|
|
|

quantum vortex generation in UFG energy use by population distribution
(ref M. Forbes lectures on SLDA in
UFG)

INT Summer School: Computing

*calibrated according to computing survey results

K. J. Roche
High Performance Computing Group, Pacific Northwest National Laboratory
Nuclear Theory Group, University of Washington

Friday, August 24, 2012

Concepts

e COMPLEXITY L e Rt
* PROBLEMS M M M=
e ALGORITHMS
e MACHINES - - - -

Measured time for machine M to generate the

language of the problem plus time to generate
> L the language of the result plus the time to
P accept or reject the language of the result.

Asking questions, solving problems is recursive
process

Accepting a result means a related set of

accept conditions is satisfied
Lr -
—— M a—
._’
reject S=S1482"...28n

algorithm, a Turing machine that always halts
decidable problems are posed as a recursive language
undecidable problems have no algorithms that accept the language of the problem and generate / accept or reject an answer

(Rice’s Theorem posits that non-trivial properties of r.e. languages are undecidable. Examples are emptiness, finiteness, regularity,
and context freedom.)

Friday, August 24, 2012

let’s be practical (we only have 1 hour)

CPU M
Memory
Network
External Devices ...

Friday, August 24, 2012

CPU

* ALU, adds, comparisons

* FPU, floating point operations

e L/S U, data loads / stores

* Registers, fast memory; FPR, GPR, etc.

* PC, program counter -address in memory of
instruction that is executing (control flow, fetch /
decode in CPU)

* Memory interface, often L| and L2 caches

other:
clock speed

buses
ISA (Intel x86 most popular, x86-64, ...)

Memory
* storage for active data and programs

high argc, argv,
environment
address .
variables
StaCk <«— activation records for function
calls (return adresses, parameters, saved
registers, automatice variables)
heap <— memory allocations (malloc)
un_init static data
initialized static data process, a program in execution -has this structure
thread, an abstract data type w/ its own stack, program
low counter value, register set, and state
e program text S

model of program placement in memory

Friday, August 24, 2012

Memory

® size
evirtual memory (looks bigger than it is)

* hierarchy
*try to improve performance by reducing latency

e bandwidth

e correction mechanisms

*WHAT ABOUT COST / PERFORMANCE?!

Power = Capacity * Voltage”2 * Frequency

Charge Discharge

A
\

90 —

100 —
- i

é)o 0 V4

570 —£

\
/ \
© 60 7 \

40 N

N

N

= 50l A\
o 20 1
1RC 2RC 3RC 4RC 5RC 6RC 7TRC 8RC 9RC

Today’s Memories ...

e 1079 cells
e cell capacitance < femto-farad

DRAM

C, capacitor, keeps cell state ‘il}’
PL—M
M, transistor, controls access to cell state T C

read the state of the cell the access line AL is raised
-causes a current to flow on the data line DL or not

write to the cell the data line DL is appropriately set and AL is
raised for a time long enough to charge or drain the capacitor

* resistance O(tera-ohms) . %r_l_ %rJ_ %5_ fL_L
k> = = = =
% L 1 L L
Refresh Cycles ~ 64ms ved it N i e S !
* |eakage >3 = = L L
* reading drains the charge (read + recharge) %ﬂ %r_]_ %rJ_ %5_ _%5_
a + + < +
L L L L
Faster memory el e et
® |ower voltage --> decreases stability, N = = - =
* increase frequency --> $$$ as arrays get large 23— Column Add{ess Selection
*(i.e. more addressable memory) and voltage is Data

increased to assure stability

ref. Drepper, What every Programmer Should Know about Memory

Friday, August 24, 2012

SDR (PCI100) ~
DRAM cell array 100MHz
data transfer rate 100Mbps

DDR (PC1600) ~ moves 2X the data / clock (leading , falling) f f f

add “I/O” buffer (2 bits on data line) adjacent to DRAM cell array | DRAM 10 BERERER
. . Cell

pull two adjacent column cells per access over 2 line data bus Array Buffer

100 MHz X 64 bit / data bus X 2 data bus lines = 1600 MBps

DDR2 (PC6400) ~ moves 4X the data / clock
| | double the bus frequency --> 2X bandwidth
DRfAM 2/ 2J double “I/O” buffer speed to match the bus
mm-ﬂﬂjm 4 bits / clock on 4 line data bus
Array 200MHz array; 400MHz bus; 800MHz FSB (effective freq)
200 MHz X 64 bit / data bus X 4 data bus lines = 6400 MBps

240 PIN addressing @ 1.8V

*each stall cycle on the memory bus is > 11 cpu cycles even in the best systems

Friday, August 24, 2012

CPU, CPU,
A A SR
Northbridge

RAM

PCI-E

RAM
RAM

* 2X for both lanes

SATA
USB

PCl := 132 MB/s

AGP 8X := 2,100 MB/s

PCI Express 1x := 250 [500]* MB/s

PCI Express 2x := 500 [1000]* MB/s
PCI Express 4x := 1000 [2000]* MB/s
PCI Express 8x := 2000 [4000]* MB/s
PCIl Express 16x := 4000 [8000]* MB/s
PCI Express 32x := 8000 [16000]* MB/s
USB 2.0 (Max Possible) := 60 MB/s

IDE (ATA100) := 100 MB/s

IDE (ATA133) := 133 MB/s

SATA := 150 MB/s

SATA Il := 300 MB/s

Gigabit Ethernet := 125 MB/s
IEEE1394B [Firewire 800] := ~100 MB/s

CPU; CPU,

Northbridge

external memory control

RAM
RAM

RAM<» CPU; <« CPU; «>RAM

; ;

RAM<> CPU; «» CPU; «>RAM

cpu integrated memory control

SATA
USB

Friday, August 24, 2012

Prototypical Computing Platforms: Yesterday

Hex-Core AMD
Opteron (TM)

2.6e9 Hz clock

4 FP_OPs / cycle / core
|28 bit registers

PEs 18,688 nodes 224,256 cpu-cores (processors)
16 GB/ node dual socket nodes
Memory 6 ;"IBZSIQEreLdZL/‘?’CQ EL“P 800 MHz DDR2 DIMM
64 KB DI LI / core 25.6 GBps / node memory bw
3D torus topology
Network AMD HT 6 switch ports / SeaStar2+ chip
etwor SeaStar2+ 9.6 GBps interconnect bw / port

3.2GBps injection bw

Operating Systems

Cray Linux Environment (CLE)
(xt-0s2.2.41A)

SuSE Linux on service / io nodes

Aggregrated Aggregated Aggregated
FY Cycles Memory FLOPs Memory/FLOPs
2008 65.7888 THz 61.1875TB 263.155TF 0.2556
2009 343.8592 THz 321.057TB 1.375 PF 0.2567
2010/ 11 583.0656 THz 321.057TB 2.332 PF 0.1513

Friday, August 24, 2012

Measurements

eapplication specific measures / metrics (see bonus for examples)
machine events

-clear dependence on tools / hardware support to monitor hardware components
activated during program execution

--cycle count, disk accesses, floating point operation counts, instructions issued
and retired, L2 data cache misses, maximum memory set size, number of
loads / stores etc.

ederived measures

-efficiency, cycles per instruction (CPl) or floating point operations retired per
second (FLOPSs)

-computational costs, CPU Hours (relates execution time to processing
elements), etc.

epinpoint insufficient parallelism, lock contention, and parallel overheads in
threading and synchronization strategies

Friday, August 24, 2012

Enhancement Modes

*per formance (improve efficiency, scalability - weak or strong)
-data structures / discretizations, algorithms, libraries, language enhancements, compilers

e scientific (better accuracy, improved predictive power)

-physical models, the problem representation, validity of inputs, and correctness of computed results

Time[s]:

PEs: 11264 / 5632 = 2

57.222988 [121.252233 = .472

NB: k= T(Q4)*PEs(Q4)/
T(Q2)*PEs(Q2) ~ 3.756

Strong Scaling Weak Scaling Improve Efficiency
Machine Machine Machine
Events Q2 Q4 Events Q2 Q4 Events Q2 Q4
INS [2.147E+15 |2.1130E+15 INS |[5.18E+17 |1.93E+18 INS (3.16E+12 |4.37E+11
FP_OP (5.896E+14 |5.8947E+14| || FP_OP |4.63E+17 [1.81E+18 FP_OP (5.50E+11 [5.53E+11
PEs 5632 11264 PEs 7808 31232 PEs 1 1
Time[s] [121.252233|57.222988 Time[s] [25339 23791 L2DCM (823458808 | 34722900
Time[s] [826.494142|79.414198
INS: INS: 3.72
2113046508030116 /
=.984 _
2146627269408190 = .9843 FP_OP: 3.92 INS: 0.1381 (7.239%)
FP_OP:
589469277576687 / PEs: 4 FP_OP: 1.0053 (0.99475x)
589624961638025 = .9997
Time[s]: .938 PEs: 1

L2DCM: 0.0422 (23.715x)

Time[s]: 0.0961 (10.407x)

Friday, August 24, 2012

"simulating the same
problem in less time”

Algorithm, machine strong scaling :

Q4 problem := Q2 problem
Q4 algorithm := Q2 algorithm
Q4 machine ~ k* Q2 machine
Q4 time ~ 1/k* Q2 time

Algorithm enhancements, performance
optimizations:
Q4 problem := Q2 problem
Q4 algorithm ~ enhanced Q2 algorithm
Q4 machine := Q2 machine
Q4 time ~ 1/k * Q2 time

*Could consider other variations: algorithm and machine
are varied to achieve reduction of compute time

“simulating a larger
problem in same time”

Algorithm, machine weak scaling (100%):
Q4 problem ~ k* Q2 problem
Q4 algorithm := Q2 algorithm
Q4 machine ~ k* Q2 machine
Q4 time = Q2 time

Algorithm enhancements, performance
optimizations:
Q4 problem ~ k* Q2 problem
Q4 algorithm ~ enhanced Q2 algorithm
Q4 machine := Q2 machine
Q4 time = Q2 time

*Could consider other variations: problem, algorithm and
the machine are varied to achieve fixed time assertion

Computational Efficiency

 Total elapsed time to execute a problem instance with a specific software instance

(algorithm) on a machine instance

e Parallel
*e(n,p):=Tseq (n)/(p~ T(n,p))

weighted:
(t*nPEs/DOF)_b/(t*nPEs/DOF)_e

Friday, August 24, 2012

Data Structures

linked lists
queues

graphs

tensors

lattices , meshes

stencils (for PDEs)

Friday, August 24, 2012

Graphs

* G(VEE)
*V, vertex set, |V| cardinality
*E, edge set, (vi,vj),..., |E|
evalues on vertices
evalues on edges

T

&‘9‘? Q@ *:m ‘ '@

;ﬁ:”

> HEFHEE
G ?’J S
F E Assembly

Elementary Operatlons

Figure 1. Dependency graph for a portion of the
Hartree-Fock procedure.

L

i

I
34 l33

a3 | lag

55 l53 55

l62 64 lge

I72 b7

Y1

Y2 b, e'e
Y3 s

Ya |= | I4 o

Ys I's 0
Ye I

Y7 7

Friday, August 24, 2012

Sparse Matrices o 1 2 3 4 5 & 7 8 9

/1 * x 2 * * * % %
* D * % * 7 * *
* basic for NK based methods " %] 9 g « 10 % y y
that execute repeated SpMV e 11 % 12 % %« ..
accumulate operations P 12« s 14 15 =« .« 16
e 2 integer arrays, | value array * ox o 17T % 18 % ok x %
(i.e. double precision numbers) * 19 x 20 x 21 x x %
% % x 22 % x x 23 24
— — 25 % * * x 20 x x 27 x
\ x« 28 % * * x % * x 29
/3\ 0O 3 9 \
4 1 2 4 7
3 2 3 6
2 1 3
o = ; B = g f P A= 2 o3 20)"
; i _—f g enumber of nonzeros in row
: ecolumn index
3 0 5 8 evalues
o) e -

Friday, August 24, 2012

Dense Matrices

(10’0
/4 _ (11,0
a2.0
(13’0
(O 7
1 8
2 9
A=13 10
4 11
5 12
\6 13

(lO,l
(11,1
a2.1
(13,1

14
15
16
17
18
19
20

agp,2
(11’2
22
(13’2

= W N =

ot

(SR SR BNUR NI BNV SR B
& —

|

@o,3 (04+0%x4=0) (0+1x4=
ai,3 (14+0x4=1) (1+1x4=
ass | ~ | (24+0%4=2) 2+1+4=
as 3 (3+0%4=3) (3+1x4=
28 35 42
29 36 43
30 37 44
31 38 45
32 39 46
33 40 47
34 41 48)

(0+2+4=8)
(1+2%x4=09)
(2+2%4=10)
(3+2%x4=11)

(
(
(
(

0+3x4=12)
1+3%x4=13)
24+ 3%x4=14)
3+3x4=15)

f(2d_block_cyclic) —

0 7 42 14 21 28
1 8 43 15 22 29
4 11 46 18 25 32
5 12 47/ \19 26/, \33
2 9 44 16 23 30
310 45 17 24 31
6 13 48/ . \20 27/ \34

(* X ok %
X % k%
2 9 44 2 9 % %
3 10 45 f~Y2dblock_cyclic) — A =13 10 x x
6 13 48 1.0 * X %
X % k%
\6 13 %

I T T T .

36
39
40
37
38
41

0,2

Friday, August 24, 2012

What We Observe in D’OE ADDS -that they are Not Usually Dominated by FLOPs

Application I 2 3 4 5 6 7 8

Instructions

, 1.99+15 | 8.69E+17 | 1.86E+19 | 2.45+18 | 1.24E+16 | 7.26E+16 8.29E+18 2.67E+18
Retired
Float(';g Point| 5 5op111 1.27E+15 1.956+18 | 2.28E+18 | 6.16E+15 | 4.15E+15 3.27E+17 1.44E+18
ps
INS/FP_ OP| 5.64E+03 | 6.84E+02 9.56 1.08 2.02 17.5 25.3 1.85

REFERENCE FLOATING POINT INTENSE PROBLEM :: Dense Matrix Matrix Multiplication
C <---aA B+ b C: OPERATIONAL COMPLEXITY :A[m,n] , B[n,p] , C[m,p] ::[8mpn + |I3mp] FLOP
E.g. m=n=p=1024 ---> 8603566080 FLOP , measure 8639217664

Single Node (p)zgemm() Raw Machine Events -(p)zgemm

1.2 1E+14
8| 1 - 1E+12
o 0.8 e [b] - 1E+10 ' [' ' | el i 1p, INS
2 oc 100000000 W 1P, FP_OP
g’ 1 process 1000000 6p, INS
3 04+ — — - L — mg
: processes 10000 . 6p, FP_OP
= 0.2 8 processes

B B B B S L
0 1 8p, FP_OP
1024 2048 4096 8.19E+03 1.64E+04 1024 2048 4096 8.19E+03 1.64E+04

N N

Friday, August 24, 2012

Memory Wall Always There ...

Computation: Theoretical peak: (# cpu cores) * (flops / cycle / core) * (cycles / second)

Memory: Theoretical peak: (bus width) * (bus speed) :

Best Copt / Vendor

BLAS 1: O(n) operations on O(n) operands il :
BLAS 2: O(n**2) operations on O(n**2) operands | T —

BLAS 3: O(n**3) operations on O(n**2) operands L eewmeedmds — |
The von Neucmann Bottleneck
10,000 r
—— Processor Clock Cycle Time
---DRAM Access Time
1,000} - - DRAM:Processor Ratio
y=ax+y:
3 loads, 1 store R
(more expensive than FP_OPs by a long shot) s
2 floating point operations (maybe 1) on 3 operands 5 1
£
1t
eg, double precision on the FY10 target platform: %570 1980 1Y9'90 2000 2010
ear

(3 operands / 2 flop) * (8 bytes / operand) * 6 core * 4 (flop / cyc /core) * 2.6e9(cyc/sec) ~125 GBps

... We don’t have this and to get it is $3% ... how to achieve Sustainability??

Friday, August 24, 2012

Basic Optimizations (repeated themes: concurrency, atomicity, and bandwidth)

build a picture of how threads use memory
-locality, latency, bandwidth, coherency, cache contention

eunderstand program, execution / use of programming model
-delay error norms in iterative convergence, precompute interpolation / derivative
coefficients, discretization representations (ie improved unit cells, exploiting spatial homogeneties)

-concurrency, balanced distributed parallelism, communication (blocking send
receive pairs, barrier removal, collectives), control flow dependencies (mutex,
semaphore, synchronizations) and i/o issues

Sample of Cache Discovery Test Results

cache test —+—
Time(ns): r+w

temporal locality 220

i 200
when a referenced resource is referenced 180
again sometime in the near future 120

spatial locality 20
the chance of referencing a resource is
higher if a resource near it was just 1024
referenced

1.07374e+09
3.35544e+07
1.04858e+06

1,04
Size(B) 4.1943e+06
1.67772e+07
6.71089e+07
2.68435e+08™1

30768
5 1024 Stride(B)

Friday, August 24, 2012

Cache Coherency:

write-through, if cache line is written to, the processor also writes to main memory (at all
times cache and memory are in synche)

write-back, cache line is marked dirty, write back is delayed to when cache line is being
evicted
>| processor core is active (say in SMP) -all processors still have to see the same memory
content; have to exchange CL when needed -includes the MC

write-combining (ie on graphics cards)

set-associative dereferencing (the larger the set and CL, the fewer the misses):

tag and data in sets -a set maps to the address of the cache line, a small number of values is cached for
the same set value ; the tags for all such sets are compared in parallel

ie 8 sets for L1 and 24 associativity levels for L2 are common;

for 4AMB/64B and 8 way set-associativity then 8192 sets (requires |3bit address tag) ; to find if the
address is in cache only 8 tags have to be compared!

Friday, August 24, 2012

Use of threads means coping with complicated issues

* cache contention, coherency
* memory bandwidth
* scheduling

Modified, 1ocal processor has
only copy of data and modifies it

Exclusive, CL is not modified
and not in another core’s cache

Shared, CL not modified -might
be in cache somewhere

Invalid, CL is invalid -not used

local read
local write

remote write

*other processor’s activities are snooped on the address bus

fork (create) / join overheads

NT | Cycles L2DCM
1 11959379 69
2 12020818 81
4 |2289393 122
6 2366367 146
8 [2499159 239

160%
140%
120%

® O
Q O
O O

NUMA + memory affinity

(e
]
S
N

00O
00O

80%
60%
40%
20%

Slowdown Vs 0-Hop Read

®

® S
O ®

no NUMA, 6 PEs/socket

0%
OHop 1Hop 1Hop

Number of Hops
|m Reads m Writes|

2 Hop

make the FSB faster with increasing core count

175

o0 00—
150 /

| v v vV VUV

125 v

100 i

=l
Wby |

Cycles/List Element
=

25 /
lv—v\'_‘_

I I I 1 1 I I I I 1 I I I 1 I I I I 1
210 213 216 219 222 225 228
Working Set Size (Bytes)

|e Core2/667 v Core2/800 |

ja—

Friday, August 24, 2012

Basic Optimizations (repeated themes: concurrency, atomicity, and bandwidth)

base / . . , : . : , .
node * non-temporal writes, ie don’t cache the data writes since it won’t be used again
focus |$9°N (i.e. n-tuple initialization)

* avoids reading cache line before write, avoids wasteful occupation of cache line and

time for write (memset()); does not evict useful data

* sfence() compiler set barriers
* loop unrolling , transposing matrices
e vectorization, 2,4,8 elements computed at the same time (SIMD) w/ multi-media
extensions to ISA
* reordering elements so that elements that are used together are stored together -pack
CL gaps w/ usable data (i.e. try to access structure elements in the order they are defined in
the structure)
e stack alighment, as the compiler generates code it actively aligns the stack inserting
gaps where needed ... is not necessarily optimal -if statically defined arrays, there are tools
that can improve the alignment; separating n-tuples may increase code complexity but
improve performance
e function inlining, may enable compiler or hand -tuned instruction pipeline optimization
(ie dead code elimination or value range propagation) ; especially true if a function is called
only once
e prefetching, hardware, tries to predict cache misses -with 4K page sizes this is a hard
problem and costly penalty if not well predicted; software (void _mm_ prefetch(void *p,
enum _mm_hint h) -- MM _HINT_NTA -when data is evicted from L|d -don’t write it to
higher levels)

Friday, August 24, 2012

Loop fusion transforms multiple distinct loops into a single loop. It increases the
granule size of parallel loops and exposes opportunities to reuse variables from
local storage. Its dual, loop distribution, separates independent statements in a
loop nest into multiple loops with the same headers.

PARALLEL DO 1 = 1, N

A(I) = 0.0 PARALLEL DO I = 1, N
END = A(l) = 0.0
fusion B(I) = A(I)
PARALLEL DO I =1, N END
END distribution

In the example above, the fused version on the right experiences half the loop
overhead and synchronization cost as the original version on the left. If all A(1:N)
references do not fit in cache at once, the fused version at least provides reuse in
cache. Because the accesses to A(I) now occur on the same loop iteration rather
than N iterations apart, they could also be reused 1n a register. For sequential ex-

source: K. Kennedy, Rice

*reduce synchronization overheads in parallel loops
*improve data locality

Friday, August 24, 2012

Going Beyond Instruction Level //ism to Loop Level

fori1=2to 100

Si: A[i] = BJ[i] + C[i-1]
S,: D[1] = AJ1] * 2 0
S;: C[i] = A[i-1] + C[i]
S4: E[1] = D[1] + C[1-2]
endfor

1
()

) s3:;'"c"['2"]_‘_?s;A[1]+C[2] S C31%

Iteration i=2

Iteration i=3

-,

Sy D[2] BAf2]* 2 ~1-S:uD[3] A *2 S:uD[4] 2

Iteration i=5

Iteration i =4

wn
>
1
)
I
lov)
S
| I
A
F
®)
N
|_\|\
m\\
>
| p |
(98]
Ml
lov)
e
[
{ i
N
(@)
{ o |
N
1
W
>
—:
%
I
=
ﬁl
!
—
—
1
wn
>
!
=
vs)
| g |
(¥,
I_II
ﬁ.
{ |
N
{ I

"""""""" BAATF 2 SuD[S|RA]*2

P3

AR C[4] | S5t C[5]gA[4] + C[5]

S¢: E[2]=D[2]+ C[0]| Ss: E[3]<D[3]+ C[1] | S¢: E[4] =D[4]£/C[2] | S« E[5] = D[5] £ C[3]

-~ -~

before, minimum
nonzero edge weight = 1

after, minimum nonzero
edge weight =2

0
(a)

Dependence
Migration ‘

(-
W)

S)=0 2 1Sy)=1

Loop
Transformation

0
1(S2)=0 1(S4)=0

:[Prologue:
| S3: C[2] = A[l] + C[2]

' New loop kernel:

fori=21t099

'Sy: A[i] = B[i] + C[i-1]

'Sy D[i] = A[i] * 2

' Ss: C[i+1] = A[i] + C[i+1]

' S4: E[1] = D[1i] + C[i-2]
i endfor

e - - ————————————— — —— — ——a— a— ol

[————————— -
|
|

Epilogue:
'S,: A[100] = B[100] + C[99]
'S,: D[100] = A[100] * 2
'S4: E[100] = D[100] + C[98]

Optimally Maximizing Iteration-Level Loop Parallelism, D. Liu et al., IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012

Friday, August 24, 2012

Unblock Communications if Possible

if Cip % 2)
{ /* BLOCKING */
MPI_Send(sbf , n
MPI_Recv(rbf , n
MPI_Send(sbf + n
MPI_Recv(rbf + n

}

else
{
MPI_Recv(rbf , n
MPI_Send(sbf , n
MPI_Recv(rbf + n

MPI_Send(sbf + n
}

{ /* ASYNCHRONOUS

MPI_Isend(sbf ,
MPI_Isend(sbf +
MPI_Irecv(rbf ,
MPI_Irecv(rbf +

MPI_Wwaitall(4 ,

Blocking

, MPI_DOUBLE , ngh[0] , itag , MPI_COMM_WORLD) ; /* send to left */
, MPI_DOUBLE , ngh[1] , itag , MPI_COMM_WORLD , &mpi_st) ; /* receive from right */
n , MPI_DOUBLE , ngh[1] , itag , MPI_COMM_WORLD) ; /* send to right */

, h , MPI_DOUBLE , ngh[0] , itag , MPI_COMM_WORLD , &mpi_st) ; /* receive from left */

, MPI_DOUBLE , ngh[1] , itag , MPI_COMM_WORLD , &mpi_st) ; /* receive from right */
, MPI_DOUBLE , ngh[0] , itag , MPI_COMM_WORLD) ; /* send to left */
, h , MPI_DOUBLE , ngh[0] , itag , MPI_COMM_WORLD , &mpi_st) ; /* receive from left */

, h , MPI_DOUBLE , ngh[1] , itag , MPI_COMM_WORLD) ; /* send to right */

y Non-Blocking

n , MPI_DOUBLE , ngh[0] , itag , MPI_COMM_WORLD , r) ; /* send to the left */

n, n, MPI_DOUBLE , nghf 1] , itag , MPI_COMM_WORLD , r + 1) ; /* send to the right */

n , MPI_DOUBLE, ngh[1] , itag , MPI_COMM_WORLD , r + 2) ; /* receive from the right */

n, n , MPI_DOUBLE , ngh[0] , itag , MPI_COMM_WORLD , r + 3) ; /* receive from the left */

r, _st) ;

nn exchanges > 2X performance gain, same results!

Friday, August 24, 2012

Exploit Multi-core Hybrid Programming Model

‘MPI processes spawn lightweight processes

‘OpenMP threads, #include <omp.h>, omp set num threads();

‘POSIX threads, #include <pthread.h> , pthread create();

‘CUDA, kernel execution

-Isize=16

MPI

LWP

DRAM

aprun -n <[-16>

| - 16

2 #2730

aprun-n2-sn2-S1-d8 |2

| -8

16 * 2730

aprun-n | -N | -d 16 I

| - 16

32 * 2130

<-$> * <.d> cannot exceed the maximum number of CPUs per NUMA node

SLDA Base Operation: 3D Complex Fast Fourier Transform
TitanDev (AMD Interlagos + NVIDIA Tesla X2090)

1000 ¢

100 | " " .

FFTW(Time [s]) / CUDA(Time [s])
o

FFTW

FFTW(1T) / CuFFT
(2T) / cuFFT
FFTW(4T) / cuFFT
FFTW(8T) / cCuFFT
FFTW(16T) / CuFFT

0.1 | | |
0 20 40 60 80
Dimension

100

4e[(Z)12 — ()]

T T
Lennard-Jones (12,6)

L-J w/ cut: Weak Scaling

1000
8 16 64 128
100 OO O O
o,
b
E + + + ==
'_
10
’
5E+05 2E+06 4E+06 BE+06 8E+06
Atoms
+ w/GPU © Host
L-d w/ cut: 1M Atoms
10000
1000 O
o O
o O (.
2 100 O g
= O
(| |
O
10 m O 0
0O a
(m]
1
1 10 100 1000
n MPI PEs
O w/GPU [0 Host Ideal (MPI) linear
L-J w/ cut: 1M Atoms
400
+ +
O
300 O
+
@ O
@ 200 +
= o
}—
| node, 6 (of 8) PEs
100
0
0 0.001 0.01 0.1 1
% Split to GPU
+ Loop O Pair Comm

Friday, August 24, 2012

OSIRIS: Laser Wakefields (detailed example from FY11 DOE ASCR OMB software

metric study)

How does a short and intense driver evolve over large distances?

How is the wake excited and how does it evolve?

How do the properties of the withess beams evolve as they are accelerated?

* short and intense laser or relativistic particle beams propagate
through a plasma near the speed of light

* light pressure of the laser or the space charge forces from the
particle beam displaces plasma electrons

* the ions pull the electrons back towards where they started creating
a plasma wave wake with a phase velocity near the speed of light

* accelerating (electric) fields in these wakes are more than 1000 times
higher than those in existing accelerators.

* properly shaped and phased electrons or positron beams (witness
beams) are loaded onto the wake and they surf to ultra-high energies
in very short distances.

* Experiments using a laser driver have demonstrated the
feasibility of generating GeV class quasi-monoenergetic beams

|

On the left is an electron beam (white)
moving from right to left.

It forms a wakefield (density of plasma
is shown. A lineout of the accelerating
field is shown in black. A trailing bunch
is shown in white in the back of

the wakefield. On the right a laser
(orange) is moving from right to left. It
also creates a wakefield. The wakefield
in both cases 1s a moving bubble of a
radius R. A trailing beam is shown in
white as well.

Friday, August 24, 2012

OSIRIS:

The fields within the wake structure demand a full electromagnetic treatment is needed.

The leading kinetic description is the particle-in-cell (PIC) method.

Advance Particles

Ry

Depositing

<E>B>i_> ui_> X;

T

Interpolating
(E,B), ~ (E,B),

Al

n-1 no_y 32
X, - X Jj

Advance Fields

j;~ (E,B),

*deposit some particle quantity, such as a charge, is accumulated on a
grid via interpolation to produce a source density.Various other
quantities can also be deposited, such as current densities

ofield solver, which solves Maxwells equations or a subset to obtain the
electric and/or magnetic fields from the source densities

eparticle forces are found by interpolation from the grid, and the
particle coordinates are updated, using Newtons second law and the
Lorentz force.The particle processing parts dominate over the field
solving parts

X, [node]

Sim.Volume Parallel Domain

lteration = 50000
-4 1210°
- 41.010°

- 18010°

1 6.010°

Particles per node

4.010°

2.010°

0 20 40 60 80
Xy [node]

Balancing the particle load is hard problem!

Friday, August 24, 2012

OSIRIS:

cell (i,j,k)

linear
quadratic

cubic

quartic

1 2
P x [cell]
linear | quadratic cubic quartic
S_o =7 (1 —2z)*
S_1 +(1—22)? t(1—z)’ o= (—16z* 4 162° + 242? — 44z + 19)
So |1—=x 2 — g2 £ (32° — 62 + 4) 1t — 2% 4 10
S z | s(14+22)* | :(=32°+32>+3z+1) | 5 (—162* — 162° + 242* + 44z + 19)
Sy c® —(1+ 2z)*

*need a method to effectively connect grid and particles quantities to determine the force acting on

the particle.

*field interpolation calculations require knowledge of the grid point index closest to the particle
position, and the distance between the particle and the grid point, normalized to the cell size.

*OSIRIS implements [st to 4th order interpolation schemes (linear, quadratic, cubic and quartic

splines)

Friday, August 24, 2012

OSIRIS: Problems

Uniform Plasma

*(1) warm plasma with a temperature distribution

parameter of u_thermal = 0.0lc

* a perfectly load balanced simulation

e particle diffusion across parallel nodes happens

uniformly so the total number of particles per node

remains approximately constant.

* good performance test as these plasma

conditions

¢ resemble those on most of the simulation box for

the laser wakefield runs.

Laser Wakefield scenarios

*(2,3) interaction of a 200 TW (6 Joule) laser interacting with

uniform plasma with a density of 1.5e18 cm”-3

eplasma with an intensity sufficient to trigger self-injection,

under different numerical and physical conditions.

edifferent grid resolutions, different number of particles per
cell, and mobile/immobile ions.

*quadratic shaped particles for the current

deposition and field interpolation for all the

*(4) a PW (30)) laser propagating in a .5e 18 cm”-3 plasma

simulations where ion motion is expected to play an important role
Run Grid Simulation Box [¢/wp] Particles | Iterations | Laser ap | Ions
Warm test | 6144 x 6144 x 1536 614.4 x 614.4 x 153.6 4.46 x 10" 5600 n/a n/a
Run 1 8064 x 480 x 480 | 806.4 x 1171.88 x 1171.88 | 3.72 x 10° 41000 4.0 fixed
Run 2 8832 x 432 x 432 | 1766.4 x 2041.31 x 2041.31 | 6.59 x 10° 47000 4.58 fixed
Run 3 4032 x 312 x 312 | 806.4 x 1171.88 x 1171.88 | 1.26 x 10'° 52000 4.0 moving

Friday, August 24, 2012

OSIRIS: Enhancements

SIMD Optimizations and SSE Implementation

® 90 / 10 rule - advancing particles and deposting the current

* optimized the use of memory and L2 cache for vector version

* store individual components in separate sequential arrays

-one for x, one for y and one for z

particles:

i) load 4 particles into the vector unit

ii) interpolate the EM fields for these 4 particles
iii) push the 4 particles

iv) create up to 4 x 4 virtual particles for current
deposition
v) store the 4 particles back to main memory.

virtual particles:

i) load 4 virtual particles into the vector unit

ii) calculate the current contribution for the 4 virtual
particles

iii) accumulate this current in the global electric
current grid

* make use of vector shuffle operation to efficiently exchange parts of the vector registers:

i) we read 3 vectors (12 positions) sequentially
ii) shuffle them to get a vector of 4 x positions,
one vector of 4 y positions, one vector of 4 z positions

* 4 x 3 transpose is done in the registers and is very efficient (10 cycles overhead)
-enables efficient use of vector memory read operations

estoring the particles back to memory, the opposite operation is performed

Friday, August 24, 2012

OSIRIS: Other Enhancements

Dynamic Load balancing

* 30% improvement in imbalance, but a 5% drop in overall performance
i) determine best partition from current load
ii) redistribute boundaries

SMP version of major distributed kernels

* the volume handled by each group of cores is much larger,
* the probability for significant load imbalance will be lower o node boundary oo

e particle pusher, the field solver, current smoother, boundary processing of particles / fields and particle sorting.

* fairly simple since routines generally consist of an external loop that can be easily split among threads

* reduced the total node communication volume
* threads per MPI process must match the number of cores per cpu -or less

Time = 1999.94 [1/ w,]
300 M T T T [T

1000
225 L
reduce current M

= -

particle sort, rearrange particles

particle sort, gen. idx] LT L
update particle boundary W =l i ,v?

advance deposit 600 Hid
update current boundary :
current smooth i TR i
field solver HHTTT Taiss:
update emf boundary 400
Other ll

- = - = 1 200
0 - - - - - I
2 3 6 12

1

150 — bk =

Simulation Time [s]
X3 [c/ o]

75 F—

8000 2200 2400 2600 2800
Threads / MPI process X [c/ o]

0.010

0.008

0.006

0.004

0.002

0.000

]

)

nele /¢

Friday, August 24, 2012

OSIRIS : particle Injection in Laser Wakefield

Run Partition | Performance | Push Time | Average | TFLOPS | INS/FP Speedup
[cores| | [G part/s] (18] Imbalance
Warm.3d 55296 179.95 0.307 1.00 169.92 1.28 2.36
LWFA - 01 29.66 1.864 3.64 31.18 6.39 7.03
LWFA - 02 27.43 2.016 4.75 28.02 7.69 7.37
LWFA - 03 61.20 0.903 2.31 58.25 3.84 6.92
Frozen.3d linear 221184 1463.52 0.151 1.00 516.92 1.34 n/a
Frozen.3d quadratic 784.04 0.282 1.00 736.12 1.20 n/a
Warm.3d weak scale 741.20 0.298 1.00 700.09 1.21 9.73
Warm.3d strong scale 719.80 0.307 1.00 679.68 1.28 9.45
LWFA - 01 - strong scale 70.91 3.119 4.66 76.55 9.48 16.80
LWFA-01 Speedup
Baseline [mKel¢]
New Partition ISRl < 1.91
SMP x1.82
Vector / Other x 2.C

2

4

6

Normalized Performance

Friday, August 24, 2012

OSI RI S . Particle Injection in Laser Wakefield

Run Partition | Performance | Push Time | Average | TFLOPS | INS/FP Speedup
[cores| | [G part/s] (18] Imbalance

Warm.3d 55296 179.95 0.307 1.00 169.92 1.28 2.36

LWFA - 01 29.66 1.864 3.64 31.18 6.39 7.03

LWFA - 02 27.43 2.016 4.75 28.02 7.69 7.37

LWFA - 03 61.20 0.903 2.31 58.25 3.84 6.92

Frozen.3d linear 221184 1463.52 0.151 1.00 516.92 1.34 n/a

Frozen.3d quadratic 784.04 0.282 1.00 736.12 1.20 n/a

Warm.3d weak scale 741.20 0.298 1.00 700.09 1.21 9.73

Warm.3d strong scale 719.80 0.307 1.00 679.68 1.28 9.45

LWFA - 01 - strong scale 70.91 3.119 4.66 76.55 9.48 16.80

55k Partition

Warm.3d
LWFA - 01
LWFA - 02
LWFA - 03

100

Performance [G Particle / s]

150 200

Friday, August 24, 2012

OSI RI S . Particle Injection in Laser Wakefield

Run Partition | Performance | Push Time | Average | TFLOPS | INS/FP Speedup
[cores| | [G part/s] (18] Imbalance

Warm.3d 55296 179.95 0.307 1.00 169.92 1.28 2.36
LWFA - 01 29.66 1.864 3.64 31.18 6.39 7.03
LWFA - 02 27.43 2.016 4.75 28.02 7.69 7.37
LWFA - 03 61.20 0.903 2.31 58.25 3.84 6.92
Frozen.3d linear 221184 1463.52 0.151 1.00 516.92 1.34 n/a
Frozen.3d quadratic 784.04 0.282 1.00 736.12 1.20 n/a
Warm.3d weak scale 741.20 0.298 1.00 700.09 1.21 9.73
Warm.3d strong scale 719.80 0.307 1.00 679.68 1.28 9.45
LWFA - 01 - strong scale 70.91 3.119 4.66 76.55 9.48 16.80

Frozen (s1)

Frozen (s2)

Warm.3d strong

Warm.3d weak

LWFA - 01 - strong

221K Algorithm Performance

500

1000

Performance [G Particle / s |

1500

Friday, August 24, 2012

OSI RI S . Particle Injection in Laser Wakefield

Charge Density Slice
Time= 17.00[ps]

2ppc Linear | 2ppc Quad | 8ppc Quad | Q4 HR | ™
Charge [pC] 284 339 347 366 120 o
Avg. Ene [MeV] 1074.7 1052.6 1054.7 1048.1 oo
StdDev Ene [MeV] 53.4 76.3 75.6 86.5 | T 3010
Peak Ene [MeV 1031.8 979.0 084.5 9626 | = &
Ene FWHM [MeV] 34.5 50.1 19.8 445 o
€Ny MM mr 29.6 26.7 28.8 19.2 ol)
€N, M mr 33.9 30.7 25.6 18.6 i}

Energy Distribution
Time= 15.30[ps]

1.0 —

0.8 —

0.6 —

f(E) [a.u.]

04 —

0.2 —

XXNXXNNXN‘XXNNXXNXX‘NXXNNXNNXNN

Black is 2ppc linear -
Green is 2ppc quadratic
Blue is 8ppc quadratic

Red is Q4 high resolution i

0

5100 5120 5140 5160 5180
X [um]

5.010"

A 2D slice of the electron density showing the electrons
injected into the first two buckets.

eCharge (the linear particle shape run has 25% less charge)
and the emittance are significantly reduced in the higher
resolution (Q4) run.

®The high resolution run has 50% lower RMS value for the
two transverse planes.

*This improvement in emittance is very important for
both collider and light source applications.

Comparison of the energy spectra of the beam in the first bucket for the runs.

nlecm™

Friday, August 24, 2012

ASCR NNSA

At $|1M per MW, energy costs are substantial *Power constraints using current technology are

unaffordable
| Pfin 2010 ~3 MW
| Ef in 2018 at 200 MWV with “usual” scaling

* 20 Pf Sequoia requires ~ |OMW to operate
* |Ef requires ~500MW with current technologies

| Exaflop in 20?2 at 20 MW is target!

1000
s —
= 100 n //
o
=
S
£
w 10
N
n .
Business As Usual
1
2005 2010 2015 202(

Year

Friday, August 24, 2012

Exascale Table -suess work?

2010 HE Factor Change

System peak 2 Pt/s 500
Power 6 MW 3
System Memory 0.3 PB . 33

Node Performance 0.125 Gf/s 80
Node Memory BW 25 GB/s| 400 GB/s 16

Node Concurrency 12 cpus 1,000 cpus 83
Interconnect BW 1.5 GB/s 50 GB/s 33

System Size (nodes) 20 K nodes | M nodes 50
Total Concurrency 225K | B

Storage 15 PB 300 PB | 20
Input/Output bandwidth 0.2 TB/s 20 TB/s

Delivery Date 2020-2022
Performance 1000 PF LINPACK, 300 PF on codesign applications
Power Consumption 20 MW (not including cooling)

MTBAI 6 days (mean time between application interruptions)
Memory including NVRAM 128 PB

Friday, August 24, 2012

Extended Scope of Application Soff

'ware Problems

Example Problem: solving algebraically determined systems of linear equations
numerically (Linpack TOP500, FLOPSs)

Lp

—

Lr

accept
I 2

——
reject

« compute A=LU, solve Ly=b for y, solve Ux=y for x

« compute |Alinr, compute [x|2 , compute |b-AX|z,

approximate ¢ (machine precision),
form k= |b-Ax|2 / (|Aln * X2 * €) ;

if « ~ O(dim(A)) accept x, else reject x

Ex2: BFS(Graph500,TEPS)

O 0 N B Wik

._.._.
_—0

t

Input : Graph G(V,E), source node sg

Owutput : Distances from so Dist[l..|V]]
« construct A, b given dim(A) dim(A)=dim(rank(1,A))=dim(rank(2,A)) |

YveV do:
dist[v] = o0
dist[sg] :==0
Q:=10
Q.enqueue(so)
while Q #0 do
i = queue.dequeue()
for each neighbor v of 7 do
if distjv] =00 then
dist[v] := dist[i] + 1
Q.enqueue(v)
endif
endfor
endwhile

Q: How do the language of the problem and the accepted result relate to reality?
Requires analysis beyond software analysis above and distinguishes computational
science from system and library software development. Takes more time -needs
refinement phase of algorithms and metrics.

Metric: the distance between two points in some topological space

Friday, August 24, 2012

Challenge: detecting, mitigating, recovering from failures

e fail / continue
e hard / soft faults

* resiliency must go
beyond check point /
restart
*algorithm based
fault tolerance

Ac Br Cf o
((n+1)xn) (nx(n+1)) ((n+1)x(n+1)) c
n+1,j — Z A
have tO (nxn) (nxn) (nxn) n
r —_— ..
g0 be)’ond [checksum | [checksum 11 iyn41 = ZB”
. j=1
single
f'|g C=Ax«xBand C/ = A°xB"
aliure

mn

Foo_ f

Cl .., = ZC Cl.1 =) Cl
j=1

Friday, August 24, 2012

PicoJoules

Challenge: quantify the data related costs on and across nodes

-refine performance measures for data movement and access costs as these dominate
over floating point costs

* bandwidth, the number of cycles a core waits because the bus is not ready; as the measure gets large, it
indicates that the bus is in high demand and loads or stores involving main memory will take longer

-provides means to reason about performance costs versus (bisection) bandwidth scaling (i.e. increased node

counts)

* locality, the ratio of the peak versus measured capacity of each memory level (on/off chip) divided by access

time in cycles

*i.e. consider ratio of gather and scatter costs in loops (A. Snavely, exascale planning meeting)

Intranode/SMP Intranode/MPI
10000 . . s
Communication Communication
CUDA BLAS (cublas) Square Matrix Multiplication
TitanDev (AMD Interlagos + NVIDIA Fermi)
1000 1e+12 T
. - /7/r -
On-chip / CMP Te+10
100 communication
1e+08 |-
==nowW) i
SLDA Base Operation: 3D Complex Fast Fourier Transform
2018 1e+06 TitanDev (AMD Interlagos + NVIDIA Tesla X2090)
10 1000
% 10000 |- .
Q
E *
1 F 100 | »
*
N 3 R Q & * = 100 F s]
N o S & qS's& & 4@’& TF o)] . . T
) o < < Q & & ® . ' .
Q < o o A) < A £ f . .
& & S & & £ | | :
R & &« o8 ¢ 0.01 { S ‘ I\ Ao I
o & CUDA -+ G | Al VAN
N i zgemm_ 5)) [\ x| [
0.0001 | CUDA Hp_opjs% -~ 10 F I ! ! | { x [‘ (%] M AR
zgemm_ [fp_op/s = | k PV || A A
pzgemm. x = ol [| Vo j "“Vlr«
1e-06 1 1 1 1 1 1 1 @« | 3% | [/ % A g !. /] y oK
£ "y E mmam_a . om - n'm m'p L
0 2000 4000 6000 8000 10000 12000 14000 16000 = N -y L] L - LR . " o " mg =
Dimension = ’
T
w 1
FETW(1T) / cuFFT
FETW(2T) / cuFFT
FETW(4T) / CUFFT —+
FFTW(8T) / cuFFT
ref. ASCR exascale mtg o1 1 J ‘ FFTW(16T) / CuFFT — =
0 20 40 60 80 100
Dimension

Friday, August 24, 2012

Intranode/SMP Intranode/MPI

10000 —— .
Communication Communication
1000
(7]
= On-chip / CMP]
% 100] “"OMmMmmMmunicesa sla
O =4=now
o l—\
10 -2-2018
1 | | | | | | | | | | | | |
X & N N S & N
Qv 2o Fo) & & N 2%
X o o o © S &\
& & R & &
Sy o« = & ¢
& »
o &P

ref. ASCR exascale mtg

Friday, August 24, 2012

Need extensions that relate performance to power; lead to novel optimization ideas

-extension of existing metrics to reason about power and performance tradeoffs, energy driven

optimizations (i.e. DVFS)

-number of floating point operations per Watt (floating point dominated)
-cost of loads or stores in bytes per Watt (data ops dominated)

-metric guided optimizations to simultaneously minimize power consumption and time to
solution (IBM Zurich study)

-computational cost ~ f(time to solution) * energy
-fconstant, cost per execution event in Joules
-flinear, cost provides insight about appropriateness of hardware platform for application

-demand tools for power measurements
-memory (29%), network (29%), floating point unit (16%)) (distribution of power in HPC hardware (Kogge))

@ Integer @ FPAddr GUPS Memory Power Breakdown
@® Branch @® IntAddr
@ Memory @ Branch Calc
@ FP

-relate cycle costs in memory refs to
energy in Joules

To Where Cycles

Register <1
L1d ~ 3
Instruction L2 ~ 14

Mix

Main Memory | ~ 240

/

ref. ASCR exascale mtg

Friday, August 24, 2012

Micron

o CUr,.e o““a“ce
Hybrid Memory Cube 2Rk poy, e
Teng
~ 100 100 @
3 J
= =
g 3

2000 2004 2008 2012 2016

* Current DRAM roadmap will not enable achieving
exascale systems with anything like the expected needs
and goals

Reduced latency — With vastly more responders built into HMC, we expect lower queue delays and higher bank

availability, which can provide a substantial system latency reduction, which is especially attractive in network system
architectures.

Increased bandwidth — A single HMC can provide more than 15x the performance of a DDR3 module. Speed is
increased by the very fast, innovative interface, unlike the slower parallel interface used in current DRAM modules.

Power reductions — HMC is exponentially more efficient than current memory, using 70% less energy per bit than DDRS.
Smaller physical systems — HMC'’s stacked architecture uses nearly 90% less space than today’s RDIMMs.
Pliable to multiple platforms — Logic-layer flexibility allows HMC to be tailored to multiple platforms and applications.

Friday, August 24, 2012

Exascale System Networks

REQUIREMENTS

Scale
100,000 —1,000,000 nodes

Node Bandwidth
10 GB/s —2000 GB/s

Very application dependent

Power efficiency
Particularly important for HPC

Latency
Critical for HPC systems

CHALLENGES

Interconnect density
Chip edge, board edge, enclosure

Low Network Diameter
Benefits latency, power and reliability
Requires high radix switches

Cabling complexity
Particularly with low diameter networks

POWER CHALLENGE
Total BW = Nodes x BW x hops x bit
= 100,000 x 2000 x 4 x 8

= 6.4 Exabits / s
Power = 30MW

4.7p)/bit available entire power budget for

interconnect!

Friday, August 24, 2012

Challenge Tools to Pinpoint Performance and Numerical Errors, Drive Science Based

Feature Extraction in Massive, Complex Data Sets

This problem completed execution successfully
from the application software perspective. ts=3930

There is a clear problem in the performance.

Friday, August 24, 2012

Challenge accurate, scalable tools at thread level

Table 14: Theoretical complexity of C(m,n) < oA(m,l)B(l,n)+ BC(m,n).

Multiplies Adds Total
real mnl + 2mn | mnl 2mnl + 2mn
complex | 4mnl + 8mn | 4mnl + 4mn | 8mnl + 12mn

1 PE, 4nt/PE
Group / Function / Thread (max)

Time% 100.0%
Time 12.213947 secs

TOT_INS
1037.779M/sec
10063040357 instr

FP_INS
222.330M/sec
2155872263 ops (2154299392)

TOT _CYC
9.697 secs
21332826724 cycles

User time (approx) 100.0% Time
12.214 secs
26870760748 cycles

Table 17: Measured machine events of threaded parallel work phase (zgemm).

Problem FP INS L2DCM Time[us]
PEs nt/PE
m | n chnk
2 pes, 4nt/pe
1024,1024,1024,256 | init() init() init() init()
p0,t0 3145728 123983711 2089784 2422204
pO,tl 3145728 126814035 2107375 2421820
p0,t2 3145728 107087054 2124844 2421705
p0,t3 3145728 107498702 2100952 2421780
pl.to 3145728 144025387 2189125 2541868
pl.tl 3145728 147571937 2220183 2541458
pl.t2 3145728 107456375 2214333 2541361
pl.t3 3145728 109273232 2200654 2541429
1024,1024,1024.256 | work() work() work() work()
p0,t0 2151153664 | 7780969482 | 270106544 11254443
pO,tl 2151153664 | 9020932602 | 270484334 11254008
p0,t2 2151153664 | 7525985513 | 270171124 11254286
p0,t3 2151153664 | 9273025751 270499158 11254282
pLIO THY 2151153664 | 7628607535 | 270355014 12324730
pl.tl 2151153664 | 9077245107 | 270414465 12324461
pl.t2 2151153664 | 7525968734 | 270386539 12324582
pl,t3 2151153664 | 9337961638 | 270389136 12324478
Totals 17234395136 | 68144406795 | 2180053564 | 14866598
\X: 17205035008 D

Friday, August 24, 2012

Challenge accurate, scalable memory tools

a OO hpcviewer: OMEN_Jaguar-pgi64-XT5.hpclink.memleak

W =%, Callers View f1, Flat View = &

[
* & |6 foo [P0 |5 A A 4
Scope Bytes Allocated:Sum (I) w Bytes Freed:Sum (I} Bytes Leaked: Sum (l)
Experiment Aggregate Metrics 8.27e+11 100 & §8.27e+11 100 % r]‘
¥ main .27e+11 100 S 8.27e+11 100 %
¥V B> Transport<std::complex<double>>::execute_task(char const *, char const *) 20¢ |
v @Transpor«std::complex<d‘ou'ble>>::wire_transmission(char const *, int) .20e I . e . d ete Ct m e m O r’y I ea ks
¥V B> __CPR250__calc_transmission__43Transport__tm__ 26_Q2_3std16complex__tm_ 2_ lle
v B __CPR108_ solve__46WaveFunction__tm__26_Q2_3std16complex__tm__2_dFP38 .83e oprobe a”ocation po|nts in Ca”ing
¥V B> WireCompression<std::complex<double>>::prepare(int *, int *, int, int, int *, 65e
¥ BpWireCompression<std::complex<double>>::SecondStageRen(int *, int *, ir .29%e ConteXt trees
¥V By __array_new 17¢
¥ B)array_new_general(void *, long, unsigned long, unsigned long, void ° 17e
¥ Bballoc_array(unsigned long, unsigned long, void *(*)(unsigned long .17e o
¥ B __nwa(unsigned long) .17e InterCept every a”OCate and fl’ee
¥V b operator new(unsigned long) 17e
¥ B» hpcrun_memleak_malloc_helper 17¢
¥ B> hpcrun_async_block .17¢ ° "
R E i o i1 mark the memory with the call
¥ By_array_new 174 path in which it was allocated,

¥ Bparray_new_general(void *, long, unsigned long, unsigned long, void °

¥ Bballoc_array(unsigned long, unsigned long, void *(*)(unsigned long

¥ B __nwa(unsigned long)
¥V b operator new(unsigned long)
¥ B hpcrun_memleak_malloc_helper
¥V By hpcrun_async_block

> B> __array_new
b By __array_new
> B> __array_new
b B Umfpack<std::complex<double>>::prepare(void)
» B Umfpack<std::complex<double>>::_ ct(TCSR<> *, int)
b By __array_new
> B> __array_new

14 match the free back to the
.. allocation point

.17e¢

‘what about programs that are killed
172 py the O/S or othe faults?

24e ‘need to log data prior to

NN N NN RN N N O W] S]] BEE -] =] sd s] s s s s s s s s s s s s s s 000
-
-~

b By __array_new :24 a”OCatIOn tO deteCt When a
S P - process is killed from external
» B> __array_new .24e fo rce
b By __array_new .24e
- arra: new .24e+09 0.3% 2.24e+09 0.3%)4

(’ 4 >

Friday, August 24, 2012

Challenge aigorithms that Improve {ins, flop(s)} / byte (and don’t
compromise accuracy or performance)

*J.J.M. Cuppen, A Divide and Conquer Method for the Symmetric Tridiagonal Eigenproblem, Numer. Math. 36,

177-195 (1981)
*F. Tisseur and J.J. Dongarra, Parallelizing the Divide and Conquer Algorithm for the Symmetric Tridiagonal
Eigenvalue Problem on Distributed Memory Architectures, lawn132 (1998)

(n=4096) Cuppen vs QR

Time(s)
S

30 ¥ Cuppen

10 +
0 T L} T T L} '] T L} T 1 .QR
16 25 36 49 64 81 100 121 144 169 196 225

PEs

(n=4096)Machine Events: QR , Cuppen

Error

W INS - Cuppen
1E+14 -
2.00E-11 I -
1.80E-11 INS QR
1.60E-11
| FP_OP - Cuppen
1.40E-11 1E+13 - -— PP

1.20E-11
1.00E-11
8.00E-12
6.00E-12
4.00E-12
2.00E-12 -
0.00E+00 -

16 25 36 49 64 81 100 121 144 169 196 225

PEs

M Cuppen
B QR

1E+12

1E+11 -

| II‘ ®FP_OP- QR

16 25 36 49 64 81 100 121 144 169 196 225

PEs

Friday, August 24, 2012

Challenge algorithms that improve I/0O operations for applications

. STOMP I/0
Parameters set 1n the file system related to
. 200
but independent from the problem parameters: 181 i
e Number of OSTs 122 n *
1,2,4,8,16,32 104 e $
. . . 0
e Stripe size in BYTEs © 105 ;
1 MB, 2 MB, 4MB, 8 MB, 16 MB £ g6 i i
® access pattern (round robin) 67
e Number of I/0 PEs for spatial decomposition 48
kio~1,2,3,4,6,8 29
e Total number of I/O PEs is kio * nfld 10 500 750 1000 1250
since nfld =151, 151, 302, 453, 604, 906, 1208 /0 PE
n S
STOMP I/0
STOMP 1/O 1000 ¢y
200 ¥
181 :I: *
162 $ + + + PP
+
R S - TCN
v, 124 + + @ 100 Fr ¥,
2 105 $. = %
= 86 ¢ -FﬂHifW Wt
67 oty + + '&ﬁ;
48 +H+
29 0 — L . .
10 0 25 50 75 100 125 150 175 200
0 2 4 8 12 14 16 o Event #
Stripe Size / 2720 BYTEs + Lustre (oracle) O ASCII (1PE) Binary (1PE)

Friday, August 24, 2012

Aside on FILEs and IO

ANSI C Fortran
estream of BYTEs esequence of records
epoints to a FILE structure *open,write,read,close
*fopen,fwrite,fread,fclose */OLENGTH , RECL
void f_copn_ (char * ffn ,int * ffd ,int * len) ; fn = '/tmp/work/roche/mpt-omp/ben.txt'//
CHAR(0)

void f_ccls_ (int *ffd) ;

call f copn (fn,fd,LEN(fn))
void f_crm_ (char * ffn,int * len) ;

call f cwr (fd,a, 16,ndim,ierr)
void f_cwr_ (int * ffd , void * fbf , int * fsz , int * nobj , int * ierr) ;

call f_ccls (fd)
void f_crd_ (int * ffd , void * fbf , int * fsz , int * nobj , int * ierr) ;
call f copn (fn,fd,LEN(fn))

typedef struct { U
int level; /* filllempty level of buffer */ calllit e (il oa i, U o el o [eti)
unsigned flags; /* File status flags o
char fd; /* File descriptor */ call f_ccls (fd)
unsigned char hold; /* Ungetc char if no buffer */
int bsize; /* Buffer size */
unsigned char *buffer; /* Data transfer buffer */ all f_crm (i LEN(i))
unsigned char “*curp; /* Current active pointer */
unsigned istemp; /* Temporary file indicator */
short token; /* Used for validity checking */

} FILE;

/" N\
O -rw-r--r-- | roche roche (I 608 ;EIO-Oé-ZI 21:03 fortran-dat.bn

0 -rw------- | roche roche \ 1600 2010-06-21 21:03 c-data.dat
N

Friday, August 24, 2012

Aside on FILEs and 10 (2)

POSIX (UNIX)
estream of BYTES T

ofile descriptors P B - &3
-index into file descriptor table > a |
S ::'ﬁf\; | . @

-kept in user process

Clients

-points to entry in system in-memory) :
inode table P \ a oo
eopen,write,read,close, ioctl .

Spider (Lustre) :

*MDS, file names and directories in the filesystem, file open, close, state mgt
*OSS, provides file service, and network request handling for set of OSTs

*OST, stores chunks of files as data objects -may be stripped across one or more OSTs
-Spider has 672 OSTs
-7/ TB per OST
-1 MB Default stripe size
-4 Default OST count

Friday, August 24, 2012

Aside on FILEs and 10 (3)

module load liblut ; -LUT
lut__ open() ;

lut__ close() ;

lut_putl() ;

pwrite() ;

pread() ;

oform modulo classes from MPI communicator

over the number of I/O groups
efor both proton and neutron communicators in
nuclear case (44 for protons, 44 for neutrons)

*fit the stripe size to the largest single data item

If possible
eeg for nuclear code and 3273 lattice, a single 4-component
termis 4 * 323 * 16 / 2220 = 2MB

*set the stripe pattern (I use round-robin) and
number of target OSTs (I use 88 in nuc code) for
target PATH / FILE

eeg Ifs setstripe /tmp/work/roche/kio -s 2m -i -1 -c 88

Performance: POSIX ~ [225,350]MBps , use of Lustre ~ [2,25]GBps

Friday, August 24, 2012

Aside on FILEs and 10 (4) - Search Approach

e introduced set of parallel I/0 processes within the MPI group

e (was) gather to single process, followed by sequential write / wait phase within a loop over fields
(1 PE writes, nPEs - 1 PEs wait) x nFIELDS iterations

e (is) loop over (disjoint target) gathers to a set of designated 10 PEs; after gather phase then
(nlIOPEs write in parallel, nPEs - nlOPEs wait) x 1 since nlOPEs > nFIELDS (8 (3D fields / day) x 42
(k-values / fields) x 1 (PE / k-value) = 336 IOPEs / day; 19 IOPEs / day for 2D fields)

e use of lut_putl() library function explicitly invoking LUSTRE file system semantics

 oracle code to search for preferred LUSTRE parameters: number of OSTs, stripe size, number of
writers

e similar enhancements for 2D fields; movies require an additional index transformation which is done
locally by the 10 PE prior to writing (block cyclic to natural column major)

memcpy((void *) fnbf , (const void *) ffn, (size_t) *len) ;
for (iniopes = 0 ; iniopes < 6 ; iniopes++)
for (iscnt = 0; iscnt < 7 ; iscnt++)
for (istrp = 0 ; istrp < 6 ; istrp++) 4 ;:
. 3
sprintf(fn , "%s/Ipop-io%d-sc%d-str%d" , fnbf , iniopes, iscnt, istrp) ;

b_t() ; /* start running internal clock */

wr_lIstr_orcl(fn , com , ndays , ndddfld , nddfld , ni, nj, nk, strp[istrp], scnt[iscnt], niopes|[iniopes], dbf , dbf_) ;
rt=e_t(0);

if(ip==0)

printf("case: T[%f] ISTRP[%d] SCNT[%d] IOPEs[%d]\n", rt, strp[istrp], (int) scnt[iscnt], niopes|[iniopes]) ;

Friday, August 24, 2012

POP

4800 PEs, Q2 Time(s) INS FP OP
Barotropic 220.285649 3362619394734242 10914798749862
Q 2 Baroclinic 84.623336 638046552543018 123489441332158

T avg 554.416994 10459543609613288 22070416032
Movie 98.516514 1838543581529579 15638400
TOTALs 957.842493 1.629875313842013e+16 | 134,426,326,136,452
4800 PEs, Q4 Time(s) INS FP OP
Barotropic 162.845484 2493523139608176 10918903717734
Baroclinic 81.234007 611926226154622 123489442062604
T avg 72.995206 1369947333186195 22070417409
Movie 12.397561 228560389936546 15640101
TOTALs 329.472258 4,703,957,088,885,539 134,430,431,837,848
9600 PEs, Q4 Time(s) INS FP OP
Barotropic 143.867992 4352776136294947 11696471278395
Baroclinic 47.994133 755616085382567 133265275114487
T avg 84.648207 3180959264572214 24868719153
Movie 13.812455 505002308418671 31278501
TOTALs 290.322787 8,794,353,794,668,399 144,986,646,390,536

Efficiency: | FES Pl
TIME : 0.343973315454068 (329472258 / 957842493)
INS : 0.288608401448646 (4703957088885539 / 1.629875313842013e+16)
FP_OP : 1.000030542390869 (134430431837848 / 134426326136452
PES : 2

Strc.)ng TIME : 0.3031007593855 (290.322787 / 957.842493)

Scalmg: INS : 0.539572181993355 (8794353794668399 / 1.629875313842013e+16)
FP_OP : 1.078558423469556 (144986646390536 / 134426326136452)

Friday, August 24, 2012

Computer Science in DOE

« advanced computer architectures

* programming models, languages, and compilers

» execution models, operating, runtime, and file systems

» performance and productivity tools

» data management and data analytics, visual analysis

any surprises / omissions!?

Friday, August 24, 2012

ASCR Exascale Funding Trends

Sci.
Workflow Fault

Management

App. Framework

Uncertainty
Inline or Quantification

A R 6 funded at S3M/yr

X-Stack
11 funded at $8.5M/yr

Dev. Environment

Post-
processing

Visual
Analysis
1/0 and File Systems Scientific Data ESIO &
Advanced Manag.ement and KR & Machind .
. Analysis at Extreme Reasoning
Architectures

Scale
10 (117?) projects
funded at S5M/yr

6 funded at S5M/yr

Memory Architecture

Triage &
Analysis

Friday, August 24, 2012

advanced computer architectures

the energy costs of moving data both on-chip and off-chip

‘keeping the current technology roadmaps, memory per
processor is expected to fall dramatically

*locality of data and computation renders flat cache
hierarchies not useful

‘energy-efficient on-chip and off-chip communication
fabrics and synchronization mechanisms. Chief among
these concerns is the power consumed by memory

technology

Friday, August 24, 2012

programming models, languages, and compilers

*program up to a billion heterogeneous cores systems

‘novel architectures /10 billion-way concurrency

~concurrency and locality

‘includes development environments, frameworks, and
debugging tools

‘programming languages and environments

Friday, August 24, 2012

Performance is Limited by ...

1) System power -primary constraint

2) Memory bandwidth and capacity are not keeping pace
3) Concurrency 1000X increase in-node

4) Processor open question

5) Programming model compilers will not hide this

6) Algorithms need to minimize data movement, not flops
7) 1/0 bandwidth unlikely to keep pace with machine speed
8) Reliability and resiliency will be critical at this scale

9) Bisection bandwidth limited by cost and energy

Friday, August 24, 2012

Bottom Line Challenges of
Exascale Computing

Power efficiency,
Reliability,
Programmability

Friday, August 24, 2012

