

energy use by population distribution

quantum vortex generation in UFG (ref M. Forbes lectures on SLDA in UFG)

INT Summer School: Computing

*calibrated according to computing survey results

K. J. Roche High Performance Computing Group, Pacific Northwest National Laboratory Nuclear Theory Group, University of Washington

<u>Concepts</u>

- COMPLEXITY
 - PROBLEMS
 - ALGORITHMS
 - MACHINES

Measured time for machine M to generate the language of the problem plus time to generate the language of the result plus the time to accept or reject the language of the result.

Asking questions, solving problems is recursive process

Accepting a result means a related set of conditions is satisfied

S = S1 ^ S2 ^ ... ^ Sn

algorithm, a Turing machine that always halts

decidable problems are posed as a recursive language

undecidable problems have no algorithms that accept the language of the problem and generate / accept or reject an answer (Rice's Theorem posits that non-trivial properties of r.e. languages are undecidable. Examples are emptiness, finiteness, regularity, and context freedom.)

let's be practical (we only have 1 hour)

CPU M Memory Network External Devices ...

<u>CPU</u>

- ALU, adds, comparisons
- FPU, floating point operations
- L/S U, data loads / stores
- **Registers**, fast memory; FPR, GPR, etc.
- PC, program counter -address in memory of instruction that is executing (control flow, fetch / decode in CPU)
- Memory interface, often L1 and L2 caches

```
other:
clock speed
buses
ISA (Intel x86 most popular, x86-64, ...)
```

<u>Memory</u>

storage for active data and programs

model of program placement in memory

<u>Memory</u>

- size
 - •virtual memory (looks bigger than it is)
- hierarchy
 - •try to improve performance by reducing latency
- bandwidth
- correction mechanisms

•WHAT ABOUT COST / PERFORMANCE?!

Power = Capacity * Voltage^2 * Frequency

Today's Memories ...

- 10^9 cells
- cell capacitance < femto-farad
- resistance O(tera-ohms)

Refresh Cycles ~ 64ms

- leakage
- reading drains the charge (read + recharge)

Faster memory

- lower voltage --> decreases stability,
- increase frequency --> \$\$\$ as arrays get large
- •(i.e. more addressable memory) and voltage is increased to assure stability

DRAM

 $\boldsymbol{C},$ capacitor, keeps cell state

M, transistor, controls access to cell state

read the state of the cell the **access line AL** is raised -causes a current to flow on the data line DL or not

write to the cell the **data line DL** is appropriately set and AL is raised for a time long enough to charge or drain the capacitor

ref. Drepper, What every Programmer Should Know about Memory

SDR (PCI00) ~ DRAM cell array 100MHz data transfer rate 100Mbps

DDR (PCI600) ~ moves 2X the data / clock (leading , falling) add "I/O" buffer (2 bits on data line) adjacent to DRAM cell array pull two adjacent column cells per access over 2 line data bus 100 MHz X 64 bit / data bus X 2 data bus lines = 1600 MBps

DDR2 (PC6400) ~ moves 4X the data / clock double the bus frequency --> 2X bandwidth double "I/O" buffer speed to match the bus 4 bits / clock on 4 line data bus 200MHz array; 400MHz bus; 800MHz FSB (effective freq) 200 MHz X 64 bit / data bus X 4 data bus lines = 6400 MBps

*each stall cycle on the memory bus is > 11 cpu cycles even in the best systems

240 PIN addressing @ 1.8V

Friday, August 24, 2012

Prototypical Computing Platforms: Yesterday

Hex-Core AMD Opteron (TM)	2.6e9 Hz clock	4 FP_OPs / cycle / core I 28 bit registers
PEs	18,688 nodes	224,256 cpu-cores (processors)
Memory	I6 GB / node 6 MB shared L3 / chip 5I2 KB L2 / core 64 KB D,I LI / core	dual socket nodes 800 MHz DDR2 DIMM 25.6 GBps / node memory bw
Network	AMD HT SeaStar2+	3D torus topology 6 switch ports / SeaStar2+ chip 9.6 GBps interconnect bw / port 3.2GBps injection bw
Operating Systems	Cray Linux Environment (CLE) (xt-os2.2.41A)	SuSE Linux on service / io nodes

FY	Aggregrated Cycles	Aggregated Memory	Aggregated FLOPs	Memory/FLOPs
2008	65.7888 THz	61.1875 TB	263.155 TF	0.2556
2009	343.8592 THz	321.057 TB	1.375 PF	0.2567
2010 / 11	583.0656 THz	321.057 TB	2.332 PF	0.1513

Measurements

•application specific measures / metrics (see bonus for examples)

machine events

-clear dependence on tools / hardware support to monitor hardware components activated during program execution

--cycle count, disk accesses, floating point operation counts, instructions issued and retired, L2 data cache misses, maximum memory set size, number of loads / stores etc.

derived measures

-efficiency, cycles per instruction (CPI) or floating point operations retired per second (FLOPs)

-computational costs, CPU Hours (relates execution time to processing elements), etc.

•pinpoint insufficient parallelism, lock contention, and parallel overheads in threading and synchronization strategies

Enhancement Modes

• *performance* (improve efficiency, scalability - weak or strong)

-data structures / discretizations, algorithms, libraries, language enhancements, compilers

• *SCientifiC* (better accuracy, improved predictive power)

-physical models, the problem representation, validity of inputs, and correctness of computed results

Strong Scaling

Weak Scaling

Improve Efficiency

			II				.			
Machine Events	Q2	Q4		Machine Events	Q2	Q4		Machine Events	Q2	Q4
INS 2	2.147E+15	2.1130E+15		INS	5.18E+17	1.93E+18	111	INS	3.16E+12	4.37E+11
FP_OP 5	5.896E+14	5.8947E+14		FP_OP	4.63E+17	1.81E+18	1	FP_OP	5.50E+11	5.53E+11
PEs	5632	11264		PEs	7808	31232	111	PEs	1	1
Time[s] 1	121.252233	57.222988		Time[s]	25339	23791	111	L2DCM	823458808	34722900
INS: 211304650 214662726 FP_OP: 589469277 589624961 PEs: 11264 Time[s]: 57.222988	98030116 / 9408190 = .9 7576687 / 638025 = .99 4 / 5632 = 2 / 121.252233	9843 997 9 = .472		INS: 3.72 FP_OP: PEs: 4 Time[s]: NB: k= T T(Q2)*PI	2 3.92 .938 .(Q4)*PEs(Q4 Es(Q2) ~ 3.7	4)/ 756		Time[s] INS: 0.13 FP_OP: PEs: 1 L2DCM: Time[s]:	826.494142 381 (7.239x) 1.0053 (0.994 0.0422 (23.7 0.0961 (10.4	79.414198 475x) 15x) 07x)

<u>"simulating the same</u> problem in less time"

Algorithm, machine strong scaling : Q4 problem := Q2 problem Q4 algorithm := Q2 algorithm Q4 machine ~ k * Q2 machine Q4 time ~ 1/k * Q2 time

Algorithm enhancements, performance optimizations:

Q4 problem := Q2 problem Q4 algorithm ~ enhanced Q2 algorithm Q4 machine := Q2 machine Q4 time ~ 1/k * Q2 time

*Could consider other variations: algorithm and machine are varied to achieve reduction of compute time

Computational Efficiency

• Total elapsed time to execute a problem instance with a specific software instance (algorithm) on a machine instance

- Parallel
 - e(n,p) := Tseq (n) / (p * T(n,p))

mance Algorithm enhancements, performance optimizations:

Q4 problem	k * Q2 problem
Q4 algorithm	~ enhanced Q2 algorithm
Q4 machine	:= Q2 machine
Q4 time	:= Q2 time

<u>"simulating a larger</u>

problem in same time"

Algorithm, machine weak scaling (100%):

Q4 problem \sim k * Q2 problem

Q4 machine \sim k * Q2 machine

Q4 algorithm := Q2 algorithm

Q4 time := Q2 time

*Could consider other variations: problem, algorithm and the machine are varied to achieve fixed time assertion

weighted: (t*nPEs/DOF)_b/(t*nPEs/DOF)_e

linked lists queues graphs tensors lattices , meshes stencils (for PDEs)

...

Graphs

G(V,E)
V, vertex set, |V| cardinality
E, edge set, (vi,vj),..., |E|
values on vertices
values on edges

Figure 1. Dependency graph for a portion of the Hartree-Fock procedure.

Friday, August 24, 2012

Sparse Matrices

 basic for NK based methods that execute repeated SpMV accumulate operations

• 2 integer arrays, I value array (i.e. double precision numbers)

	0	Ι	2	3	4	5	6	7	8	9
	(1	*	*	2	*	*	*	*	*	3)
	*	4	5	*	6	*	*	7	*	*
	*	*	8	9	*	*	10	*	*	*
	*	11	*	12	*	*	*	*	*	*
4	13	*	*	14	15	*	*	*	*	16
A =	*	*	*	17	*	18	*	*	*	*
	*	*	19	*	20	*	21	*	*	*
	*	*	*	22	*	*	*	23	24	*
	25	*	*	*	*	26	*	*	27	*
	*	28	*	*	*	*	*	*	*	29

$$\alpha = \begin{pmatrix} 3\\4\\3\\2\\4\\2\\3\\3\\3\\2 \end{pmatrix}, \beta = \begin{pmatrix} 0 & 3 & 9 & \\1 & 2 & 4 & 7\\2 & 3 & 6 & \\1 & 3 & & \\0 & 3 & 4 & 9\\3 & 5 & & \\2 & 4 & 6 & \\3 & 7 & 8 & \\0 & 5 & 8 & \\1 & 9 & & \end{pmatrix}, \hat{A} = \begin{pmatrix} 1 & 2 & 3 & \cdots & 29 \end{pmatrix}^{T}$$
•number of nonzeros in row
•column index
•values

Dense Matrices

A =	$ \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a$	0,0 1,0 2,0 3,0	$a_{0,1}$ $a_{1,1}$ $a_{2,1}$ $a_{3,1}$	$a_{0,2}$ $a_{1,2}$ $a_{2,2}$ $a_{3,2}$	$a_{0,2}$ $a_{1,2}$ $a_{2,2}$ $a_{3,2}$	$\begin{pmatrix} 3 \\ 3 \\ 3 \\ 3 \\ 3 \end{pmatrix} =$	$= \begin{pmatrix} (0 \\ (1 \\ (2 \\ (3 \\)) \end{pmatrix}$	+0 + 0 + 0 + 0 + 0	* 4 = * 4 = * 4 = * 4 =	= 0) = 1) = 2) = 3)	(0 + (1 + (2 + (3 + (3 + (3 + (3 + (3 + (3 + (3	- 1 * 4 - 1 * 4 - 1 * 4 - 1 * 4	$ 1 = 4 \\ 1 = 5 \\ 1 = 6 \\ 1 = 7 $	$ \begin{array}{c} (4) & (\\ (5) & (\\ (5) & (2\\ (7) & (3) \end{array} $	0 + 2 1 + 2 2 + 2 3 + 2	*4 = 8 *4 = 9 *4 = 1 *4 = 1	8) 9) 10) 11)	(0+3)(1+3)(2+3)(3+3)	* 4 = * 4 = * 4 = * 4 =	: 12) : 13) : 14) : 15)				
A =	$\begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}$	$7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13$	14 15 16 17 18 19 20	21 22 23 24 25 26 27	28 29 30 31 32 33 34	$35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41$	$ \begin{array}{c} 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \end{array} $																	
		(m (p.	,n) = a) =	: (7,7 (2.3	7)			f((2 <i>d_b</i>	lock.	_cycl	lic) –	\rightarrow	$\begin{pmatrix} 0\\1\\4\\5\\\\\begin{pmatrix}2\\3\\6\\\end{pmatrix}\end{pmatrix}$	$7\\8\\11\\12\\9\\10\\13$	$ \begin{array}{c} 42\\ 43\\ 46\\ 47 \end{array}_{0}\\ 44\\ 45\\ 48 \end{array}_{1} $	0,0	$\begin{pmatrix} 14\\15\\18\\19\\(16\\17\\20 \end{pmatrix}$	$ \begin{array}{c} 21\\22\\25\\26\\\end{array}\\23\\24\\27\\\end{array} $	0,1	$ \begin{pmatrix} 22 \\ 22 \\ 32 \\ 33 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34$		$ \begin{array}{c} 35 \\ 36 \\ 39 \\ 40 \end{array} $ $ \begin{array}{c} 37 \\ 38 \\ 41 \end{array} $	0,2 1,2
		(m	b,nb	$(\underline{-}, \underline{0}) = (\underline{0})$, 2,2)			$\begin{pmatrix} 2\\ 3\\ 6 \end{pmatrix}$	9 10 13	44) 45 48)	$f^{-1}($	$(2d_{-})$	block	_cycl	lic) —	→ <i>A</i> =	$=\begin{pmatrix} * \\ * \\ 2 \\ 3 \\ * \\ * \\ 6 \end{pmatrix}$	* 9 10 * *	* * * * * *	* * * * * *	* * * * * *	* * * * * *	* 44 45 * 48

What We Observe in DOE Apps -that they are Not Usually Dominated by FLOPs

Application	I	2	3	4	5	6	7	8
Instructions Retired	1.99E+15	8.69E+17	1.86E+19	2.45E+18	1.24E+16	7.26E+16	8.29E+18	2.67E+18
Floating Point Ops	3.52E+11	1.27E+15	1.95E+18	2.28E+18	6.16E+15	4.15E+15	3.27E+17	1.44E+18
INS / FP_OP	5.64E+03	6.84E+02	9.56	1.08	2.02	17.5	25.3	1.85

REFERENCE FLOATING POINT INTENSE PROBLEM :: Dense Matrix Matrix Multiplication

C <---- a A B + b C :: OPERATIONAL COMPLEXITY : A[m,n] , B[n,p] , C[m,p] :: [8mpn + 13mp] FLOP E.g. m=n=p=1024 ---> 8603566080 FLOP , measure 8639217664

Memory Wall Always There ...

... We don't have this and to get it is \$\$\$... how to achieve Sustainability??

Friday, August 24, 2012

Basic Optimizations (repeated themes: concurrency, atomicity, and bandwidth)

•build a picture of how *threads* use memory

-locality, latency, bandwidth, coherency, cache contention

understand program, execution / use of programming model

 delay error norms in iterative convergence, precompute interpolation / derivative
 coefficients, discretization representations (ie improved unit cells, exploiting spatial homogeneties)

-concurrency, balanced distributed parallelism, communication (blocking send receive pairs, barrier removal, collectives), control flow dependencies (mutex, semaphore, synchronizations) and i/o issues

cache test Time(ns): r+w 220 200 180 160 140 120 100 80 60 40 20 1024 1.07374e+09 3.35544e+07 1.04858e+06 32768 1024 Stride(B)

Sample of Cache Discovery Test Results

temporal locality

when a referenced resource is referenced again sometime in the near future

spatial locality

the chance of referencing a resource is higher if a resource near it was just referenced

Cache Coherency:

write-through, if cache line is written to, the processor also writes to main memory (at all times cache and memory are in synche)

write-back, cache line is marked dirty, write back is delayed to when cache line is being evicted

>I processor core is active (say in SMP) -all processors still have to see the same memory content; have to exchange CL when needed -includes the MC

write-combining (ie on graphics cards)

set-associative dereferencing (the larger the set and CL, the fewer the misses):

tag and data in sets -a set maps to the address of the cache line, a small number of values is cached for the same set value ; the tags for all such sets are compared in parallel

ie 8 sets for LI and 24 associativity levels for L2 are common;

for 4MB/64B and 8 way set-associativity then 8192 sets (requires 13bit address tag); to find if the address is in cache only 8 tags have to be compared!

Use of threads means coping with complicated issues

- cache contention, coherency
- memory bandwidth
- scheduling

 $\ensuremath{^*\!\text{other}}$ processor's activities are snooped on the address bus

fork (create) / join overheads

base / node focus

• non-temporal writes, ie don't cache the data writes since it won't be used again

soon (i.e. n-tuple initialization)

• avoids reading cache line before write, avoids wasteful occupation of cache line and time for write (memset()); does not evict useful data

• sfence() compiler set barriers

• loop unrolling , transposing matrices

• vectorization, 2,4,8 elements computed at the same time (SIMD) w/ multi-media extensions to ISA

• **reordering** elements so that elements that are used together are stored together -pack CL gaps w/ usable data (i.e. try to access structure elements in the order they are defined in the structure)

• **stack alignment,** as the compiler generates code it actively aligns the stack inserting gaps where needed ... is not necessarily optimal -if statically defined arrays, there are tools that can improve the alignment; separating n-tuples may increase code complexity but improve performance

• **function inlining**, may enable compiler or hand -tuned instruction pipeline optimization (ie dead code elimination or value range propagation) ; especially true if a function is called only once

• **prefetching**, hardware, tries to predict cache misses -with 4K page sizes this is a hard problem and costly penalty if not well predicted; software (void _mm_prefetch(void *p, enum _mm_hint h) --_MM_HINT_NTA -when data is evicted from L1d -don't write it to higher levels)

Loop fusion transforms multiple distinct loops into a single loop. It increases the granule size of parallel loops and exposes opportunities to reuse variables from local storage. Its dual, loop distribution, separates independent statements in a loop nest into multiple loops with the same headers.

PARALLEL DO I = 1, N
A(I) = 0.0PARALLEL DO I = 1, N
A(I) = 0.0
fusionPARALLEL DO I = 1, N
B(I) = A(I)PARALLEL DO I = 1, N
B(I) = A(I)ENDENDdistribution

In the example above, the fused version on the right experiences half the loop overhead and synchronization cost as the original version on the left. If all A(1:N) references do not fit in cache at once, the fused version at least provides reuse in cache. Because the accesses to A(I) now occur on the same loop iteration rather than N iterations apart, they could also be reused in a register. For sequential exsource: K. Kennedy, *Rice*

reduce synchronization overheads in parallel loops improve data locality

Going Beyond Instruction Level //ism to Loop Level

Optimally Maximizing Iteration-Level Loop Parallelism, D. Liu et al., IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012

Friday, August 24, 2012

Unblock Communications if Possible

```
if ( ip % 2 )
{ /* BLOCKING */
MPI_Send( sbf , n , MPI_DOUBLE , ngh[ 0 ] , itag , MPI_COMM_WORLD ) ; /* send to left */
MPI_Recv( rbf , n , MPI_DOUBLE , ngh[ 1 ] , itag , MPI_COMM_WORLD , &mpi_st ) ; /* receive from right */
MPI_Send( sbf + n , n , MPI_DOUBLE , ngh[ 1 ] , itag , MPI_COMM_WORLD ) ; /* send to right */
MPI_Recv( rbf + n , n , MPI_DOUBLE , ngh[ 0 ] , itag , MPI_COMM_WORLD , &mpi_st ) ; /* receive from left */
}
else
{
MPI_Recv( rbf , n , MPI_DOUBLE , ngh[ 1 ] , itag , MPI_COMM_WORLD , &mpi_st ) ; /* receive from right */
MPI_Send( sbf , n , MPI_DOUBLE , ngh[ 0 ] , itag , MPI_COMM_WORLD ) ; /* send to left */
MPI_Recv( rbf + n , n , MPI_DOUBLE , ngh[ 0 ] , itag , MPI_COMM_WORLD ) ; /* send to left */
MPI_Send( sbf , n , MPI_DOUBLE , ngh[ 0 ] , itag , MPI_COMM_WORLD , &mpi_st ) ; /* receive from left */
MPI_Recv( rbf + n , n , MPI_DOUBLE , ngh[ 0 ] , itag , MPI_COMM_WORLD , &mpi_st ) ; /* send to left */
MPI_Recv( rbf + n , n , MPI_DOUBLE , ngh[ 0 ] , itag , MPI_COMM_WORLD , &mpi_st ) ; /* receive from left */
MPI_Recv( rbf + n , n , MPI_DOUBLE , ngh[ 0 ] , itag , MPI_COMM_WORLD ) ; /* send to left */
MPI_Recv( rbf + n , n , MPI_DOUBLE , ngh[ 1 ] , itag , MPI_COMM_WORLD ) ; /* send to right */
MPI_Send( sbf + n , n , MPI_DOUBLE , ngh[ 1 ] , itag , MPI_COMM_WORLD ) ; /* send to right */
}
```

```
{ /* ASYNCHRONOUS */
MPI_Isend( sbf , n , MPI_DOUBLE , ngh[ 0 ] , itag , MPI_COMM_WORLD , r ) ; /* send to the left */
MPI_Isend( sbf + n , n , MPI_DOUBLE , ngh[ 1 ] , itag , MPI_COMM_WORLD , r + 1 ) ; /* send to the right */
MPI_Irecv( rbf , n , MPI_DOUBLE , ngh[ 1 ] , itag , MPI_COMM_WORLD , r + 2 ) ; /* receive from the right */
MPI_Irecv( rbf + n , n , MPI_DOUBLE , ngh[ 0 ] , itag , MPI_COMM_WORLD , r + 3 ) ; /* receive from the left */
MPI_Waitall( 4 , r , _st ) ;
}
```

nn exchanges > 2X performance gain, same results!

Exploit Multi-core Hybrid Programming Model

•MPI processes spawn lightweight processes

•OpenMP threads, #include <omp.h> , omp_set_num_threads();

•POSIX threads, #include <pthread.h>, pthread_create();

•CUDA, kernel execution

-lsize=16	MPI	LWP	DRAM
aprun -n <1-16>	- 6	I	2 * 2^30
aprun -n 2 -sn 2 -S I -d 8	2	I - 8	16 * 2^30
aprun -n I -N I -d I6	I	I - I6	32 * 2^30

<-S> * <-d> cannot exceed the maximum number of CPUs per NUMA node

 $4\epsilon [(\frac{\sigma}{r})^{12} - (\frac{\sigma}{r})^6]$

Lennard-Jones (12,6)

Friday, August 24, 2012

OSIRIS: Laser Wakefields (detailed example from FYII DOE ASCR OMB software

metric study)

How does a short and intense driver evolve over large distances? How is the wake excited and how does it evolve? How do the properties of the witness beams evolve as they are accelerated?

- short and intense laser or relativistic particle beams propagate through a plasma near the speed of light
- light pressure of the laser or the space charge forces from the particle beam displaces plasma electrons
- the ions pull the electrons back towards where they started creating a plasma wave wake with a phase velocity near the speed of light
- accelerating (electric) fields in these wakes are more than 1000 times higher than those in existing accelerators.
- properly shaped and phased electrons or positron beams (witness beams) are loaded onto the wake and they surf to ultra-high energies in very short distances.
- Experiments using a laser driver have demonstrated the feasibility of generating GeV class quasi-monoenergetic beams

On the left is an electron beam (white) moving from right to left.

It forms a wakefield (density of plasma is shown. A lineout of the accelerating field is shown in black. A trailing bunch is shown in white in the back of the wakefield. On the right a laser (orange) is moving from right to left. It also creates a wakefield. The wakefield in both cases is a moving bubble of a radius R. A trailing beam is shown in white as well.

OSIRIS:

The fields within the wake structure demand a full electromagnetic treatment is needed.

The leading kinetic description is the particle-in-cell (PIC) method.

•deposit some particle quantity, such as a charge, is accumulated on a grid via interpolation to produce a source density. Various other quantities can also be deposited, such as current densities

•field solver, which solves Maxwells equations or a subset to obtain the electric and/or magnetic fields from the source densities

•particle forces are found by interpolation from the grid, and the particle coordinates are updated, using Newtons second law and the Lorentz force. The particle processing parts dominate over the field solving parts

Balancing the particle load is hard problem!

	linear	quadratic	cubic	quartic
S_{-2}				$\frac{1}{384}(1-2x)^4$
S_{-1}		$\frac{1}{8}(1-2x)^2$	$\frac{1}{6}(1-x)^{3}$	$\frac{1}{96}\left(-16x^4+16x^3+24x^2-44x+19\right)$
S_0	1-x	$\frac{3}{4} - x^2$	$\frac{1}{6}(3x^3-6x^2+4)$	$rac{1}{4}x^4 - rac{5}{8}x^2 + rac{115}{192}$
S_1	x	$\frac{1}{8}(1+2x)^2$	$\frac{1}{6}\left(-3x^3+3x^2+3x+1\right)$	$\frac{1}{96}\left(-16x^4 - 16x^3 + 24x^2 + 44x + 19\right)$
S_2		-	$\frac{1}{6}x^3$	$\frac{1}{384}(1+2x)^4$

•need a method to effectively connect grid and particles quantities to determine the force acting on the particle.

•field interpolation calculations require knowledge of the grid point index closest to the particle position, and the distance between the particle and the grid point, normalized to the cell size.

•OSIRIS implements 1st to 4th order interpolation schemes (linear, quadratic, cubic and quartic splines)

OSIRIS: Problems

Uniform Plasma

•(1) warm plasma with a temperature distribution parameter of u_thermal = 0.01c

- a perfectly load balanced simulation
- particle diffusion across parallel nodes happens uniformly so the total number of particles per node remains approximately constant.
- good performance test as these plasma conditions
- resemble those on most of the simulation box for the laser wakefield runs.

*quadratic shaped particles for the current deposition and field interpolation for all the simulations

Laser Wakefield scenarios

•(2,3) interaction of a 200 TW (6 Joule) laser interacting with uniform plasma with a density of 1.5e18 cm⁻³

•plasma with an intensity sufficient to trigger self-injection, under different numerical and physical conditions.

•different grid resolutions, different number of particles per cell, and mobile/immobile ions.

•(4) a PW (30J) laser propagating in a .5e 18 cm⁻³ plasma where ion motion is expected to play an important role

Run	Grid	Simulation Box $[c/\omega_0]$	Particles	Iterations	Laser a_0	Ions
Warm test	$6144 \times 6144 \times 1536$	$614.4\times614.4\times153.6$	$4.46 imes 10^{11}$	5600	n/a	n/a
Run 1	$8064 \times 480 \times 480$	$806.4 \times 1171.88 \times 1171.88$	$3.72 imes 10^9$	41000	4.0	fixed
Run 2	$8832 \times 432 \times 432$	$1766.4 \times 2041.31 \times 2041.31$	$6.59 imes 10^9$	47000	4.58	fixed
Run 3	$4032\times312\times312$	$806.4 \times 1171.88 \times 1171.88$	$1.26 imes 10^{10}$	52000	4.0	moving

OSIRIS: Enhancements

SIMD Optimizations and SSE Implementation

- 90 / 10 rule advancing particles and deposting the current
- optimized the use of memory and L2 cache for vector version
- store individual components in separate sequential arrays -one for x, one for y and one for z

 i) load 4 particles into the vector unit ii) interpolate the EM fields for these 4 particles iii) push the 4 particles iv) create up to 4 × 4 virtual particles for current deposition virtual particles ii) load 4 virtual particles into the vector unit ii) load 4 virtual particles into the vector unit iii) calculate the current contribution for the 4 virtual particles iii) accumulate this current in the global electric current grid 		
V) SLOTE LITE T DAT LICTES DACK TO THAIT THEITIOLY.	 particles: i) load 4 particles into the vector unit ii) interpolate the EM fields for these 4 particles iii) push the 4 particles iv) create up to 4 × 4 virtual particles for current deposition v) store the 4 particles back to main memory. 	virtual particles: i) load 4 virtual particles into the vector unit ii) calculate the current contribution for the 4 virtual particles iii) accumulate this current in the global electric current grid

- make use of vector shuffle operation to efficiently exchange parts of the vector registers:
 - i) we read 3 vectors (12 positions) sequentially
 - ii) shuffle them to get a vector of $4 \times positions$,
 - one vector of 4 y positions, one vector of 4 z positions
- 4 × 3 transpose is done in the registers and is very efficient (10 cycles overhead)
 -enables efficient use of vector memory read operations

•storing the particles back to memory, the opposite operation is performed

OSIRIS: Other Enhancements

Dynamic Load balancing

- 30% improvement in imbalance, but a 5% drop in overall performance
 - i) determine best partition from current load
 - ii) redistribute boundaries

SMP version of major distributed kernels

- the volume handled by each group of cores is much larger,
- the probability for significant load imbalance will be lower
- particle pusher, the field solver, current smoother, boundary processing of particles / fields and particle sorting.
- fairly simple since routines generally consist of an external loop that can be easily split among threads
- reduced the total node communication volume
- threads per MPI process must match the number of cores per cpu -or less

 $\lfloor \omega_p \rfloor$

t = 0

t' > 0

Run	Partition	Performance	Push Time	Average	TFLOPS	INS/FP	Speedup
	[cores]	[G part/s]	$[\mu s]$	Imbalance			
Warm.3d	55296	179.95	0.307	1.00	169.92	1.28	2.36
LWFA - 01		29.66	1.864	3.64	31.18	6.39	7.03
LWFA - 02		27.43	2.016	4.75	28.02	7.69	7.37
LWFA - 03		61.20	0.903	2.31	58.25	3.84	6.92
Frozen.3d linear	221184	1463.52	0.151	1.00	516.92	1.34	n / a
Frozen.3d quadratic		784.04	0.282	1.00	736.12	1.20	n / a
Warm.3d weak scale		741.20	0.298	1.00	700.09	1.21	9.73
Warm.3d strong scale		719.80	0.307	1.00	679.68	1.28	9.45
LWFA - 01 - strong scale		70.91	3.119	4.66	76.55	9.48	16.80

Run	Partition	Performance	Push Time	Average	TFLOPS	INS/FP	Speedup
	[cores]	[G part/s]	$[\mu s]$	Imbalance			
Warm.3d	55296	179.95	0.307	1.00	169.92	1.28	2.36
LWFA - 01		29.66	1.864	3.64	31.18	6.39	7.03
LWFA - 02		27.43	2.016	4.75	28.02	7.69	7.37
LWFA - 03		61.20	0.903	2.31	58.25	3.84	6.92
Frozen.3d linear	221184	1463.52	0.151	1.00	516.92	1.34	n / a
Frozen.3d quadratic		784.04	0.282	1.00	736.12	1.20	n / a
Warm.3d weak scale		741.20	0.298	1.00	700.09	1.21	9.73
Warm.3d strong scale		719.80	0.307	1.00	679.68	1.28	9.45
LWFA - 01 - strong scale		70.91	3.119	4.66	76.55	9.48	16.80

55k Partition

Friday, August 24, 2012

Run	Partition	Performance	Push Time	Average	TFLOPS	INS/FP	Speedup
	[cores]	[G part/s]	$[\mu s]$	Imbalance			
Warm.3d	55296	179.95	0.307	1.00	169.92	1.28	2.36
LWFA - 01		29.66	1.864	3.64	31.18	6.39	7.03
LWFA - 02		27.43	2.016	4.75	28.02	7.69	7.37
LWFA - 03		61.20	0.903	2.31	58.25	3.84	6.92
Frozen.3d linear	221184	1463.52	0.151	1.00	516.92	1.34	n / a
Frozen.3d quadratic		784.04	0.282	1.00	736.12	1.20	n / a
Warm.3d weak scale		741.20	0.298	1.00	700.09	1.21	9.73
Warm.3d strong scale		719.80	0.307	1.00	679.68	1.28	9.45
LWFA - 01 - strong scale		70.91	3.119	4.66	76.55	9.48	16.80

221K Algorithm Performance

Friday, August 24, 2012

	2ppc Linear	2ppc Quad	8ppc Quad	Q4 HR
Charge [pC]	284	339	347	366
Avg. Ene [MeV]	1074.7	1052.6	1054.7	1048.1
StdDev Ene [MeV]	53.4	76.3	75.6	85.5
Peak Ene [MeV	1031.8	979.0	984.5	962.6
Ene FWHM [MeV]	34.5	50.1	19.8	44.5
$\epsilon_{Ny} \text{ mm mr}$	29.6	26.7	28.8	19.2
$\epsilon_{Nz} \text{ mm mr}$	33.9	30.7	25.6	18.6

Energy Distribution Time = 15.30 [ps] 1.0 Black is 2ppc linear Green is 2ppc quadratic 0.8 Blue is 8ppc quadratic Red is Q4 high resolution 0.6 f(E) [a.u.] 0.4 0.2 0.0 1.0 1.2 1.3 1.1 E [GeV]

Comparison of the energy spectra of the beam in the first bucket for the runs.

A 2D slice of the electron density showing the electrons injected into the first two buckets.

•Charge (the linear particle shape run has 25% less charge) and the emittance are significantly reduced in the higher resolution (Q4) run.

•The high resolution run has 50% lower RMS value for the two transverse planes.

•This improvement in emittance is very important for both collider and light source applications.

ASCR

- •At \$1M per MW, energy costs are substantial
- •I Pf in 2010 ~ 3 MW
- •I Ef in 2018 at 200 MW with "usual" scaling

•Power constraints using current technology are unaffordable

- 20 Pf Sequoia requires ~ 10MW to operate
- IEf requires ~500MW with current technologies

I Exaflop in 20?? at 20 MW is target!

Exascale Table -guess work?

	2010	2018	Factor Change
System peak	2 Pf/s	1 Ef/s	500
Power	6 MW	20 MW	3
System Memory	0.3 PB	10 PB	33
Node Performance	0.125 Gf/s	10 Tf/s	80
Node Memory BW	25 GB/s	400 GB/s	16
Node Concurrency	12 cpus	1,000 cpus	83
Interconnect BW	1.5 GB/s	50 GB/s	33
System Size (nodes)	20 K nodes	1 M nodes	50
Total Concurrency	225 K	1 B	4,444
Storage	15 PB	300 PB	20
Input/Output bandwidth	0.2 TB/s	20 TB/s	100

Delivery Date 2020-2022

Performance 1000 PF LINPACK, 300 PF on codesign applications Power Consumption 20 MW (not including cooling) MTBAI 6 days (mean time between application interruptions) Memory including NVRAM 128 PB

Extended Scope of Application Software Problems

Example Problem: solving algebraically determined systems of linear equations numerically (Linpack TOP500, FLOPs)

Q: How do the language of the problem and the accepted result relate to reality? Requires analysis beyond software analysis above and distinguishes *computational science* from system and library software development. Takes more time -needs refinement phase of algorithms and metrics.

Metric: the distance between two points in some topological space

Challenge: detecting, mitigating, recovering from failures

- fail / continue
- hard / soft faults
- resiliency must go
 beyond check point /
 restart
 - •algorithm based fault tolerance

have to go beyond single failure

Challenge: quantify the data related costs on and across nodes

-refine performance measures for data movement and access costs as these dominate over floating point costs

• **bandwidth**, the number of cycles a core waits because the bus is not ready; as the measure gets large, it indicates that the bus is in high demand and loads or stores involving main memory will take longer

-provides means to reason about performance costs versus (bisection) bandwidth scaling (i.e. increased node counts)

• *locality*, the ratio of the peak versus measured capacity of each memory level (on/off chip) divided by access time in cycles

•i.e. consider ratio of gather and scatter costs in loops (A. Snavely, exascale planning meeting)

Need extensions that relate performance to power; lead to novel optimization ideas

-extension of existing metrics to reason about power and performance tradeoffs, energy driven optimizations (i.e. DVFS)

-number of floating point operations per Watt (floating point dominated) -cost of loads or stores in bytes per Watt (data ops dominated)

-metric guided optimizations to simultaneously minimize power consumption and time to solution (IBM Zurich study)

-computational cost ~ *f(time to solution)* * *energy*

-f constant, cost per execution event in Joules

-f linear, cost provides insight about appropriateness of hardware platform for application

-demand tools for power measurements

-memory (29%), network (29%), floating point unit (16%)) (distribution of power in HPC hardware (Kogge))

 Current DRAM roadmap will not enable achieving exascale systems with anything like the expected needs and goals

Reduced latency – With vastly more responders built into HMC, we expect lower queue delays and higher bank availability, which can provide a substantial system latency reduction, which is especially attractive in network system architectures.

Increased bandwidth — A single HMC can provide more than 15x the performance of a DDR3 module. Speed is increased by the very fast, innovative interface, unlike the slower parallel interface used in current DRAM modules.
 Power reductions — HMC is exponentially more efficient than current memory, using 70% less energy per bit than DDR3.
 Smaller physical systems — HMC's stacked architecture uses nearly 90% less space than today's RDIMMs.
 Pliable to multiple platforms — Logic-layer flexibility allows HMC to be tailored to multiple platforms and applications.

Exascale System Networks

REQUIREMENTS

Scale

100,000 - 1,000,000 nodes

Node Bandwidth

10 GB/s -2000 GB/s

Very application dependent

Power efficiency

Particularly important for HPC

Latency

Critical for HPC systems

POWER CHALLENGE

Total BW = Nodes x BW x hops x bit

- = 100,000 x 2000 x 4 x 8
- = 6.4 Exabits / s

Power = 30MW

4.7pJ/bit available entire power budget for interconnect!

CHALLENGES

Interconnect density

Chip edge, board edge, enclosure

Low Network Diameter

Benefits latency, power and reliability Requires high radix switches

Cabling complexity

Particularly with low diameter networks

Challenge Tools to Pinpoint Performance and Numerical Errors, Drive Science Based

Feature Extraction in Massive, Complex Data Sets

Friday, August 24, 2012

Challenge accurate, scalable tools at thread level

	Multiplies	Adds	Total
real	mnl + 2mn	mnl	2mnl + 2mn
complex	4mnl + 8mn	4mnl + 4 mn	8mnl + 12mn

Table 14: Theoretical complexity of $C(m,n) \leftarrow \alpha A(m,l)B(l,n) + \beta C(m,n)$.

					IUIAI
Problem	FP	INS	L2DCM	Time[µs]	
PEs nt/PE					Time 0/100/
m l n chnk					
2 pes, 4nt/pe					I ime 12.213
1024,1024,1024,256	init()	init()	init()	init()	
p0,t0	3145728	123983711	2089784	2422204	TOT_INS
p0,t1	3145728	126814035	2107375	2421820	1037.779M/s
p0,t2	3145728	107087054	2124844	2421705	1006304035
p0,t3	3145728	107498702	2100952	2421780	
p1,t0	3145728	144025387	2189125	2541868	
p1,t1	3145728	147571937	2220183	2541458	
p1,t2	3145728	107456375	2214333	2541361	222.330IVI/Se
p1,t3	3145728	109273232	2200654	2541429	2155872263
1024,1024,1024,256	work()	work()	work()	work()	
p0,t0	2151153664	7780969482	270106544	11254443	TOT_CYC
p0,t1	2151153664	9020932602	270484334	11254098	9.697 secs
p0,t2	2151153664	7525985513	270171124	11254286	2133282672
p0,t3	2151153664	9273025751	270499158	11254282	
p1,t0 THY	2151153664	7628607535	270355014	12324730	 Isor time (a
p1,t1	2151153664	9077245107	270414465	12324461	
p1,t2	2151153664	7525968734	270386539	12324582	
p1,t3	2151153664	9337961638	270389136	12324478	268/0/60/4
Totals	17234395136	68144406795	2180053564	14866598	
	17205035008	\triangleright			
	17203033000	/			

1 PE, 4 nt / PE Group / Function / Thread (max) _____ Total % 100.0% 12.213947 secs INS 779M/sec 3040357 instr IS 30M/sec 72263 ops (2154299392) CYC secs 2826724 cycles time (approx) 100.0% Time

0760748 cycles

Table 17: Measured machine events of threaded parallel work phase (zgemm).

Challenge accurate, scalable memory tools

hpcviewer: OMEN_Jaguar-pgi64-XT5	i.hpclink.memleak
💫 Calling Context View 🔧 Callers View 🚏 Flat View	
] 🕆 🖖 💧 fx 🕅 🐺 A* A-	e 2
Scope	Bytes Allocated:Sum (I) 🔻 Bytes Freed:Sum (I) Bytes Leaked: Sum (I)
Experiment Aggregate Metrics	8.27e+11 100 % 8.27e+11 100 %
▼main	8.27e+11 100 % 8.27e+11 100 %
Transport <std::complex<double>>::execute_task(char const *, char const *)</std::complex<double>	8.20e
Transport <std::complex<double>>::wire_transmission(char const *, int)</std::complex<double>	8.20e I.e. detect memory leaks
CPR250_calc_transmission43Transport_tm26_Q2_3std16complex_tm2_	8.11e
CPR108_solve_46WaveFunction_tm_26_Q2_3std16complex_tm_2_dFP38	^{7.83} • probe allocation points in calling
WireCompression <std::complex<double>>::prepare(int *, int *, int, int, int *,</std::complex<double>	7.65e
WireCompression <std::complex<double>>::SecondStageRen(int *, int *, i</std::complex<double>	4.29e CONTEXT TREES
▼ B>array_new	7.17e
The array_new_general(void *, long, unsigned long, unsigned long, void *	7.17e
Iloc_array(unsigned long, unsigned long, void *(*)(unsigned long)	^{7.17e} intercent every allocate and free
▼ Bnwa(unsigned long)	7.17e milercept every anocate and nee
operator new(unsigned long)	7.17e
> hpcrun_memleak_malloc_helper	7.17e
▼ B hpcrun_async_block	•mark the memory with the call
sample_event.h: 74	7.17e
▼ Barray_new	^{7.17e} path in which it was allocated,
Image: Second	^{7.17e} motob the free beak to the
Alloc_array(unsigned long, unsigned long, void *(*)(unsigned long)	7.17e match the free back to the
▼ ma(unsigned long)	^{7.17e} allocation point
operator new(unsigned long)	7.17e anocation point
▼	7.17e
▼ B hpcrun_async_block	7.17e
sample_event.h: 74	•what about programs that are killed
► B>array_new	7.17e
►array_new	by the U/S or othe faults?
► By Lingford and an and a share a supress of a share in the second sec	7.17e
Compack <std::complex<double>>::prepare(void)</std::complex<double>	3.69e
Omrpack <std::complex<double>>::ct(TCSR<> *, int)</std::complex<double>	•need to log data prior to
►rew	
► Byarray_new	allocation to detect when a
► B array new	
	process is killed from external
	2.246
	TORCE
C array_new	2.240109 0.36 2.240109 0.36

<u>Challenge</u> algorithms that Improve {ins,flop(s)} / byte (and don't compromise accuracy or performance)

•J.J.M. Cuppen, *A Divide and Conquer Method for the Symmetric Tridiagonal Eigenproblem*, Numer. Math. 36, 177-195 (1981)

•F. Tisseur and J.J. Dongarra, *Parallelizing the Divide and Conquer Algorithm for the Symmetric Tridiagonal Eigenvalue Problem on Distributed Memory Architectures*, lawn132 (1998)

Challenge algorithms that improve I/O operations for applications

Parameters set in the file system related to but independent from the problem parameters:

- Number of OSTs
 - 1, 2, 4, 8, 16, 32 tripe size in **BV**
- Stripe size in BYTEs
 1 MB, 2 MB, 4MB, 8 MB, 16 MB
- access pattern (round robin)
- Number of I/O PEs for spatial decomposition kio ~ 1, 2, 3, 4, 6, 8
- Total number of I/O PEs is kio * nfld since nfld =151, 151, 302, 453, 604, 906, 1208

10

+

0

Lustre (oracle)

25

50

75

125

100

Run Event #

ASCII (1PE)

150

175

200

Binary (1PE)

Aside on FILEs and IO

ANSI C

stream of BYTEs
points to a FILE structure
fopen,fwrite,fread,fclose

void f_copn_ (char * ffn , int * ffd , int * len) ;

```
void f_ccls_ ( int * ffd ) ;
```

```
void f_crm_ ( char * ffn , int * len ) ;
```

```
void f_cwr_ ( int * ffd , void * fbf , int * fsz , int * nobj , int * ierr ) ;
```

void f_crd_ (int * ffd , void * fbf , int * fsz , int * nobj , int * ierr) ;

type	edef struct {	
	int	level; /* fill/empty level of buffer */
	unsigned	flags; /* File status flags */
	char	fd; /* File descriptor */
	unsigned char	hold; /* Ungetc char if no buffer */
	int	bsize; /* Buffer size */
	unsigned char	*buffer; /* Data transfer buffer */
	unsigned char	*curp; /* Current active pointer */
	unsigned	istemp; /* Temporary file indicator */
	short	token; /* Used for validity checking */
}	FILE;	, _
		\frown
0 -rw-r-	r I roche	e roche (1608 2010-06-21 21:03 fortran-dat.bn
0 -rw	I roche	e roche \1600 2010-06-21 21:03 c-data.dat

Fortran •sequence of records •open,write,read,close •IOLENGTH , RECL

fn = '/tmp/work/roche/mpt-omp/ben.txt'// CHAR(0)

```
call f_copn ( fn , fd , LEN( fn ) )
```

call f_cwr (fd , a , 16 , ndim , ierr)

call f_ccls (fd)

call f_copn (fn , fd , LEN(fn))

call f_crd (fd , a_bk , 16 , ndim , ierr)

call f_ccls (fd)

```
call f_crm ( fn , LEN( fn ) )
```

Aside on FILEs and IO (2)

POSIX (UNIX) •stream of BYTES •file descriptors -index into file descriptor table -kept in user process -points to entry in system in-memory inode table •open,write,read,close, ioctl

Spider (Lustre):

- •MDS, file names and directories in the filesystem, file open, close, state mgt
- •OSS, provides file service, and network request handling for set of OSTs
- •OST, stores chunks of files as data objects -may be stripped across one or more OSTs -Spider has 672 OSTs
 - -7 TB per OST
 - -1 MB Default stripe size
 - -4 Default OST count

Aside on FILEs and IO (3)

form modulo classes from MPI communicator over the number of I/O groups
for both proton and neutron communicators in nuclear case (44 for protons, 44 for neutrons)

•fit the stripe size to the largest single data item if possible

•eg for nuclear code and 32^3 lattice, a single 4-component term is 4 * 32^3 * 16 / 2^20 = 2MB

•set the stripe pattern (I use round-robin) and number of target OSTs (I use 88 in nuc code) for target PATH / FILE

•eg lfs setstripe /tmp/work/roche/kio -s 2m -i -1 -c 88

Performance: POSIX ~ [225,350]MBps , use of Lustre ~ [2,25]GBps

Aside on FILEs and IO (4) - Search Approach

 (was) gather to single process, followed by sequential write / wait phase within a loop over fields (1 PE writes, nPEs - 1 PEs wait) x nFIELDS iterations (is) loop over (disjoint target) gathers to a set of designated IO PEs; after gather phase then (nIOPEs write in parallel, nPEs - nIOPEs wait) x 1 since nIOPEs > nFIELDS (8 (3D fields / day) × 42 (k-values / fields) × 1 (PE / k-value) = 336 IOPEs / day; 19 IOPEs / day for 2D fields) use of lut_putl() library function explicitly invoking LUSTRE file system semantics oracle code to search for preferred LUSTRE parameters: number of OSTs, stripe size, number of writers similar enhancements for 2D fields; movies require an additional index transformation which is done locally by the IO PE prior to writing (block cyclic to natural column major) mcpy((void *) fnbf, (const void *) ffn, (size_t) *len); (indeps = 0; indeps < 6; indeps +) *(isent = 0; isent < 7; isent +) *(isent = 0; isent < 7; isent +) *(isent = 0; isent < 6; istrp +) *(isent = 0; isent < 6; istrp +) *(isent = 0; isent < 6; istrp +) *(isent = 0; isent < 7; isent +) *(isent = 0; isent < 6; istrp +) *(isent = 0; indeps < 6; indeps +) *(isent = 0; indeps < 6; istrp +) *(isent = 0; isent < 7; isent +) *(isent = 0; isent < 6; istrp +) *(i); * start running internal clock */	 introduced set of parallel I/O p 	rocesses within the MPI group						
 (is) loop over (disjoint target) gathers to a set of designated IO PEs; after gather phase then (nIOPEs write in parallel, nPEs - nIOPEs wait) x 1 since nIOPEs > nFIELDS (8 (3D fields / day) × 42 (k-values / fields) × 1 (PE / k-value) = 336 IOPEs / day; 19 IOPEs / day for 2D fields) use of lut_putl() library function explicitly invoking LUSTRE file system semantics oracle code to search for preferred LUSTRE parameters: number of OSTs, stripe size, number of writers similar enhancements for 2D fields; movies require an additional index transformation which is done locally by the IO PE prior to writing (block cyclic to natural column major) mcpv((void *) fnbf, (const void *) ffn, (size_t) *len); (indpes = 0; indpes < 6; indpes++) (cisent = 0; isent < 7; isent++) (cisent = 0; isent < 1; isent < 1	 (was) gather to single proce (1 PE writes, nPEs - 1 PEs wat 	ss, followed by sequential write / wait phase within a loop over fields ait) x nFIELDS iterations						
 use of lut_putl() library function explicitly invoking LUSTRE file system semantics oracle code to search for preferred LUSTRE parameters: number of OSTs, stripe size, number of writers similar enhancements for 2D fields; movies require an additional index transformation which is done locally by the IO PE prior to writing (block cyclic to natural column major) mcpy((vold *) fnbf, (const vold *) ffn, (size_t) *len); (iniopes = 0; iniopes < 6; iniopes++) r (iscnt = 0; iscnt < 7; iscnt++) or (istrp = 0; istrp < 6; istrp++) { sprintf(fn, "%s/lpop-lo%d-sc%d-str%d", fnbf, iniopes, iscnt, istrp); b_t(); /* start running internal clock */ wr_lstr_orcl(fn, com, ndays, ndddfid, ni, nj, nk, strp[istrp], scnt[iscnt], niopes[iniopes], dbf, dbf_); rt = e_t(0); if (ip == 0) printf("case: T[%d] ISTRP[%d] SCNT[%d] IOPEs[%d]\n", rt, strp[istrp], (int) scnt[iscnt], niopes[iniopes]);	 (is) loop over (disjoint target (nIOPEs write in parallel, nPE (k-values / fields) × 1 (PE / k-values) 	 (is) loop over (disjoint target) gathers to a set of designated IO PEs; after gather phase then (nIOPEs write in parallel, nPEs - nIOPEs wait) x 1 since nIOPEs > nFIELDS (8 (3D fields / day) × 42 (k-values / fields) × 1 (PE / k-value) = 336 IOPEs / day; 19 IOPEs / day for 2D fields) 						
<pre>- oracle code to search for preferred LUSTRE parameters: number of OSTs, stripe size, number of writers</pre>	 use of lut_putl() library function 	n explicitly invoking LUSTRE file system semantics						
<pre>• similar enhancements for 2D fields; movies require an additional index transformation which is done locally by the IO PE prior to writing (block cyclic to natural column major) mcpy((void *) fnbf, (const void *) ffn, (size_t) *len); (iniopes = 0; iniopes < 6; iniopes ++) r (iscnt = 0; iscnt < 7; iscnt++) fr (iscnt = 0; iscnt < 7; iscnt++) (sprintf(fn, "%s/lpop-io%d-sc%d-str%d", fnbf, iniopes, iscnt, istrp); b_t(); /* start running internal clock */ wr_lstr_orcl(fn, com, ndays, ndddfid, nddfid, ni, nj, nk, strp[istrp], scnt[iscnt], niopes[iniopes], dbf, dbf_); rt = e_t(0); if (ip == 0) printf("case: T[%f] ISTRP[%d] SCNT[%d] IOPEs[%d]\n", rt, strp[istrp], (int) scnt[iscnt], niopes[iniopes]);</pre>	oracle code to search for prefe writers	erred LUSTRE parameters: number of OSTs, stripe size, number of						
<pre>mcpy((void *) fnbf , (const void *) ffn , (size_t) *len) ; (iniopes = 0 ; iniopes < 6 ; iniopes++) r (iscnt = 0 ; iscnt < 7 ; iscnt++) for (istrp = 0 ; istrp < 6 ; istrp++) { sprintf(fn , "%s/lpop-io%d-sc%d-str%d" , fnbf , iniopes , iscnt , istrp) ; b_t() ; /* start running internal clock */ wr_lstr_orcl(fn , com , ndays , ndddfid , ni , nj , nk , strp[istrp] , scnt[iscnt] , niopes[iniopes] , dbf , dbf) ; rt = e_t(0) ; if (ip == 0) printf("case: T[%f] ISTRP[%d] SCNT[%d] IOPEs[%d]\n" , rt , strp[istrp] , (int) scnt[iscnt] , niopes[iniopes]) ;</pre>	 similar enhancements for 2D fill locally by the IO PE prior to writi 	elds; movies require an additional index transformation which is done ng (block cyclic to natural column major)						
<pre>(iniopes = 0 ; iniopes < 6 ; iniopes + +) r(iscnt = 0 ; iscnt < 7 ; iscnt +) for (istrp = 0 ; istrp < 6 ; istrp++) { sprintf(fn , "%s/lpop-io%d-sc%d-str%d" , fnbf , iniopes , iscnt , istrp) ; b_t() ; /* start running internal clock */ wr_lstr_orcl(fn , com , ndays , ndddfld , nd fld , ni , nj , nk , strp[istrp] , scnt[iscnt] , niopes[iniopes] , dbf , dbf); rt = e_t(0) ; if (ip == 0) printf("case: T[%f] ISTRP[%d] SCNT[%d] IOPEs[%d]\n" , rt , strp[istrp] , (int) scnt[iscnt] , niopes[iniopes]); </pre>	nemcpy((void *) fnbf , (const void *) ffn , (size	e_t)*len);						
<pre>{ sprintf(fn , "%s/lpop-io%d-sc%d-str%d" , fnbf , iniopes , iscnt , istrp) ; b_t() ; /* start running internal clock */ wr_lstr_orcl(fn , com , ndays , ndddfld , nd , nj , nk , strp[istrp] , scnt[iscnt] , niopes[iniopes] , dbf , dbf_) ; rt = e_t(0) ; if (ip == 0) printf("case: T[%f] ISTRP[%d] SCNT[%d] IOPEs[%d]\n" , rt , strp[istrp] , (int) scnt[iscnt] , niopes[iniopes]) ;</pre>	or(iniopes = 0 ; iniopes < 6 ; iniopes++) for(iscnt = 0 ; iscnt < 7 ; iscnt++) for(istrp = 0 ; istrp < 6 ; istrp++)							
<pre>splitt((iii, ' //s) ipop io //d sc //d st //d ', iiiopcs / ischt / istip) // b_t(); /* start running internal clock */ wr_lstr_orcl(fn , com , ndays , ndddfld , nddfld , ni , nj , nk , strp[istrp] , scnt[iscnt] , niopes[iniopes] , dbf , dbf_); rt = e_t(0); if (ip == 0) printf("case: T[%f] ISTRP[%d] SCNT[%d] IOPEs[%d]\n" , rt , strp[istrp] , (int) scnt[iscnt] , niopes[iniopes]);</pre>	{ sprintf(fn "%s/lpop-io%d-sc%d-str%d" fr	obf_iniones_iscnt_istrn.):						
<pre>wr_lstr_orcl(fn , com , ndays , ndddfid , nddfid , ni , nj , nk , strp[istrp] , scnt[iscnt] , niopes[iniopes] , dbf , dbf_) ; rt = e_t(0) ; if (ip == 0) printf("case: T[%f] ISTRP[%d] SCNT[%d] IOPEs[%d]\n" , rt , strp[istrp] , (int) scnt[iscnt] , niopes[iniopes]) ;</pre>	<pre>b_t(); /* start running internal clock */</pre>							
rt = e_t(0) ; if (ip == 0) printf("case: T[%f] ISTRP[%d] SCNT[%d] IOPEs[%d]\n" , rt , strp[istrp] , (int) scnt[iscnt] , niopes[iniopes]) ;	wr_lstr_orcl(fn , com , ndays , ndddfld , nddfl	d , ni , nj , nk , strp[istrp] , scnt[iscnt] , niopes[iniopes] , dbf , dbf_) ;						
if (ip == 0) printf("case: T[%f] ISTRP[%d] SCNT[%d] IOPEs[%d]\n" , rt , strp[istrp] , (int) scnt[iscnt] , niopes[iniopes]) ;	rt = e_t(0) ;							
printf("case: T[%f] ISTRP[%d] SCNT[%d] IOPEs[%d] n ", rt, strp[istrp], (int) scnt[iscnt], niopes[iniopes]);	if (ip == 0)							
	printf("case: T[%f] ISTRP[%d] SCNT[%	d]IOPEs[%d]\n", rt, strp[istrp], (int) scnt[iscnt], niopes[iniopes]);						

POF	D
-----	---

	4800 PEs, Q2	Time(s)	INS	FP OP
	Barotropic	220.285649	3362619394734242	10914798749862
Q2	Baroclinic	84.623336	638046552543018	123489441332158
	T avg	554.416994	10459543609613288	22070416032
	Movie	98.516514	1838543581529579	15638400
	TOTALs	957.842493	1.629875313842013e+16	134,426,326,136,452
	4800 PEs, Q4	Time(s)	INS	FP OP
$\bigcirc 4 \circ$	Barotropic	162.845484	2493523139608176	10918903717734
५न,८	Baroclinic	81.234007	611926226154622	123489442062604
	T avg	72.995206	1369947333186195	22070417409
	Movie	12.397561	228560389936546	15640101
	TOTALs	329.472258	4,703,957,088,885,539	134,430,431,837,848
	9600 PEs, Q4	Time(s)	INS	FP OP
	Barotropic	143.867992	4352776136294947	11696471278395
O4s	Baroclinic	47.994133	755616085382567	133265275114487
2 1,5	T avg	84.648207	3180959264572214	24868719153
	Movie	13.812455	505002308418671	31278501
	TOTALs	290.322787	8,794,353,794,668,399	144,986,646,390,536
Efficiency	PES : 1			
Encicicy.	TIME : 0.34397	3315454068 (329472	258 / 957842493)	
	INS : 0.28860	8401448646 (470395	7088885539 / 1.629	875313842013e+16)
	FP OP : 1.00003	0542390869 (13443	0431837848 / 1	34426326136452
		,		· · · · · · · · · · · · · · · · · · ·
C +	PES : 2			
strong	TIME : 0.30310	07593855 (290.3227	87 / 957,842493)	
		(1)010101011	. , , , , , , , , , , , , , , , , , , ,	

Scaling: INS : 0.539572181993355 (8794353794668399 / 1.629875313842013e+16) FP_OP : 1.078558423469556 (144986646390536 / 134426326136452)

Computer Science in DOE

- advanced computer architectures
- programming models, languages, and compilers
- execution models, operating, runtime, and file systems
- performance and productivity tools
- data management and data analytics, visual analysis

any surprises / omissions?

ASCR Exascale Funding Trends

•the energy costs of moving data both on-chip and off-chip

 keeping the current technology roadmaps, memory per processor is expected to fall dramatically

 locality of data and computation renders flat cache hierarchies not useful

•energy-efficient on-chip and off-chip communication fabrics and synchronization mechanisms. Chief among these concerns is the power consumed by memory technology

programming models, languages, and compilers

program up to a billion heterogeneous cores systems

novel architectures /10 billion-way concurrency

concurrency and locality

 includes development environments, frameworks, and debugging tools

programming languages and environments

Performance is Limited by ...

- 1) System power -primary constraint
- 2) Memory bandwidth and capacity are not keeping pace
- 3) Concurrency 1000X increase in-node
- 4) Processor open question
- 5) Programming model compilers will not hide this
- 6) Algorithms need to minimize data movement, not flops
- 7) I/O bandwidth unlikely to keep pace with machine speed
- 8) Reliability and resiliency will be critical at this scale
- 9) Bisection bandwidth limited by cost and energy

Bottom Line Challenges of Exascale Computing

Power efficiency, Reliability, Programmability