

Extreme Computing Trilogy: Nuclear Physics

Martin J. Savage University of Washington **August 2012, Lattice Summer School**

 m/GeV

Computational Nuclear Physics

Nuclear Physics Research

Unraveling the Origin and Nature of the Visible Matter

Nuclear Physics Quantum Chromodynamics Electroweak Interactions

Establishing and verifying the capability to reliably predict

A Broad and Balanced Nuclear Physics Agenda

Phase transition(s) at early times, light sources at later times

Production of most elements in the cosmos

Matter under extreme conditions

Nuclei and their reactions: Energy, Medical Isotopes, National Security,... The structure of, and forces between, nucleons

Search for New Physics

Enormous range of length scales involved !

Nuclear Physics is Diverse in Application and Impact

Proton Therapy

Radiation Detection

Training Future **Generations**

NMR (Magnetic Resonance Imaging)

Search for New Physics, e.g. dark matter, neutrino properties

Computational Nuclear Physics

Computing is Essential in Nuclear Physics Research

Nuclear Physics HPC Thrusts

Cold QCD (lattice QCD)

Astrophysics

Hot QCD

Nuclear Structure and Reactions

Accelerators

Quantum Chromodynamics: The Underlying Theory of Nuclear Physics

Quantum Fluctuations and Quark and Gluon Confinement

 $F \sim 2 \times 10^5$ N

The Quantum Vacuum

Topological Charge Density

(Massimo DiPierro)

Gluon Energy Density

Flux-Tubes between color charges

(Derek Leinweber)

(Partial) Unification of Nuclear Physics - Quantifiable Uncertainties

Fine-Tunings define our Universe

- Nuclear physics exhibits fine-tunings
	- ! *Why ??*
	- ! *Range of parameters to produce sufficient carbon ?*

Computational Requirements From QCD to Nuclei

Computational Requirements From QCD to Nuclei

Computational Requirements

The Phase Structure of QCD : Heating-up Nuclear Matter

Evolution of Matter in Collision

Computational Requirements

Nuclear Energy Scales from QCD

 $Mass 8Be \sim 7\,500\;MeV$ Mass $235U \sim 220\;900\;MeV$

Light and Medium Nuclei, Fusion e.g. GFMC and NCSM

Important Progress in Nuclear Many-Body Physics in 2011

Shape Deformations and Fission

Fission Barriers

Naïve scaling of resources

- •Each new constraint/coordinate new physics
- Assume 5 hrs/config on 1 CPU (at 5 GFLOP/s)
	- 1 PetaFLOP/s 1 year (too long for 1 nucleus)
	- 1 ExaFLOP/s 8 hours (reasonable)

Heavy Nuclei and Fission

- Data not sufficient
- Need yield neutron distributions
- Microscopic interactions with Extreme-Scale Computing

Nuclear Structure and Reactions

HPC Simulations of Unitary Systems

Computational Requirements

Nuclear Astrophysics

t > 10-6 s : Hadrons, Big Bang Nucleosynthesis, Nuclear Astrophysics

Core-Collapse Supernova and the Heavy Elements

Black-Hole or Neutron Star ?

(Mezzacappa *et al)*

Computational Status : Supernovae

Three Major Code Lines

Computational Status

• typical : 50M-100M core hrs

Observables from Core-Collapse

Computational Requirements

Accelerators : Research Facilities

Sophisticated Design, Construction and Operation Expensive to Build, Expensive to Operate

Accelerators : Design Optimization

Design for Facility for Rare Isotope Beams (FRIB)

- Uranium Beam
- 2×10^5 particles,
- 100 seeds

Design for electron-Ion collider

Accelerators : Design Optimization

Proposed Two-Stage Separator : 132Sn Doubly magic and radioactive **(n,p = 2, 8, 20, 28, 50, 82, 126)**

Accelerators : Research facilities

- FRIB design
- Isotope Separator
- EIC
- Beam-Beam at RHIC
- Beam Break-up at TJNAF
- Electron Cooling
- Stability of Non-Linear Dynamics in Synchrotrons

Computational Requirements

Beyond Computational Requirements: Number of Formal Issues, e.g.

How to deal with the sign-problem at finite density?

How to invert heavy-ion data to constrain critical point?

How Much Computing is that?

- ~ 1 Gigaflop
- ~ 9 thousand core-hours/year

1 Exaflop = 10^3 Petaflops = 10^6 Teraflops = 10^9 Gigaflops

~10 Petaflops, 2.2 Gflops/Watt ~700 000 compute cores

Different Hardware Requirements

Nuclear Astrophysics

Nuclear Structure and Reactions

- Significant memory/core
- Fast memory access
- somewhat conflicts with present machine design ?
- low efficiency

 \bullet $\vert(\)$

• in current design : 4 GB/core preferred

Cold QCD and Nuclear Forces

Hot and Dense QCD

- Modest memory per core
- Large number of cores
- Range of Partitions
- Fast network
- Iow latency
- IO

Different Hardware Requirements

Nuclear Astrophysics

Nuclear Structure and Reactions

Cold QCD and Nuclear Forces

Hot and Dense QCD

Require a distribution of capacity and capability computing resources

Algorithms and Applied Mathematics

e.g. How to solve **optimally** ?

- Multigrid is current (new) technology...
- What is next?
- Requires talking/collaboration with CS and AM researchers

Cross Cutting Challenges

- Scaling algorithms and codes
	- Adapting to new architectures
		- GPU's well underway in some areas, but not all
			- people-power issue i.e. it costs money to have someone do it!
		- memory and communications use
- asynchronous I/O and load balancing across millions of cores
	- adaptive-mesh and MC
- Fault tolerance and checkpointing
- Memory/core likely less on extreme facilities memory management
- Large data sets to be held during calculation,
	- e.g. supernova calculations -- new algorithms

Cross Cutting Challenges

- Large outputs large post-processing facilities
	- capacity issue
	- Visualization and data handling/science extraction
- Data management among large collaborations distributed around US/world
- Arbitrary precision calculations (> double precision) already being implemented
- Improved linear algebra techniques for large matrices
	- sparse-matrix eigensolvers
- global nonlinear optimization for nonlinear constraints
- improved programming environments
- verification and validation issues for extreme-scale computing

Collaboration in the Exa-Scale Era

- Different areas in Nuclear Physics
	- coherent community effort
	- with Particle Physics, Plasma, Fluids,
- Computer Scientists
	- hardware development
	- optimizations
	- new coding paradigms
	- data management, visualization....
- Applied Mathematicians
	- algorithm development
- Statisticians
	- Monte Carlo
- Many collaborations currently exist
	- embraced and strengthened
	- requires support mechanism
	- International and multi-Institutional

Computational Nuclear Physics

Human Resources

• Extreme-scale by 2020 (?): need to further grow expertise in the NP community

- resource growth substantial faster than Moore's Law
- algorithms/code evolution should follow growth curve
- The standard interdisciplinary hiring problems exist
	- challenges to the current system
	- new training models
- Broad collaborations
	- Graduate students and postdocs hired into collaboration
		- naive scaling from RHIC and UNEDF programs =

SIGNIFICANT enhancement in person-power (+10+10 per project ?)

• Organization in the Nuclear Physics community

- New (Nuclear) Physics areas will likely emerge through Extreme-Scale research
- Additional Nuclear Physics goals during evolution to Extreme-scale
- Deeper cross-fertilization between sub-fields
- Nuclear Physics drive to Extreme-scale will spawn research in Computer Science, Applied Math, High Energy Physics, Statistics,

Concluding Remarks

- Extreme-scale computing is required to accomplish the scientific goals of nuclear physics.
- The field will be enormously transformed/unified by such resources
- The community is eager for such resources and is preparing for them
- Answer long-standing nuclear physics questions that will impact
	- Basic Science
	- Energy
	- Security

End