
INT Summer School: Computing

K. J. Roche
High Performance Computing Group, Pacific Northwest National Laboratory

Nuclear Theory Group, University of Washington

*calibrated according to computing survey results

quantum vortex generation in UFG
(ref M. Forbes lectures on SLDA in
UFG)

energy use by population distribution

Friday, August 24, 2012

• COMPLEXITY
• PROBLEMS
• ALGORITHMS
• MACHINES

S = S1 ^ S2 ^ ... ^ Sn

Asking questions, solving problems is recursive
process

Accepting a result means a related set of
conditions is satisfied

Measured time for machine M to generate the
language of the problem plus time to generate
the language of the result plus the time to
accept or reject the language of the result.

M
LP LR

M

accept

reject
M

Concepts

algorithm, a Turing machine that always halts
decidable problems are posed as a recursive language
undecidable problems have no algorithms that accept the language of the problem and generate / accept or reject an answer
(Rice’s Theorem posits that non-trivial properties of r.e. languages are undecidable. Examples are emptiness, finiteness, regularity,
and context freedom.)

Friday, August 24, 2012

letʼs be practical (we only have 1 hour)

CPU
Memory
Network
External Devices ...

M

Friday, August 24, 2012

CPU

• ALU, adds, comparisons
• FPU, floating point operations
• L/S U, data loads / stores
• Registers, fast memory; FPR, GPR, etc.
• PC, program counter -address in memory of
instruction that is executing (control flow, fetch /
decode in CPU)
• Memory interface, often L1 and L2 caches

other:
clock speed
buses
ISA (Intel x86 most popular, x86-64, ...)

Friday, August 24, 2012

Memory
• storage for active data and programs

model of program placement in memory

high
address

low
address program text

initialized static data

un_init static data

heap

stack

argc, argv,
environment

variables

memory allocations (malloc)

activation records for function
calls (return adresses, parameters, saved
registers, automatice variables)

process, a program in execution -has this structure
thread, an abstract data type w/ its own stack, program
counter value, register set, and state

Friday, August 24, 2012

Memory

• size
•virtual memory (looks bigger than it is)

• hierarchy
•try to improve performance by reducing latency

• bandwidth

• correction mechanisms

•WHAT ABOUT COST / PERFORMANCE?!

Friday, August 24, 2012

Power = Capacity * Voltage^2 * Frequency

Today’s Memories ...
• 10^9 cells
• cell capacitance < femto-farad
• resistance O(tera-ohms)

Refresh Cycles ~ 64ms
• leakage
• reading drains the charge (read + recharge)

Faster memory
• lower voltage --> decreases stability,
• increase frequency --> $$$ as arrays get large
•(i.e. more addressable memory) and voltage is

 increased to assure stability ref. Drepper, What every Programmer Should Know about Memory

DRAM
C, capacitor, keeps cell state

M, transistor, controls access to cell state

read the state of the cell the access line AL is raised
-causes a current to flow on the data line DL or not

write to the cell the data line DL is appropriately set and AL is
raised for a time long enough to charge or drain the capacitor

Friday, August 24, 2012

SDR (PC100) ~
DRAM cell array 100MHz
data transfer rate 100Mbps

DDR (PC1600) ~ moves 2X the data / clock (leading , falling)
add “I/O” buffer (2 bits on data line) adjacent to DRAM cell array
pull two adjacent column cells per access over 2 line data bus
100 MHz X 64 bit / data bus X 2 data bus lines = 1600 MBps

DDR2 (PC6400) ~ moves 4X the data / clock
double the bus frequency --> 2X bandwidth
double “I/O” buffer speed to match the bus
4 bits / clock on 4 line data bus
200MHz array; 400MHz bus; 800MHz FSB (effective freq)
200 MHz X 64 bit / data bus X 4 data bus lines = 6400 MBps
240 PIN addressing @ 1.8V

*each stall cycle on the memory bus is > 11 cpu cycles even in the best systems

Friday, August 24, 2012

external memory control

cpu integrated memory control

PCI := 132 MB/s
AGP 8X := 2,100 MB/s
PCI Express 1x := 250 [500]* MB/s
PCI Express 2x := 500 [1000]* MB/s
PCI Express 4x := 1000 [2000]* MB/s
PCI Express 8x := 2000 [4000]* MB/s
PCI Express 16x := 4000 [8000]* MB/s
PCI Express 32x := 8000 [16000]* MB/s
USB 2.0 (Max Possible) := 60 MB/s
IDE (ATA100) := 100 MB/s
IDE (ATA133) := 133 MB/s
SATA := 150 MB/s
SATA II := 300 MB/s
Gigabit Ethernet := 125 MB/s
IEEE1394B [Firewire 800] := ~100 MB/s

* 2X for both lanes

Friday, August 24, 2012

Hex-Core AMD
Opteron (TM)

2.6e9 Hz clock 4 FP_OPs / cycle / core
128 bit registers

PEs 18,688 nodes 224,256 cpu-cores (processors)

Memory

 16 GB / node
 6 MB shared L3 / chip

 512 KB L2 / core
 64 KB D,I L1 / core

dual socket nodes
800 MHz DDR2 DIMM

25.6 GBps / node memory bw

Network
AMD HT
SeaStar2+

3D torus topology
6 switch ports / SeaStar2+ chip

9.6 GBps interconnect bw / port
3.2GBps injection bw

Operating Systems Cray Linux Environment (CLE)
(xt-os2.2.41A)

SuSE Linux on service / io nodes

Prototypical Computing Platforms: Yesterday

FY Aggregrated
Cycles

Aggregated
Memory

Aggregated
FLOPs

Memory/FLOPs

2008 65.7888 THz 61.1875 TB 263.155 TF 0.2556

2009 343.8592 THz 321.057 TB 1.375 PF 0.2567

2010 / 11 583.0656 THz 321.057 TB 2.332 PF 0.1513

Friday, August 24, 2012

Measurements

•application specific measures / metrics (see bonus for examples)

•machine events

-clear dependence on tools / hardware support to monitor hardware components
activated during program execution

--cycle count, disk accesses, floating point operation counts, instructions issued
and retired, L2 data cache misses, maximum memory set size, number of
loads / stores etc.

•derived measures

-efficiency, cycles per instruction (CPI) or floating point operations retired per
second (FLOPs)

-computational costs, CPU Hours (relates execution time to processing
elements), etc.

•pinpoint insufficient parallelism, lock contention, and parallel overheads in
threading and synchronization strategies

Friday, August 24, 2012

Strong Scaling Weak Scaling Improve Efficiency

Machine
Events Q2 Q4

INS 2.147E+15 2.1130E+15

FP_OP 5.896E+14 5.8947E+14

PEs 5632 11264

Time[s] 121.252233 57.222988

INS:
2113046508030116 /
2146627269408190 = .9843

FP_OP:
589469277576687 /
589624961638025 = .9997

PEs: 11264 / 5632 = 2

Time[s]:
57.222988 / 121.252233 = .472

Machine
Events Q2 Q4

INS 5.18E+17 1.93E+18

FP_OP 4.63E+17 1.81E+18

PEs 7808 31232

Time[s] 25339 23791

INS: 3.72

FP_OP: 3.92

PEs: 4

Time[s]: .938

NB: k= T(Q4)*PEs(Q4)/
T(Q2)*PEs(Q2) ~ 3.756

Machine
Events Q2 Q4

INS 3.16E+12 4.37E+11
FP_OP 5.50E+11 5.53E+11

PEs 1 1
L2DCM 823458808 34722900
Time[s] 826.494142 79.414198

INS: 0.1381 (7.239x)

FP_OP: 1.0053 (0.99475x)

PEs: 1

L2DCM: 0.0422 (23.715x)

Time[s]: 0.0961 (10.407x)

Enhancement Modes
•performance (improve efficiency, scalability - weak or strong)

-data structures / discretizations, algorithms, libraries, language enhancements, compilers

•scientific (better accuracy, improved predictive power)
-physical models, the problem representation, validity of inputs, and correctness of computed results

Friday, August 24, 2012

Algorithm, machine strong scaling :
 Q4 problem := Q2 problem
 Q4 algorithm := Q2 algorithm
 Q4 machine ~ k * Q2 machine
 Q4 time ~ 1/k * Q2 time

Algorithm enhancements, performance
optimizations:

 Q4 problem := Q2 problem
 Q4 algorithm ~ enhanced Q2 algorithm
 Q4 machine := Q2 machine
 Q4 time ~ 1/k * Q2 time

*Could consider other variations: algorithm and machine
 are varied to achieve reduction of compute time

“simulating the same
problem in less time”

Algorithm, machine weak scaling (100%):
 Q4 problem ~ k * Q2 problem
 Q4 algorithm := Q2 algorithm
 Q4 machine ~ k * Q2 machine
 Q4 time := Q2 time

Algorithm enhancements, performance
optimizations:

 Q4 problem ~ k * Q2 problem
 Q4 algorithm ~ enhanced Q2 algorithm
 Q4 machine := Q2 machine
 Q4 time := Q2 time

*Could consider other variations: problem, algorithm and
 the machine are varied to achieve fixed time assertion

“simulating a larger
problem in same time”

Computational Efficiency
• Total elapsed time to execute a problem instance with a specific software instance
(algorithm) on a machine instance

• Parallel
• e(n,p) := Tseq (n) / (p * T(n,p))

weighted:
(t*nPEs/DOF)_b/(t*nPEs/DOF)_e

Friday, August 24, 2012

Data Structures

linked lists
queues
graphs
tensors
lattices , meshes
stencils (for PDEs)
...

Friday, August 24, 2012

Graphs

• G(V,E)
•V, vertex set, |V| cardinality
•E, edge set, (vi,vj),..., |E|
•values on vertices
•values on edges

Friday, August 24, 2012

Sparse Matrices

• basic for NK based methods
that execute repeated SpMV
accumulate operations

• 2 integer arrays, 1 value array
(i.e. double precision numbers)

0 1 2 3 4 5 6 7 8 9

•number of nonzeros in row
•column index
•values

Friday, August 24, 2012

Dense Matrices

(m,n) = (7,7)
(p,q) = (2,3)
(mb,nb) = (2,2)

Friday, August 24, 2012

What We Observe in DOE Apps -that they are Not Usually Dominated by FLOPs

Application 1 2 3 4 5 6 7 8

Instructions
Retired

1.99E+15 8.69E+17 1.86E+19 2.45E+18 1.24E+16 7.26E+16 8.29E+18 2.67E+18

Floating Point
Ops

3.52E+11 1.27E+15 1.95E+18 2.28E+18 6.16E+15 4.15E+15 3.27E+17 1.44E+18

INS / FP_OP 5.64E+03 6.84E+02 9.56 1.08 2.02 17.5 25.3 1.85

REFERENCE FLOATING POINT INTENSE PROBLEM :: Dense Matrix Matrix Multiplication
C <--- a A B + b C :: OPERATIONAL COMPLEXITY : A[m,n] , B[n,p] , C[m,p] :: [8mpn + 13mp] FLOP
E.g. m=n=p=1024 ---> 8603566080 FLOP , measure 8639217664

!"

!##"

!####"

!######"

!########"

!$%!#"

!$%!&"

!$%!'"

!#&'" &#'(" '#)*" (+!)$%#," !+*'$%#'"

!"

#"

$%&"'%()*+,"-.,+/0"123456,77"

!-."/01"

!2."32452"

*-."/01"

*-."32452"

(-."/01"

(-."32452"
!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(!$%" $!%'" %!)&" '#()*+!," (#&%*+!%"

!"
#
$%
&'
()
*
#
$!
+!
,-
.
/
-
!!

0!

12#345!0*65!789:35;;79!

("-./0122"

&"-./012212"

'"-./012212"

Friday, August 24, 2012

Memory Wall Always There ...

y = α x + y :
3 loads, 1 store
(more expensive than FP_OPs by a long shot)
2 floating point operations (maybe 1) on 3 operands

eg, double precision on the FY10 target platform:
(3 operands / 2 flop) * (8 bytes / operand) * 6 core * 4 (flop / cyc /core) * 2.6e9(cyc/sec) ~125 GBps

... We don’t have this and to get it is $$$... how to achieve Sustainability??

BLAS 1: O(n) operations on O(n) operands
BLAS 2: O(n**2) operations on O(n**2) operands
BLAS 3: O(n**3) operations on O(n**2) operands

Computation: Theoretical peak: (# cpu cores) * (flops / cycle / core) * (cycles / second)

Memory: Theoretical peak: (bus width) * (bus speed)

Friday, August 24, 2012

•build a picture of how threads use memory
-locality, latency, bandwidth, coherency, cache contention

•understand program, execution / use of programming model
-delay error norms in iterative convergence, precompute interpolation / derivative
coefficients, discretization representations (ie improved unit cells, exploiting spatial homogeneties)

-concurrency, balanced distributed parallelism, communication (blocking send
receive pairs, barrier removal, collectives), control flow dependencies (mutex,
semaphore, synchronizations) and i/o issues

Basic Optimizations (repeated themes: concurrency, atomicity, and bandwidth)

temporal locality
when a referenced resource is referenced
again sometime in the near future

spatial locality
the chance of referencing a resource is
higher if a resource near it was just
referenced

Sample of Cache Discovery Test Results

cache test

1024
4096

16384
65536

262144
1.04858e+06

4.1943e+06
1.67772e+07

6.71089e+07
2.68435e+08

Size(B)

1
32

1024
32768

1.04858e+06
3.35544e+07

1.07374e+09

Stride(B)

20
40
60
80

100
120
140
160
180
200
220

Time(ns): r+w

Friday, August 24, 2012

Cache Coherency:

write-through, if cache line is written to, the processor also writes to main memory (at all
times cache and memory are in synche)

write-back, cache line is marked dirty, write back is delayed to when cache line is being
evicted

>1 processor core is active (say in SMP) -all processors still have to see the same memory
content; have to exchange CL when needed -includes the MC

write-combining (ie on graphics cards)

set-associative dereferencing (the larger the set and CL, the fewer the misses):
tag and data in sets -a set maps to the address of the cache line, a small number of values is cached for
the same set value ; the tags for all such sets are compared in parallel
ie 8 sets for L1 and 24 associativity levels for L2 are common;
for 4MB/64B and 8 way set-associativity then 8192 sets (requires 13bit address tag) ; to find if the
address is in cache only 8 tags have to be compared!

Friday, August 24, 2012

X

X

X

X

X

X

X

X

X

X

X

X

X

no NUMA, 6 PEs/socket

NUMA + memory affinity

Use of threads means coping with complicated issues

• cache contention, coherency
• memory bandwidth
• scheduling

make the FSB faster with increasing core count

Modified, local processor has
only copy of data and modifies it
Exclusive, CL is not modified
and not in another coreʼs cache
Shared, CL not modified -might
be in cache somewhere
Invalid, CL is invalid -not used

fork (create) / join overheads

*other processor’s activities are snooped on the address bus

Friday, August 24, 2012

• non-temporal writes, ie don’t cache the data writes since it won’t be used again
soon (i.e. n-tuple initialization)

• avoids reading cache line before write, avoids wasteful occupation of cache line and
time for write (memset()); does not evict useful data
• sfence() compiler set barriers

• loop unrolling , transposing matrices
• vectorization, 2,4,8 elements computed at the same time (SIMD) w/ multi-media
extensions to ISA
• reordering elements so that elements that are used together are stored together -pack
CL gaps w/ usable data (i.e. try to access structure elements in the order they are defined in
the structure)
• stack alignment, as the compiler generates code it actively aligns the stack inserting
gaps where needed ... is not necessarily optimal -if statically defined arrays, there are tools
that can improve the alignment; separating n-tuples may increase code complexity but
improve performance
• function inlining, may enable compiler or hand -tuned instruction pipeline optimization
(ie dead code elimination or value range propagation) ; especially true if a function is called
only once
• prefetching, hardware, tries to predict cache misses -with 4K page sizes this is a hard
problem and costly penalty if not well predicted; software (void _mm_prefetch(void *p,
enum _mm_hint h) --_MM_HINT_NTA -when data is evicted from L1d -don’t write it to
higher levels)

base /
node
focus

Basic Optimizations (repeated themes: concurrency, atomicity, and bandwidth)

Friday, August 24, 2012

•reduce synchronization overheads in parallel loops
•improve data locality

source: K. Kennedy, Rice

Friday, August 24, 2012

Going Beyond Instruction Level //ism to Loop Level

Optimally Maximizing Iteration-Level Loop Parallelism, D. Liu et al., IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012

before, minimum
nonzero edge weight = 1

after, minimum nonzero
edge weight = 2

Friday, August 24, 2012

 if (ip % 2)

 { /* BLOCKING */

 MPI_Send(sbf , n , MPI_DOUBLE , ngh[0] , itag , MPI_COMM_WORLD) ; /* send to left */

 MPI_Recv(rbf , n , MPI_DOUBLE , ngh[1] , itag , MPI_COMM_WORLD , &mpi_st) ; /* receive from right */

 MPI_Send(sbf + n , n , MPI_DOUBLE , ngh[1] , itag , MPI_COMM_WORLD) ; /* send to right */

 MPI_Recv(rbf + n , n , MPI_DOUBLE , ngh[0] , itag , MPI_COMM_WORLD , &mpi_st) ; /* receive from left */

 }

 else

 {

 MPI_Recv(rbf , n , MPI_DOUBLE , ngh[1] , itag , MPI_COMM_WORLD , &mpi_st) ; /* receive from right */

 MPI_Send(sbf , n , MPI_DOUBLE , ngh[0] , itag , MPI_COMM_WORLD) ; /* send to left */

 MPI_Recv(rbf + n , n , MPI_DOUBLE , ngh[0] , itag , MPI_COMM_WORLD , &mpi_st) ; /* receive from left */

 MPI_Send(sbf + n , n , MPI_DOUBLE , ngh[1] , itag , MPI_COMM_WORLD) ; /* send to right */

 }

 { /* ASYNCHRONOUS */

 MPI_Isend(sbf , n , MPI_DOUBLE , ngh[0] , itag , MPI_COMM_WORLD , r) ; /* send to the left */

 MPI_Isend(sbf + n , n , MPI_DOUBLE , ngh[1] , itag , MPI_COMM_WORLD , r + 1) ; /* send to the right */

 MPI_Irecv(rbf , n , MPI_DOUBLE, ngh[1] , itag , MPI_COMM_WORLD , r + 2) ; /* receive from the right */

 MPI_Irecv(rbf + n , n , MPI_DOUBLE , ngh[0] , itag , MPI_COMM_WORLD , r + 3) ; /* receive from the left */

 MPI_Waitall(4 , r , _st) ;

 }

Blocking

Non-Blocking

nn exchanges > 2X performance gain, same results!

Unblock Communications if Possible

Friday, August 24, 2012

Exploit Multi-core Hybrid Programming Model

-lsize=16 MPI LWP DRAM
aprun -n <1-16> 1 - 16 1 2 * 2^30

aprun -n 2 -sn 2 -S 1 -d 8 2 1 - 8 16 * 2^30

aprun -n 1 -N 1 -d 16 1 1 - 16 32 * 2^30

•MPI processes spawn lightweight processes

•OpenMP threads, #include <omp.h> , omp_set_num_threads();

•POSIX threads, #include <pthread.h> , pthread_create();

•CUDA, kernel execution

<-S> * <-d> cannot exceed the maximum number of CPUs per NUMA node

Lennard-Jones (12,6)

64 128

1 node, 6 (of 8) PEs

8 16

Friday, August 24, 2012

OSIRIS: Laser Wakefields (detailed example from FY11 DOE ASCR OMB software

metric study)

On the left is an electron beam (white)
moving from right to left.
It forms a wakefield (density of plasma
is shown. A lineout of the accelerating
field is shown in black. A trailing bunch
is shown in white in the back of
the wakefield. On the right a laser
(orange) is moving from right to left. It
also creates a wakefield. The wakefield
in both cases is a moving bubble of a
radius R. A trailing beam is shown in
white as well.

• short and intense laser or relativistic particle beams propagate
through a plasma near the speed of light

• light pressure of the laser or the space charge forces from the
particle beam displaces plasma electrons

• the ions pull the electrons back towards where they started creating
a plasma wave wake with a phase velocity near the speed of light

• accelerating (electric) fields in these wakes are more than 1000 times
higher than those in existing accelerators.

• properly shaped and phased electrons or positron beams (witness
beams) are loaded onto the wake and they surf to ultra-high energies
in very short distances.

• Experiments using a laser driver have demonstrated the
feasibility of generating GeV class quasi-monoenergetic beams

How does a short and intense driver evolve over large distances?
How is the wake excited and how does it evolve?
How do the properties of the witness beams evolve as they are accelerated?

Friday, August 24, 2012

OSIRIS:
The fields within the wake structure demand a full electromagnetic treatment is needed.

The leading kinetic description is the particle-in-cell (PIC) method.

•deposit some particle quantity, such as a charge, is accumulated on a
grid via interpolation to produce a source density. Various other
quantities can also be deposited, such as current densities

•field solver, which solves Maxwells equations or a subset to obtain the
electric and/or magnetic fields from the source densities

•particle forces are found by interpolation from the grid, and the
particle coordinates are updated, using Newtons second law and the
Lorentz force. The particle processing parts dominate over the field
solving parts

Balancing the particle load is hard problem!

Friday, August 24, 2012

•need a method to effectively connect grid and particles quantities to determine the force acting on
the particle.

•field interpolation calculations require knowledge of the grid point index closest to the particle
position, and the distance between the particle and the grid point, normalized to the cell size.

•OSIRIS implements 1st to 4th order interpolation schemes (linear, quadratic, cubic and quartic
splines)

OSIRIS:

Friday, August 24, 2012

OSIRIS: Problems

Laser Wakefield scenarios
•(2,3) interaction of a 200 TW (6 Joule) laser interacting with
uniform plasma with a density of 1.5e18 cm^-3
•plasma with an intensity sufficient to trigger self-injection,
under different numerical and physical conditions.
•different grid resolutions, different number of particles per
cell, and mobile/immobile ions.

•(4) a PW (30J) laser propagating in a .5e 18 cm^-3 plasma
where ion motion is expected to play an important role

Uniform Plasma
•(1) warm plasma with a temperature distribution
parameter of u_thermal = 0.01c
• a perfectly load balanced simulation
• particle diffusion across parallel nodes happens
uniformly so the total number of particles per node
remains approximately constant.
• good performance test as these plasma
conditions
• resemble those on most of the simulation box for
the laser wakefield runs.

*quadratic shaped particles for the current
deposition and field interpolation for all the
simulations

Friday, August 24, 2012

particles:
 i) load 4 particles into the vector unit
ii) interpolate the EM fields for these 4 particles
iii) push the 4 particles
iv) create up to 4 × 4 virtual particles for current
deposition
v) store the 4 particles back to main memory.

SIMD Optimizations and SSE Implementation
• 90 / 10 rule - advancing particles and deposting the current

• optimized the use of memory and L2 cache for vector version

• store individual components in separate sequential arrays
-one for x, one for y and one for z

• make use of vector shuffle operation to efficiently exchange parts of the vector registers:
i) we read 3 vectors (12 positions) sequentially
ii) shuffle them to get a vector of 4 x positions,
one vector of 4 y positions, one vector of 4 z positions

• 4 × 3 transpose is done in the registers and is very efficient (10 cycles overhead)
-enables efficient use of vector memory read operations

•storing the particles back to memory, the opposite operation is performed

virtual particles:
i) load 4 virtual particles into the vector unit
ii) calculate the current contribution for the 4 virtual
particles
iii) accumulate this current in the global electric
current grid

OSIRIS: Enhancements

Friday, August 24, 2012

t = 0 t’ > 0

node boundary

OSIRIS: Other Enhancements
Dynamic Load balancing
• 30% improvement in imbalance, but a 5% drop in overall performance

i) determine best partition from current load
ii) redistribute boundaries

SMP version of major distributed kernels
• the volume handled by each group of cores is much larger,
• the probability for significant load imbalance will be lower

• particle pusher, the field solver, current smoother, boundary processing of particles / fields and particle sorting.

• fairly simple since routines generally consist of an external loop that can be easily split among threads

• reduced the total node communication volume
• threads per MPI process must match the number of cores per cpu -or less

0

75

150

225

300

1 2 3 6 12

Si
m

ula
tio

n
Tim

e [
s]

Threads / MPI process

Other
update emf boundary
field solver
current smooth
update current boundary
advance deposit
update particle boundary
particle sort, gen. idx
particle sort, rearrange particles
reduce current

x 3
[c

/ ω
p]

1000

800

600

400

200

0
x1 [c / ω p]

28002600240022002000

Time = 1999.94 [1 / ω 0]

n e
 [e

 ω
p3 / c

3]

0.010

0.008

0.006

0.004

0.002

0.000

Friday, August 24, 2012

Baseline

New Partition

SMP

Vector / Other

0 2 4 6 8

7.03

3.47

1.91

1.00

LWFA-01 Speedup

Normalized Performance

 1.91

 1.82

 2.02

OSIRIS : Particle Injection in Laser Wakefield

Friday, August 24, 2012

Warm.3d

LWFA - 01

LWFA - 02

LWFA - 03

0 50 100 150 200

8.85

3.72

4.22

76.20

61.2

27.4

29.7

179.9

55k Partition

Performance [G Particle / s]

717 2.4

Q4
Q2

OSIRIS : Particle Injection in Laser Wakefield

Friday, August 24, 2012

OSIRIS : Particle Injection in Laser Wakefield

Frozen (s1)

Frozen (s2)

Warm.3d strong

Warm.3d weak

LWFA - 01 - strong

0 500 1000 1500

71

741

720

784

1464

Algorithm Performance

Performance [G Particle / s]

 9.45

 9.73

 16.80

221K

Friday, August 24, 2012

f(E
) [

a.
u.

]

1.0

0.8

0.6

0.4

0.2

0.0

E [GeV]
1.31.21.11.0

Time = 15.30 [ps]
Energy Distribution

Comparison of the energy spectra of the beam in the first bucket for the runs.

•Charge (the linear particle shape run has 25% less charge)
and the emittance are significantly reduced in the higher
resolution (Q4) run.

•The high resolution run has 50% lower RMS value for the
two transverse planes.

•This improvement in emittance is very important for
both collider and light source applications.

Black is 2ppc linear
Green is 2ppc quadratic
Blue is 8ppc quadratic
Red is Q4 high resolution

OSIRIS : Particle Injection in Laser Wakefield

x 2
[µ

m
]

140

120

100

80

60

40

20

x1 [µm]
51805160514051205100

Time = 17.00 [ps]
Charge Density Slice

n
[e

 cm
-3
]

5.0 1018

4.0 1018

3.0 1018

2.0 1018

1.0 1018

0

A 2D slice of the electron density showing the electrons
injected into the first two buckets.

Friday, August 24, 2012

•At $1M per MW, energy costs are substantial

•1 Pf in 2010 ~ 3 MW

•1 Ef in 2018 at 200 MW with “usual” scaling

ASCR

Business As Usual

Year

•Power constraints using current technology are
unaffordable
• 20 Pf Sequoia requires ~ 10MW to operate
• 1Ef requires ~500MW with current technologies

1 Exaflop in 20?? at 20 MW is target!

NNSA

Friday, August 24, 2012

Exascale Table -guess work?

Delivery Date 2020-2022
Performance 1000 PF LINPACK, 300 PF on codesign applications
Power Consumption 20 MW (not including cooling)
MTBAI 6 days (mean time between application interruptions)
Memory including NVRAM 128 PB

Friday, August 24, 2012

M

M

M

Lp

LR

accept

reject

• construct A, b given dim(A) dim(A)=dim(rank(1,A))=dim(rank(2,A))

• compute A=LU, solve Ly=b for y, solve Ux=y for x

• compute |A|inf , compute |x|2 , compute |b-Ax|2 ,
approximate ε (machine precision),
form κ= |b-Ax|2 / (|A|inf * |x|2 * ε) ;
if κ ~ O(dim(A)) accept x, else reject x

Extended Scope of Application Software Problems

Q: How do the language of the problem and the accepted result relate to reality?
Requires analysis beyond software analysis above and distinguishes computational
science from system and library software development. Takes more time -needs
refinement phase of algorithms and metrics.

Metric: the distance between two points in some topological space

Example Problem: solving algebraically determined systems of linear equations
numerically (Linpack TOP500, FLOPs)

Ex2: BFS(Graph500,TEPS)

Friday, August 24, 2012

Challenge: detecting, mitigating, recovering from failures

• fail / continue
• hard / soft faults

• resiliency must go
beyond check point /
restart

•algorithm based
fault tolerance

have to
go beyond

single
failure

Friday, August 24, 2012

Challenge: quantify the data related costs on and across nodes

-refine performance measures for data movement and access costs as these dominate
over floating point costs

• bandwidth, the number of cycles a core waits because the bus is not ready; as the measure gets large, it
indicates that the bus is in high demand and loads or stores involving main memory will take longer

-provides means to reason about performance costs versus (bisection) bandwidth scaling (i.e. increased node
counts)

• locality, the ratio of the peak versus measured capacity of each memory level (on/off chip) divided by access
time in cycles

•i.e. consider ratio of gather and scatter costs in loops (A. Snavely, exascale planning meeting)

ref. ASCR exascale mtg

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T
im

e
 [

s
]

Dimension

CUDA BLAS (cublas) Square Matrix Multiplication
 TitanDev (AMD Interlagos + NVIDIA Fermi)

CUDA
zgemm_

CUDA [fp_op/s]
zgemm_ [fp_op/s]

pzgemm_

Friday, August 24, 2012

ref. ASCR exascale mtg

Friday, August 24, 2012

Need extensions that relate performance to power; lead to novel optimization ideas

-extension of existing metrics to reason about power and performance tradeoffs, energy driven
optimizations (i.e. DVFS)

-number of floating point operations per Watt (floating point dominated)
-cost of loads or stores in bytes per Watt (data ops dominated)

-metric guided optimizations to simultaneously minimize power consumption and time to
solution (IBM Zurich study)

-computational cost ~ f(time to solution) * energy
-f constant, cost per execution event in Joules
-f linear, cost provides insight about appropriateness of hardware platform for application

-demand tools for power measurements
-memory (29%), network (29%), floating point unit (16%)) (distribution of power in HPC hardware (Kogge))

ref. ASCR exascale mtg

-relate cycle costs in memory refs to
energy in Joules

Friday, August 24, 2012

Reduced latency – With vastly more responders built into HMC, we expect lower queue delays and higher bank
availability, which can provide a substantial system latency reduction, which is especially attractive in network system
architectures.
Increased bandwidth — A single HMC can provide more than 15x the performance of a DDR3 module. Speed is
increased by the very fast, innovative interface, unlike the slower parallel interface used in current DRAM modules.
Power reductions — HMC is exponentially more efficient than current memory, using 70% less energy per bit than DDR3.
Smaller physical systems — HMCʼs stacked architecture uses nearly 90% less space than todayʼs RDIMMs.
Pliable to multiple platforms — Logic-layer flexibility allows HMC to be tailored to multiple platforms and applications.

• Current DRAM roadmap will not enable achieving
exascale systems with anything like the expected needs
and goals

Micron
Hybrid Memory Cube

Friday, August 24, 2012

REQUIREMENTS

Scale
100,000 –1,000,000 nodes

Node Bandwidth
10 GB/s –2000 GB/s
Very application dependent

Power efficiency
Particularly important for HPC

Latency
Critical for HPC systems

CHALLENGES

Interconnect density
Chip edge, board edge, enclosure

Low Network Diameter
Benefits latency, power and reliability
Requires high radix switches

Cabling complexity
Particularly with low diameter networks

POWER CHALLENGE
Total BW = Nodes x BW x hops x bit
= 100,000 x 2000 x 4 x 8
= 6.4 Exabits / s
Power = 30MW
4.7pJ/bit available entire power budget for
interconnect!

Exascale System Networks

Friday, August 24, 2012

Challenge Tools to Pinpoint Performance and Numerical Errors, Drive Science Based
Feature Extraction in Massive, Complex Data Sets

Machine Events Are Useful But Cannot Tell Whole Story

This problem completed execution successfully
from the application software perspective.

There is a clear problem in the performance.

ts=3790 ts=3920

edges

ts=3930

ts=3930

Friday, August 24, 2012

Challenge accurate, scalable tools at thread level

1 PE, 4 nt / PE
Group / Function / Thread (max)
===========================
Total

Time% 100.0%
Time 12.213947 secs

TOT_INS
1037.779M/sec
10063040357 instr

FP_INS
222.330M/sec
2155872263 ops

TOT_CYC
9.697 secs
21332826724 cycles

User time (approx) 100.0% Time
12.214 secs
26870760748 cycles

(2154299392)

THY

Friday, August 24, 2012

Challenge accurate, scalable memory tools

i.e. detect memory leaks
•probe allocation points in calling
context trees

•intercept every allocate and free

•mark the memory with the call
path in which it was allocated,
match the free back to the
allocation point

•what about programs that are killed
by the O/S or othe faults?

•need to log data prior to
allocation to detect when a
process is killed from external
force

Friday, August 24, 2012

Challenge algorithms that Improve {ins,flop(s)} / byte (and donʼt
compromise accuracy or performance)

•J.J.M. Cuppen, A Divide and Conquer Method for the Symmetric Tridiagonal Eigenproblem, Numer. Math. 36,
177-195 (1981)
•F. Tisseur and J.J. Dongarra, Parallelizing the Divide and Conquer Algorithm for the Symmetric Tridiagonal
Eigenvalue Problem on Distributed Memory Architectures, lawn132 (1998)

Friday, August 24, 2012

Challenge algorithms that improve I/O operations for applications

Parameters set in the file system related to
but independent from the problem parameters:

• Number of OSTs
1, 2, 4, 8, 16, 32

• Stripe size in BYTEs
1 MB, 2 MB, 4MB, 8 MB, 16 MB

• access pattern (round robin)
• Number of I/O PEs for spatial decomposition

kio ~ 1, 2, 3, 4, 6, 8
• Total number of I/O PEs is kio * nfld

since nfld =151, 151, 302, 453, 604, 906, 1208

Friday, August 24, 2012

0 -rw-r--r-- 1 roche roche 1608 2010-06-21 21:03 fortran-dat.bn
0 -rw------- 1 roche roche 1600 2010-06-21 21:03 c-data.dat

Aside on FILEs and IO

Fortran
•sequence of records
•open,write,read,close
•IOLENGTH , RECL

ANSI C
•stream of BYTEs
•points to a FILE structure
•fopen,fwrite,fread,fclose

typedef struct {
 int level; /* fill/empty level of buffer */
 unsigned flags; /* File status flags */
 char fd; /* File descriptor */
 unsigned char hold; /* Ungetc char if no buffer */
 int bsize; /* Buffer size */
 unsigned char *buffer; /* Data transfer buffer */
 unsigned char *curp; /* Current active pointer */
 unsigned istemp; /* Temporary file indicator */
 short token; /* Used for validity checking */
} FILE;

void f_copn_ (char * ffn , int * ffd , int * len) ;

void f_ccls_ (int * ffd) ;

void f_crm_ (char * ffn , int * len) ;

void f_cwr_ (int * ffd , void * fbf , int * fsz , int * nobj , int * ierr) ;

void f_crd_ (int * ffd , void * fbf , int * fsz , int * nobj , int * ierr) ;

fn = '/tmp/work/roche/mpt-omp/ben.txt'//
CHAR(0)

call f_copn (fn , fd , LEN(fn))

call f_cwr (fd , a , 16 , ndim , ierr)

call f_ccls (fd)

call f_copn (fn , fd , LEN(fn))

call f_crd (fd , a_bk , 16 , ndim , ierr)

call f_ccls (fd)

call f_crm (fn , LEN(fn))

Friday, August 24, 2012

Aside on FILEs and IO (2)

POSIX (UNIX)
•stream of BYTES
•file descriptors
 -index into file descriptor table
 -kept in user process
 -points to entry in system in-memory
inode table
•open,write,read,close, ioctl

Spider (Lustre) :

•MDS, file names and directories in the filesystem, file open, close, state mgt

•OSS, provides file service, and network request handling for set of OSTs

•OST, stores chunks of files as data objects -may be stripped across one or more OSTs
-Spider has 672 OSTs
-7 TB per OST
-1 MB Default stripe size
-4 Default OST count

Friday, August 24, 2012

Aside on FILEs and IO (3)

module load liblut ; -LUT

lut__open() ;

lut__close() ;

lut_putl() ;

pwrite() ;

pread() ;

•form modulo classes from MPI communicator
over the number of I/O groups

•for both proton and neutron communicators in
 nuclear case (44 for protons, 44 for neutrons)

•fit the stripe size to the largest single data item
if possible

•eg for nuclear code and 32^3 lattice, a single 4-component
term is 4 * 32^3 * 16 / 2^20 = 2MB

•set the stripe pattern (I use round-robin) and
number of target OSTs (I use 88 in nuc code) for
target PATH / FILE

•eg lfs setstripe /tmp/work/roche/kio -s 2m -i -1 -c 88

Performance: POSIX ~ [225,350]MBps , use of Lustre ~ [2,25]GBps

Friday, August 24, 2012

Aside on FILEs and IO (4) - Search Approach
• introduced set of parallel I/O processes within the MPI group

• (was) gather to single process, followed by sequential write / wait phase within a loop over fields
(1 PE writes, nPEs - 1 PEs wait) x nFIELDS iterations

• (is) loop over (disjoint target) gathers to a set of designated IO PEs; after gather phase then
(nIOPEs write in parallel, nPEs - nIOPEs wait) x 1 since nIOPEs > nFIELDS (8 (3D fields / day) × 42
(k-values / fields) × 1 (PE / k-value) = 336 IOPEs / day; 19 IOPEs / day for 2D fields)

• use of lut_putl() library function explicitly invoking LUSTRE file system semantics

• oracle code to search for preferred LUSTRE parameters: number of OSTs, stripe size, number of
writers

• similar enhancements for 2D fields; movies require an additional index transformation which is done
locally by the IO PE prior to writing (block cyclic to natural column major)

 memcpy((void *) fnbf , (const void *) ffn , (size_t) *len) ;

 for (iniopes = 0 ; iniopes < 6 ; iniopes++)

 for (iscnt = 0 ; iscnt < 7 ; iscnt++)

 for (istrp = 0 ; istrp < 6 ; istrp++)

 {

 sprintf(fn , "%s/lpop-io%d-sc%d-str%d" , fnbf , iniopes , iscnt , istrp) ;

 b_t() ; /* start running internal clock */

 wr_lstr_orcl(fn , com , ndays , ndddfld , nddfld , ni , nj , nk , strp[istrp] , scnt[iscnt] , niopes[iniopes] , dbf , dbf_) ;

 rt = e_t(0) ;

 if (ip == 0)

 printf("case: T[%f] ISTRP[%d] SCNT[%d] IOPEs[%d]\n" , rt , strp[istrp] , (int) scnt[iscnt] , niopes[iniopes]) ;

Friday, August 24, 2012

Q2

Q4,e

Q4,s

Efficiency:

Strong
Scaling:

POP

Friday, August 24, 2012

• advanced computer architectures

• programming models, languages, and compilers

• execution models, operating, runtime, and file systems

• performance and productivity tools

• data management and data analytics, visual analysis

Computer Science in DOE

any surprises / omissions?

Friday, August 24, 2012

ASCR Exascale Funding Trends

Uncertainty 
Quan-fica-on 
6 funded at $3M/yr

X‐Stack 
11 funded at $8.5M/yr

Advanced 
Architectures
6 funded at $5M/yr

Scien-fic Data 
Management and 
Analysis at Extreme 
Scale 
10 (11?) projects 
funded at $5M/yr

Friday, August 24, 2012

advanced computer architectures

•the energy costs of moving data both on-chip and off-chip

•keeping the current technology roadmaps, memory per
processor is expected to fall dramatically

•locality of data and computation renders flat cache
hierarchies not useful

•energy-efficient on-chip and off-chip communication
fabrics and synchronization mechanisms. Chief among
these concerns is the power consumed by memory
technology

Friday, August 24, 2012

programming models, languages, and compilers

•program up to a billion heterogeneous cores systems

•novel architectures /10 billion-way concurrency

•concurrency and locality

•includes development environments, frameworks, and
debugging tools

•programming languages and environments

Friday, August 24, 2012

1) System power ‐primary constraint

2) Memory bandwidth and capacity are not keeping pace

3) Concurrency 1000X increase in‐node

4) Processor open quesGon

5) Programming model compilers will not hide this

6) Algorithms need to minimize data movement, not flops

7) I/O bandwidth unlikely to keep pace with machine speed 

8) Reliability and resiliency will be criGcal at this scale

9) Bisec-on bandwidth limited by cost and energy

Performance is Limited by ...

Friday, August 24, 2012

Power efficiency, 
Reliability, 
Programmability 

Bottom Line Challenges of
Exascale Computing

Friday, August 24, 2012

