
GFMC, NCSM
Solve QCD ~ S‘A’Sb%

Predictions with

REPULS'%’» Quantifiable Uncertainties
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® Nuclear physics exhibits fine-tunings
o Why ??
e Range of parameters to produce sufficient carbon ?
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Computational Requirements
From QCD to Nuclei

* NNN interaction from LQCD
* Alpha particle

(Deuteron axial-charge )

Precision meson-meson
interactions

D Neutron

[- Baryon-baryon interactions j QJ Q

« Baryon-meson interactions N
3/ ’
T

i' @ =5 Energy
__" ‘
Fusion
I ! I ! l ! l ! I !

¥

0.01 01 1 10 100 1000
Sustained Petaflop-Years
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Computational Requirements
From QCD to Nuclei

* NNN interaction from LQCD
* Alpha particle

CDeuteron axial-charge )

Precision meson-meson
interactions

J

Neutron
e —— d E
» Baryon-baryon interactions J
* Baryon-meson interactions N
r"
=5 Energy

3) Fusion %

Be?int ddressl Complete }NF[ predsmn

0.01 01 1 10 100 1000
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Computational

Requirements

(Spectrum and propertes of mesons )

+ Nucleon transtion form factors
* Spectrum and photo-couplings
of isovecior mesons

(Cascadc spectrum GhuaX
® el N* spectrum i
(thcwpmgs in charmonium ) //):\\
Spectrum of QCD
| 1 | 1 1 1 | 1 | 1 J
0.01 01 1 10 100 1000
Sustained Petaflop-Years

* NNN interaction from LQCD
* Alpha particke

(Oeuoeron axal-charge )

£
‘[ gg\ % Energy

~ ./
From QCD to Nuclei 3} @

l 1 l | l 1 l 1 I

0.01 0.1 1 10 100
Sustained Petaflop-Years

* Baryon-baryon interactions
* Baryon-meson interactions

k"'[

1000

Absciute Polarimeter (HT jet)

\ RIC oC Poladmeten
Y

PHOBOS."/""*_“'\:.\:RAHMS & PP2PP

Gluon contributions
to hadron structure

Formmn factors up 10
the scaling region

ongaucral Polansaton

Son Notetons
ongtudnal Polassaton th Precison

(= LINAC
Q% *

Heobcal Partal Sitwran Snake
&~

Strong AGS Snake

Individual contributions of
up, down, and strange quarks
%0 hadron structure

Isovector form faciors and
moments of generalzed

parton detrbtons How QCD makes a Proton JLab @12GeV
l 1 l 1 l 1 l 1 l L ]
0.01 01 1 10 100 1000
Sustained Petaflop-Years

EDM

« Panty-violating nuclear force
« Neutron electric dpole moment

Frsl calculations of the
pan(y-wolabng weak force

4 &

[Ful inclusion of “disconnecied- ]

diagrams” for the calculation of
time-reversal violating cbservables

DOE's Spalation Neutron
Source at ORNL

Fundamental Symmetries

L 1 | 1 | 1 ] L | ] ]
0.01 01 1 10 100 1000
Sustained Petaflop-Years
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The Phase Structure of QCD :
Heating-up Nuclear Matter

[ttt The Phases of QCD

: Future LHC Experiments 14 |
12 }

‘ Current RHIC Experiments 10 }

Temperature

o N OB O

100 150 200 250 300 350 400 450 500 550

~170 MeV

Critical Point /_ -G 125(A£P) |
Hadron Gas CO'?I' |- ‘.\':"Tl'_’s..-t:ln '
Superconductor | I — |
Nuclear / pr(fm™)
Matter __ Neutron Stars LQCD Statlc equmbrlum properties

900 MeV
Baryon Chemical Potential
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Computational Requirements

[- Continuum extrapolated results for EoS and T,,—_] [ Resuits on the existience/nonexstence of J
« Universal properties of QCD at non-zero a crtical point in the QCD phase dagram
lemperature * Analysis of first order transtion ine
using canonical simulations
Hgh temperature lmet
of the QCD EoS
® Analysis of chiral =
properties of QCD ot
transition using e
highly improved
staggered fermions . * v} '
QCD Phase Structure at e
Precision1 Calculatﬁons of Blulk Therrrlwodynamjics Nonzero Baryon Number Density
| 1 A A A L | I 1 A l I 1 It | J
0.01 01 1 10 100 1000 00 01 1 10 100 1000
Sustained Petaflop-Years Sustained Petaflop-Years

i Saste [ Guon Pasva & Hadrore: Rescater
* Melting temperatures and broadening of Colang Nucks »,;t"mvi Gyauien APead * Realistic simulation of an
heavy quark bound states in QCD 7 Py AL equilbrating non-Abelian plasma
+ Transport properties of hot, strongly g’-’,l\g‘ '._w LM ey « Inkal condiions for viscous
interacting matter :f 3 3’ = P A fiuid dynamics
‘,s‘ t."'-"a’ -l'k‘ ¥ Y o
e A
Eputvataon -
Turtadent Cokr Falos R e

Transport propertes of QCD
with light quarks on lattices

Non-Abelan plasma on arge lattces
with hard modes

)

PR Cwa J

CGC in full 3+10 without
boost invanance

large-x effects

o Equilibration Challenge: ( O[(

Transport Coefficients of QCD and Spectral From the Color-Glass Condensate
IFunctionls of Hadrlons in Mledium 1 ] lto the Qt[Jark—Gqun Plasm?

0.m 01 1 10 100 1000 0.01 01 1 10 100 1000
Sustained Petafiop-Years Sustained Petaflop-Years

n QCD with light quarks

Quarkonium spectroscopy
on coarse lattices
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Nuclear Energy Scales
from QCD
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Light and Medium Nuclel, Fusion
e.g. GFMC and NCSM

'Y

Predicted 6 months
before expt
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Important Progress in Nuclear
Many-Body Physics in 2011

The Hoyle State

Epelbaum, Krebs,
Lee, Meissner

universitétbonnl

DR Lattice EFT
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S

® non-central nuclear forces

® clectromagnetism

® fermions

® surface effects
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Fission Barriers

Figure and
data courtesy

O0® .  of W.Younes viaT Luu

—-1780

—1800

-1820

—1840

Hc/)t/ fission

~15 -10 -5 0 5 10 15
z (fm)
Figure courtesy of W. Younes via T. Luu .
Cold fission

Naive scaling of resources

m

Basic fission _ _ _
. sz Triaxiality 2500 *Each new constraint/coordinate new physics
* Qg ASTTEY - 22000 « Assume 5 hrs/config on 1 CPU (at 5 GFLOP/s)
+Qqp Hot-to-cold fission  6.25x10° * 1 PetaFLOP/s 1 year (too long for 1 nucleus)
+ Qy Scission points 3.125x108 1 ExaFLOP/s 8 hours (reasonable)
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Neutron

(E. Ormand)

® Data not sufficient
® Need yield neutron distributions
® Microscopic interactions with Extreme-Scale Computing
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Nuclear Structure
and Reactions
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HPC Simulations of
Unitary Systems

Time ep= 1 Tstep= 1

Potential (eF) Density (n, )

Bulgac, Luo, Roche, Yoon, Yu)
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Ov [i§ rates for **Ca
predicted

)

Cl-shell model and QRPA
vahdated

v + "C quasielastic
response

Ov pp effective operator methods
validated

J

Nuclei as Neutrino Physics Labs
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star crusts
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Nuclear Astrophysics

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
400,000 yrs. Galaxies, Planets, etc.

W e

~
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Quantui
Fluctuations
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:'q
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R
A
A

e
REDSHIFT 2
1

1St Stars -4 0.8 0.7 0.6 0.5
about 400 million yrs. > S Atay LINEAR SCALE OF THE UNIVERSE RELATIVE TO TODAY

Big Bang Expansion Type 1A Supernovae are
13.7 billion yearé Standard Candles in the Universe

t > 10° s : Hadrons, Big Bang Nucleosynthesis, Nuclear Astrophysics
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SN1987a
5

Slac
Neut

K-Hole or

on Star ?

apse Supernova and

Heavy E
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Nuclear
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* Theoretical foundations laid.
&M Ex a s c a I e * MHD SASI studies completed.
LN . » Full GR (BSSN) hydrodynamics
G el A S | S Multi-frequencﬁnd Multi-angle with AMR nearly complete.
’ o Neutrino Transport * Boltzmann transport modules under
50K, >65K cores 2D/3D development.

» First neutrino-driven explosions

P e t a s c a I e in 2D models with multi-frequency
neutrino transport and first for

- progenitor masses >15 Solar

AN

N7

EOYSD
2 ave), &
P LN

(‘.-:-:5.”\\

12K, 18K, 132K cores

Multi-frequency Neutrino Transport masses.
2D/3D

* First 3D models with multi-
frequency neutrino transport.

* Remains industry standard in 1D.
. * Primary tool for the exploration of
Agile - new weak interaction and EOS
BOLTZTRAN Multi-frequency and Multi-angle physics.
Neutrino Transport » Critical validation for 2D/3D codes.
1D » Critical interpretation of 2D/3D models.
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Computational Status

2D Model

e typical : 50M-100M core hrs
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Source: Frey et al (2009).
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Computational Requirements

Three-dimensional AGB model with
convective envelope and resolved turbulent
boundary kayer mbong between active
burning layers and envelope

L

Three-gimensonal
whole-slar smulations
capturing all crucial
scales with detailed
nuciaar lunetics

Three-dimensional supermova
progenitors including iron core and
overlying siicon buming shell up o core
collapse including the effects of rotation

Three-dimensional

Three-dmensional supemova progenitors aMOVa progenitor Tt
from the end of silcon core burning up 10 including al dynamically M‘(Tws!.‘:r sirmk;bm:s
oo s active layers with nuclear kinetics
and resolution o
Three-dmensional supernova treal turbulent = —E—m—

Global circulation solar model with I

resolved, turbulent tachocine
nuclear buming

progenitor ncluding all
dynamicaly active layers

whole-star simulabons
with resolution sufficient
10 capture intation of
Three-gmensional a detonation

Three-dimensional AGB model indluding whole-star smulations
with resolution 10 caplure

the effects of rotation on the global circulation
turbulent burning

and mass mixing properties .
— , Stellar Explosions | ¢rmames and convecton
s 'gt:ﬂt"i:li()ﬂ ee-AiImensona '
ﬁ%&ﬁi&ﬁﬁm cormective and their Remnants:
The Sun and Other Stars Thermonuglear Supernoyae , ., . |

1 10 100 1000

First-generation two-dimensional
supermova progenitor Including
¥l dynamically active layers

0.01 01 1 10 100 1000 0.01 01
Sustained Petaflop-Years

Sustained Petafiop-Years

(Ful quantum kinetics )

Large (precision) nuciear
Network

)

Multienergy, muitangle
neutnno network

150-species nuclear
framework

Multienergy neutrino
transport and coherent
neutrino flavor mixing

Stellar Explosions
and their Remnants:
Core-Collgpse Supgrnovae R T

0.01 01 1 10 100 1000
Sustained Petaflop-Years
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Accelerators :
Research Facilities

Sophisticated Design, Construction and Operation F
Expensive to Build, Expensive to Operate
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Accelerators :
Design Optimization

Design for Facllity for
Rare Isotope Beams (FRIB)

® Uranium Beam

e 2 x 10° particles,
® 100 seeds

Monday, August 20, 2012



Accelerators :
Design Optimization

End of First Stage End of Second Stage

.
.
4 ’
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.3:.*:: by ~;-\w«\ oy
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)'“ d{v)jf u \*5'-.
v "', %,

Proposed Two-Stage Separator : 132Sn
Doubly magic and radioactive =28, 20,28, 50, 82, 126)
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Accelerators :
Research facilities

e FRIB design

® [sotope Separator

o E£IC

® Beam-Beam at RHIC

® Beam Break-up at TUNAF

® Electron Cooling

e Stability of Non-Linear Dynamics in Synchrotrons

§ /
Longy

ﬂt\ - WMNW.R».I».M
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I,

Computational Requirements

High statstics inac

error studies and

Inac beam dynamics
e

Rare Isotope Beams for ‘
Nuclear Physics EXperimegnts

001 01

1 10 100 1000

Optimization of FRIB
low-beta cavity

+

i (Mocelng FRBRFQ )

HOM

heating for

RHIC ERL

Design of Electromagnetic Structures ;
001 01 1 10 100 1000
Sustained Petaflop-Years

Mulple bunches per
beam over multiple IPs

.__“.-—'

Single bunch per beam over
one |P, parameter space scan

Proot-of-principle
coherent electron cooler
point design

-

Design of EIC
1

L 1 L J

0.01 01 1 10 100 1000

Advanced Methods and Applications of
ISimula’[iclms for Nluclear Pflwysics Falcilities |

001 01 1 10 100 1000
Sustained Petaflop-Years
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Beyond Computational Requirements:
Number of Formal Issues, e.qg.

ow to deal with the sign-problem at finite density?

How to invert heavy-ion data to constrain critical point?

Inital State: Quark Gluon Plasma & Hadronic Rescattering
Coliding Nuclei Hydrodynamic Expansion & Freeze-out
- P s i : . '
% Yy oy . | : Bt "u‘ e
\ S 1 < ‘r = Q ; X a
Equilibration: Hadronzation
TurbulentColor Fields
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~ 1 Gigaflop
== -~ 9thousand core-hours/year

~10 Petaflops, 2.2 Gflops/Watt
~ /00 000 compute cores
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P97 Different Hardware

Requirements

Nuclear Structure
and Reactions

Nuclear
Astrophysics

® Significant memory/core
® —ast memory access

e somewhat conflicts with present machine design ?
® |ow efficiency
® in current design : 4 GB/core preferred

- 1O

Cold QCD and
Nuclear Forces

Hot and Dense
QCD

® \odest memory per core
® | arge number of cores

® Range of Partitions

® Fast network

® [ow latency

¢ |O
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> Different Hardware Requirements

Nuclear Nuclear Structure Cold QCD and Hot and Dense
Astrophysics and Reactions Nuclear Forces QCD

Require a distribution of capacity and capability
computing resources
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Algorithms and Applied Mathematics

e.g. How to solve optimally “

® Multigrid is current (new) technology...
® \Vhat is next 7
® Requires talking/collaboration with CS and AM researchers

& Scientific Discovery through
\dvanced Computing
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Cross Cutting Challenges

e Scaling - algorithms and codes
e Adapting to new architectures
e GPU’s - well underway in some areas, but not all
® people-power issue - i.e. it costs money to have someone do it !
e memory and communications use
e asynchronous I/O and load balancing across millions of cores
e adaptive-mesh and MC
e Fault tolerance and checkpointing
e Memory/core likely less on extreme facilities - memory management
e | arge data sets to be held during calculation,

® e.g. supernova calculations -- new algorithms
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Cross Cutting Challenges

e | arge outputs - large post-processing facilities -
® capacity issue
e \/isualization and data handling/science extraction
e Data management among large collaborations distributed around US/world
e Arbitrary precision calculations (> double precision) - already being implemented
e Improved linear algebra techniques for large matrices
e sparse-matrix eigensolvers
¢ global nonlinear optimization for nonlinear constraints
® improved programming environments

e verification and validation issues for extreme-scale computing
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Collaboration in the Exa-Scale Era

e Different areas in Nuclear Physics

e coherent community effort

¢ with Particle Physics, Plasma, Fluids, ....
e Computer Scientists

e hardware development

e optimizations

® new coding paradigms

e data management, visualization....
e Applied Mathematicians

e algorithm development
e Statisticians

e Monte Carlo
e Many collaborations currently exist

e embraced and strengthened

® requires support mechanism

¢ |nternational and multi-Institutional

Computational Nuclear
Physics
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Human Resources

e Extreme-scale by 2020 (?) : need to further grow expertise in the NP community
® resource growth substantial - faster than Moore’s Law
e algorithms/code evolution should follow growth curve

e The standard interdisciplinary hiring problems exist
e challenges to the current system
® new training models

e Broad collaborations
e Graduate students and postdocs hired into collaboration

e naive scaling from RHIC and UNEDF programs =
SIGNIFICANT enhancement in person-power (+10+10 per project ?)

e Organization in the Nuclear Physics community
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PRONT CURETIONS N NUCLLAR SCRNCE
Tl ROLE OF COMPTIVNG A7 Tl DNTWEMR SCALE
- -
-
-

- Further Enhanced Nuclear Physics Program

e New (Nuclear) Physics areas will likely emerge through Extreme-Scale research

e Additional Nuclear Physics goals during evolution to Extreme-scale

e Deeper cross-fertilization between sub-fields

e Nuclear Physics drive to Extreme-scale will spawn research in Computer
Science, Applied Math, High Energy Physics, Statistics, ....
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Concluding Remarks

e Extreme-scale computing is required to accomplish the
scientific goals of nuclear physics.

e The field will be enormously transformed/unified by
such resources

e The community is eager for such resources and is
preparing for them

e Answer long-standing nuclear physics questions that
will impact
e Basic Science
® Energy
e Security

Thanks to organizers
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