Lecture 5: Dealing with Data

Bálint Joó Scientific Computing Group Jefferson Lab

Thomas Jefferson National Accelerator Facility

Introduction

- I will discuss the following topics:
 - Equilibration / Thermalization / Setup cuts
 - Getting at errors with resampling methods
 - Jackknife
 - Bootstrap
 - Autocorrelations
 - Blocking
 - Basic Minimum χ^2 Fitting
 - Use fitting code as a 'black box'

Let's get some data

- We'll work with seattle_tut/example4
- In this example, I have packaged up some real data for you from our current production on the ORNL Cray.
 - Anisotropic Lattice, Tadpole improved Luescher-Weisz gauge action, 3 flavours of Wilson-Clover Fermions, generated with an RHMC algorithm.
 - Plaquette data
 - Data for the lowest/highest eigenvalues of the Preconditioned Fermion matrix used in the production.
 - Some spectroscopy data from a 3 flavor clover run on a small lattice (12³x128)

Let's look at the plaquette first

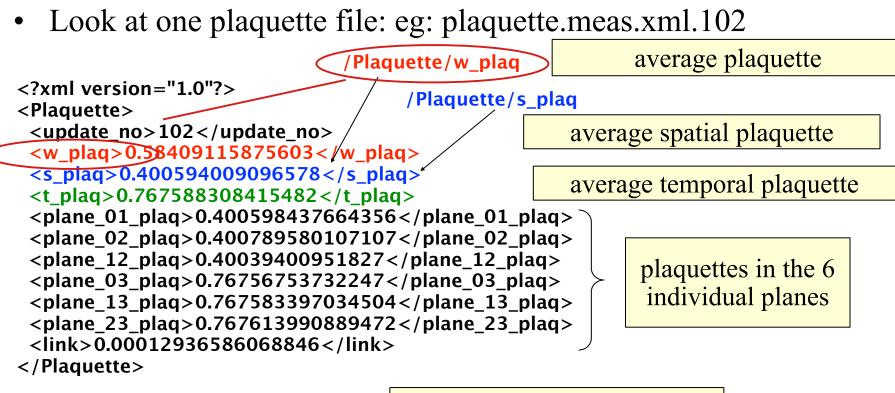
- in the example4 directory look in Data/Raw
 - copy the plaquette data to a temporary work directory
- \$ mkdir work
- \$ cd work
- \$ cp ../Data/Raw/sztcl3_b2p00_x3p500_um0p054673_n1p0_plaquette_11-1160.tar.gz .
 - unzip the tarfile

gunzip sztcl3_b2p00_x3p500_um0p054673_n1p0_plaquette_11-1160.tar.gz tar xvf sztcl3_b2p00_x3p500_um0p054673_n1p0_plaquette_11-1160.tar

you should end up with a bunch of small files- one per RHMC traj.

\$ 1s
plaquette.meas.xml.100
plaquette.meas.xml.1000
plaquette.meas.xml.1001
...

Looking at one file



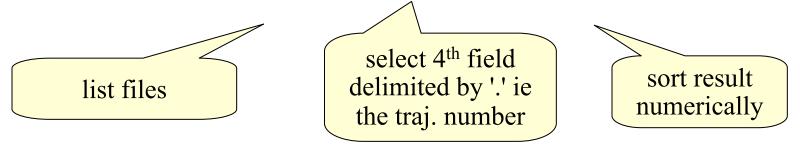
The average link trace

Xpath expressions: /Plaquette/w_plaq identify nodes.

Thomas Jefferson National Accelerator Facility

Data Extraction

- We need to get our desired measurement out of all the files and ordered by update number. One way, is to just use bash and some UNIX tools:
- ls -1 plaquette.meas.xml.* | cut -f4 -d'.' | sort -n > trajs



- At this point the file 'trajs' should contain the list of trajectories in sorted numerical order.
- Next step: extracting the plaquettes

Using print_xpath

- With QDP++ we bundle a utility called print_xpath
 - /.../qdp++-scalar/bin/print_xpath
 - Make sure this bin/ directory is on your \$PATH
- which can be used to extract data from XML files using Xpath expressions.
- let us extract the w_plaq measurement
 - Xpath: /Plaquette/w_plaq
 - Using a bash 'for' loop (foreach for tcsh I think)

```
for x in `cat trajs`; do \setminus
```

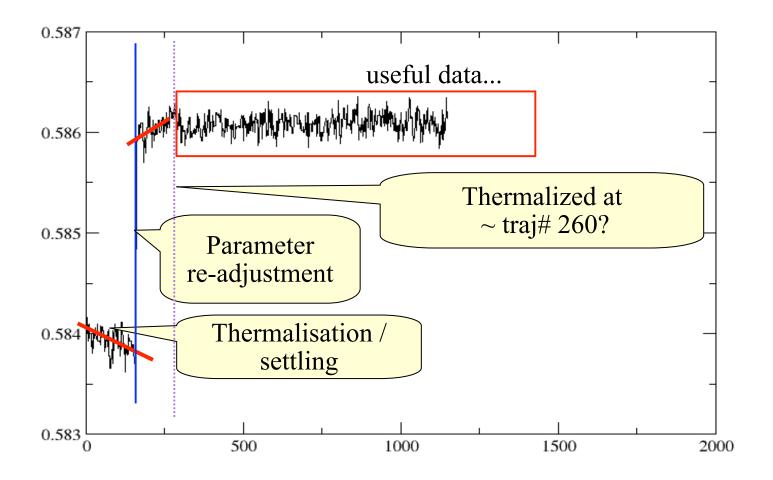
```
plaq=`print_xpath plaquette.meas.xml.$x /Plaquette/w_plaq` ; \
```

```
echo x ; \
```

done > w_plaq.dat

• The file 'plaquettes' now contains <traj#> <plaquette> pairs

Let's look at the time history...



Thomas Jefferson National Accelerator Facility

Friday, August 24, 2012

Jefferson Lab

Key points:

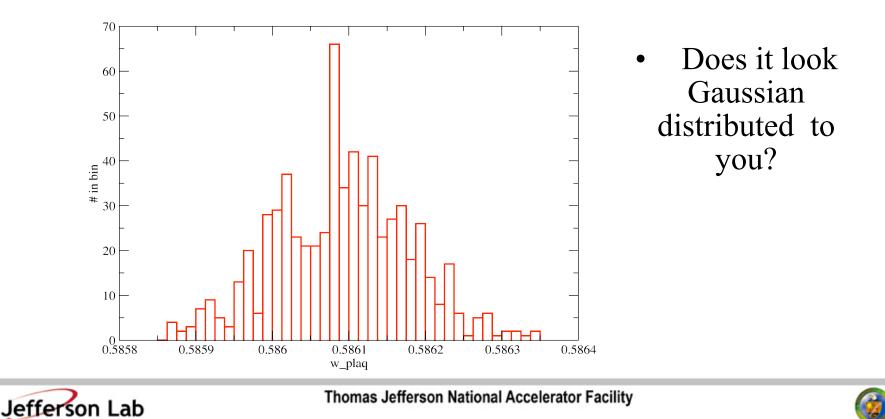
- HMC has a 'settling' (equilibration) time
 - also one frequently 'tunes' the run at the outset
 - data from this phase ought to be discarded
- How much to discard?
 - formally: 1 or 2 x the exponential autocorrelation time
 - defined as the longest autocorrelation time in the system
 - in practice, one looks at time histories for some observables
 - preferably long range ones (ie not plaquette)
 - lowest eigenvalue of fermion matrix
 - large timeslice value of a meson

Exercise: the lowest eigenvalue

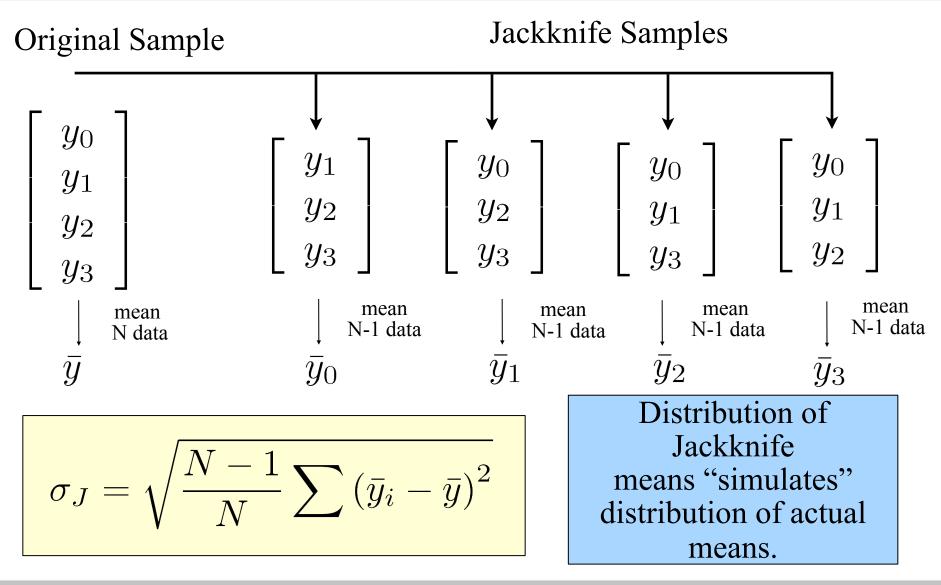
- In the Data/Raw directory we have some data about the lowest and highest eigenvalues of the squared preconditioned operator used in our RHMC in the file:
 - sztcl3_b2p00_x3p500_um0p054673_n1p0_eigen_mdagm_15-1160.tar.gz
- extract the data from this file and plot the time history.
- NOTE: We measure this only every 5th trajectory.
- When does it look like it has thermalized?

Error Estimation

- We'll consider error estimation
 - For now, we'll assume that our data is 'independent'
 - We'll worry about autocorrelations a little later
 - Let us look at a histogram of the plaquette from traj# 500 :



Jackknife Erros



Thomas Jefferson National Accelerator Facility

Exercise: Quick and Dirty Jackknife

- Write a program to compute the jackknife error for a set of real numbers
 - You don't need QDP++ for this exercise
 - You may consider using the std::vector<> class from the C++ Standard Template Library – this is like multi1d<> in QDP++
 - See <u>http://www.cplusplus.com/reference/stl/vector/</u>
 - You may consider using C++ style I/O
 - An model answer is in
 - seattle_tut/example4/src/jack.cc

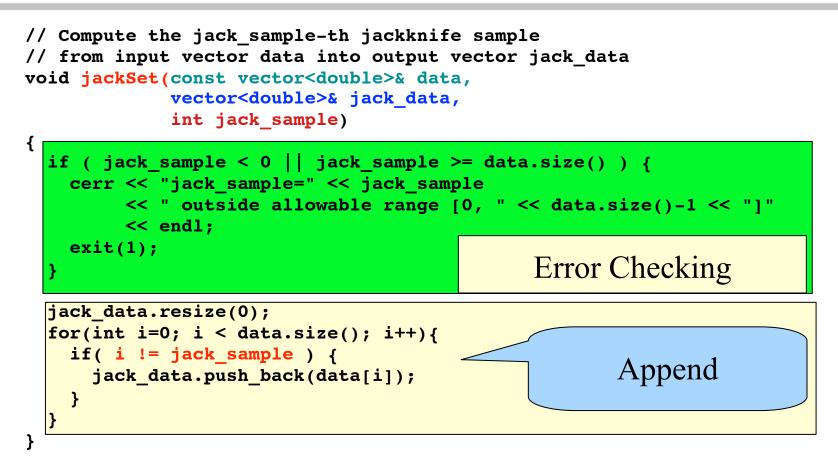
Computing the mean

• This is really easy, especially using the std::vector class to hold your data

```
// 'import' the vector class
#include <vector>
using namespace std;
// Compute the arithmetic mean of a vector of
// doubles
double mean(const vector<double>& data) {
   double sum=0;
   for(int i=0; i < data.size(); i++) {
      sum += data[i];
   }
   return sum / (double)(data.size());
}</pre>
```


Jefferson Lab

Creating a Jackknife Dataset.



Thomas Jefferson National Accelerator Facility

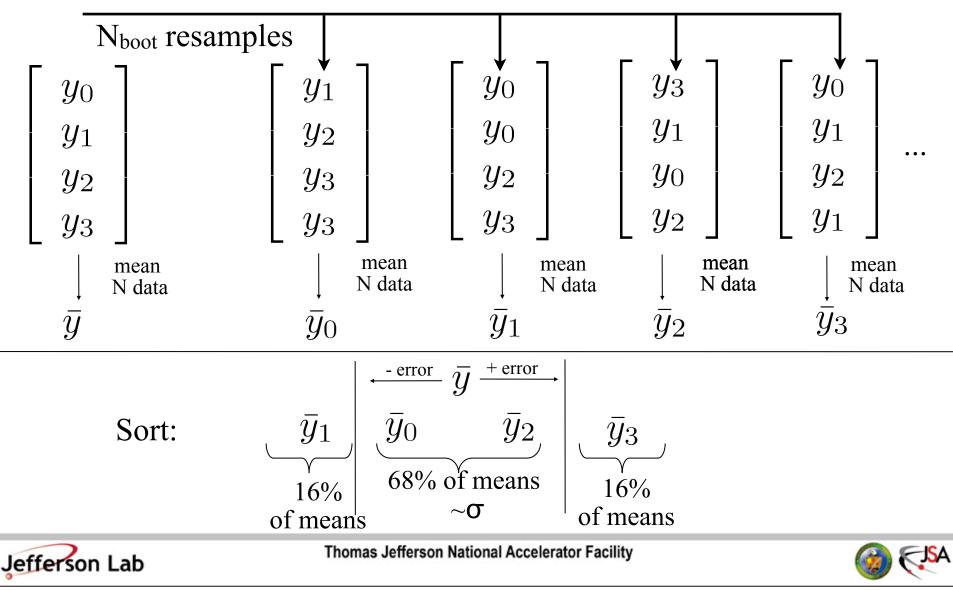
Computing the Jackknife error

```
// Compute the jackknife error
double jackErr(const vector<double>& data)
{
   double m = mean(data); // Get original mean
   double sumsq = 0; // Use this for variance: Sum ( jackMean - m)^2
   // Compute mean on each jackknife sample
   for(int i=0; i < data.size(); i++) {
     vector<double> jack_sample;
     jackSet(data, jack_sample, i); // Get i-th jackknife sample
     double jackMean = mean(jack_sample); // Compute ith jackknife mean
     sumsq += (jackMean - m)*(jackMean - m); // accumulate variance term
  }
  // Normalize variance
```

```
sumsq *= (double)(data.size()-1) / (double)data.size();
return sqrt(sumsq); // return square root of variance ie error
```


Bootstrap Errors

Original Sample Bootstrap Samples: Random picks w. repetition



Autocorrelations

- Data from Markov Chain Monte Carlo methods may well be affected by autocorrelations.
- Typically successive configurations are correlated

$$\sigma^2(\mathcal{O}) = (2\mathcal{A}_{\mathcal{O}} + 1) \sigma_n^2(\mathcal{O})$$

True Variance

Integrated autocorrelation time for the observable (=0 for independent data) naïve variance (ie the one we find if we assume are samples are independent)

Thomas Jefferson National Accelerator Facility

Autocorrelations

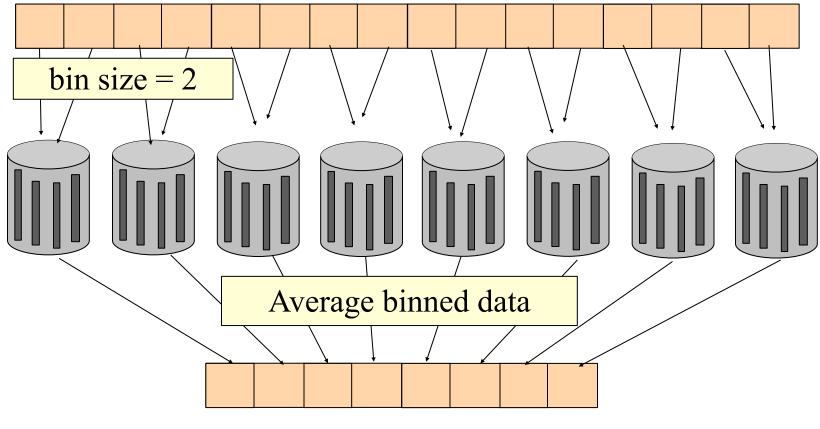
$$\mathcal{A} = \sum_{t=1}^{\infty} C(t)$$

$$C(t) = \frac{1}{\sigma^2} \langle (\mathcal{O}(|t| + t_0) - \langle \mathcal{O} \rangle) (\mathcal{O}(t_0) - \langle \mathcal{O} \rangle) \rangle_{t_0}$$

- Measuring Autocorrelations is hard because
 - The quantity C(t) is very noisy (an error on an error)
 - The convergence of the sum for \mathcal{A} depends on delicate cancellations in C(t).
- A pragmatic approach is to 'make' our data independent
 - Measure sufficiently infrequently AND/OR
 - Block (rebin) data

Binning Data

Original correlated data:



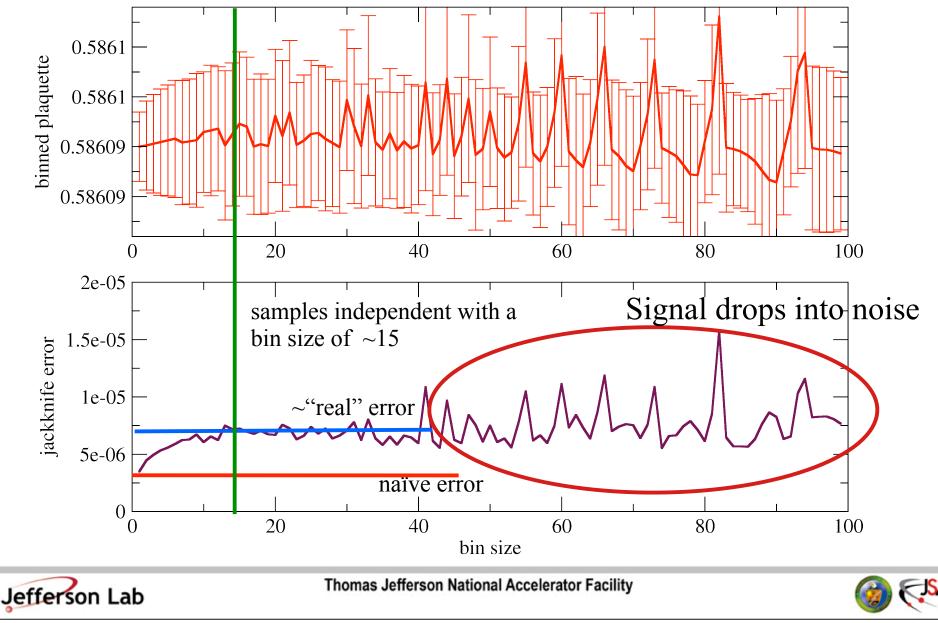
Less correlated data

Thomas Jefferson National Accelerator Facility

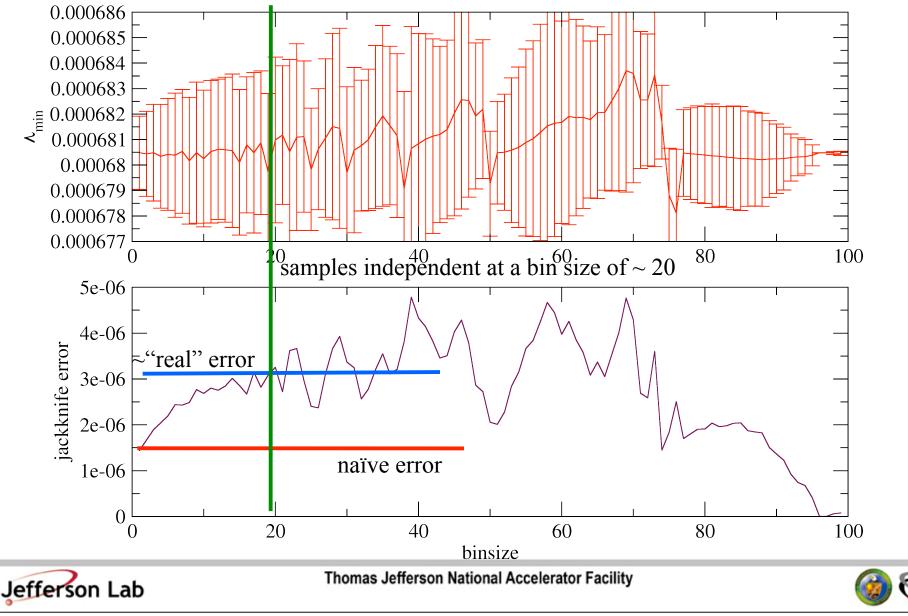
Exercise

- Modify your jackknife program to:
 - Bin the data with a given bin width of 2
 - Compute the jack-knife error on the rebinned data
 - Compute the jack-knife error as a function of bin size for bin sizes ranging from 1 to 100.
 - Plot the mean and jackknife error as a function of bin size using your favourite plotting program

Binning the plaquette



Binning the low EVs



Autocorrelation time

- Plaquette
 - samples independent with a bin size of about 15
 - we measure on every trajectory so

$$2\mathcal{A}_{\text{Plaq}} + 1 \approx 15 \Longrightarrow \left| \mathcal{A}_{\text{Plaq}} \approx 7 \right|$$

- Lowest eigenvalue of $\tilde{M}^{\dagger}\tilde{M}$
 - samples independent with a bin size of about 20
 - we measure on 5th trajectory so

$$2\mathcal{A}_{\lambda} + 1 \approx 20 \times 5 = 100 \Longrightarrow \mathcal{A}_{\lambda} \approx 50$$

Fitting Correlation functions

• We extract physics from our simulation data, by fitting correlation functions to models Fit model

$$C_{\pi}(t) = \sum_{i=0}^{\infty} A_i e^{-E_i t} \xrightarrow{t \to \infty} A_0 e^{-E_0 t} \xrightarrow{\text{or}}_{\text{function}}$$

- In a fit, the things that vary are the parameters (ie A0 and E0)
 - The data is fixed by the simulation, and the fit function is fixed by our choice

$$\{y_i\}$$
The computed correlation fn at timeslice t_i $C(i, A_0, E_0)$ The chosen fit function at timeslice t_i

Minimising the χ^2

• One popular way of fitting to the data is maximum likelyhood estimation, it involves minimising C^2

$$\chi^2(A_0, E_0) = \sum_{i,j} \left[y_i - C(i, A_0, E_0) \right] M(i, j)^{-1} \left[y_j - C(j, A_0, E_0) \right]$$

•M(i, j) is the data covariance matrix: $M(i, j) = \langle (y_i - \langle y_i \rangle) (y_j - \langle y_j \rangle) \rangle$

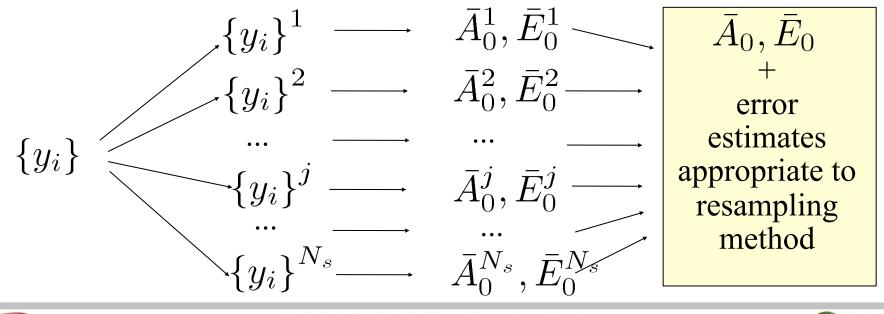
• If our data are independent as a function of t:

$$M(i, j) = \sigma^2 (y_i) \,\delta_{i,j}$$
$$\chi^2 = \sum_i \frac{\left[y_i - C(i)\right]^2}{\sigma^2 (y_i)}$$

Thomas Jefferson National Accelerator Facility

What about errors?

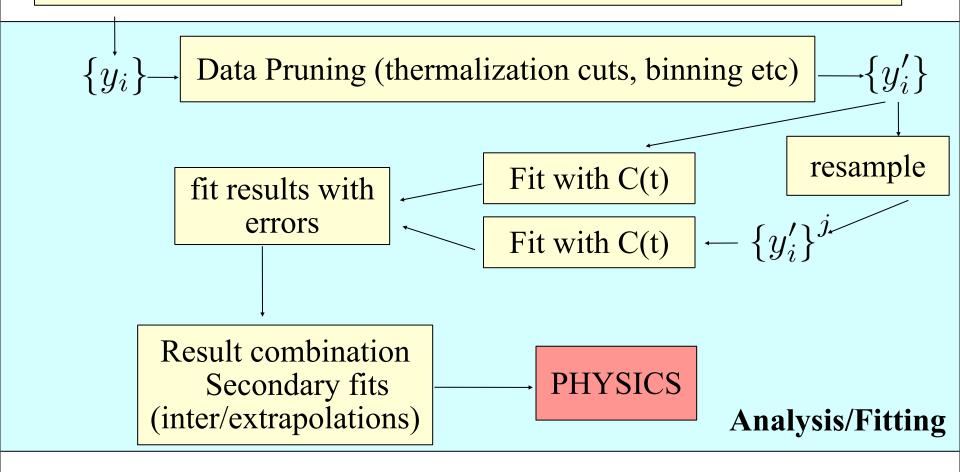
- Essentially a fit is a function of our data and our fit model: fit : $\{y_i\}, C(i, A, m) \longrightarrow \overline{A}_0, \overline{E}_0$
- In a re-sampling technique such as the jackknife or the bootstrap, we can carry out the fit on each of the N_s (re) samples and analyze the distribution of the means.



Thomas Jefferson National Accelerator Facility

The QCD workflow

HPC: HMC + measurements (propagator, correlation functions)



Thomas Jefferson National Accelerator Facility

Details of the fitting

- This is beyond the scope of this lecture
- and tends to be somewhat of a religious topic.
- People tend to write their own as a "right of passage"
- For the demonstrations and exercises I will use an old code called the 4H fitting code, which is still used in UKQCD
 - I repackaged it for 'simplicity'
 - I won't go through the details but at a high level
 - It can do correlated or uncorrelated fits
 - It uses an implementation of the Marquardt-Levenberg algorithm for its minimization
 - We will use the 'single_exp_fit' program which has been pre-written to work with chroma data

Compiling the fitting code

- Go to seattle_tut/example4/src
- Enter the **hhhh** directory

cd hhhh

• Configure the code

configure _prefix=\$HOME/install/hhhh

make

– The code should now build. Let's install it

make install

- Add the installation bin/ directory to the path export PATH=\$HOME/install/hhhh/bin:\$PATH
- Check it works: run single_exp_fit (single_exp_fit.exe)

Look at a few mesons

- Go to seattle_tut/example5/work
- Look at the effective mass of a zero momentum pion:

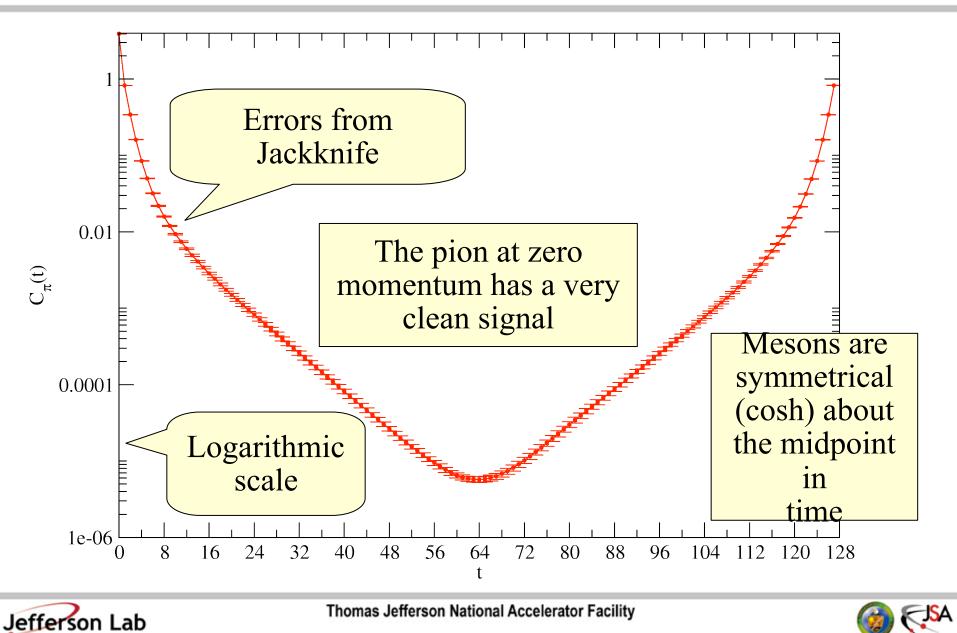
```
av_chroma_corr_and_effmass \
```

- ../Data/Raw/mesons/pion.D-546.P_1.P_1.PP pion1
- This should produce the following files:

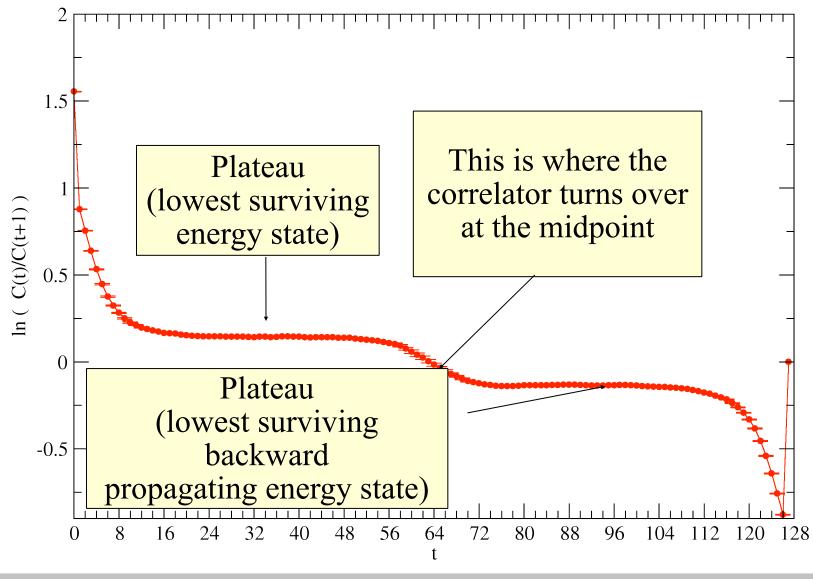
```
pion1_av_corr.dat pion1_fold_av_corr.dat
pion1_eff_mass.dat pion1_fold_eff_mass.dat
```

• Let us look at the correlator and effective mass files (I use xmgrace for plotting):

The Pion Correlator



The Pion Effective Mass



Jefferson Lab

Thomas Jefferson National Accelerator Facility

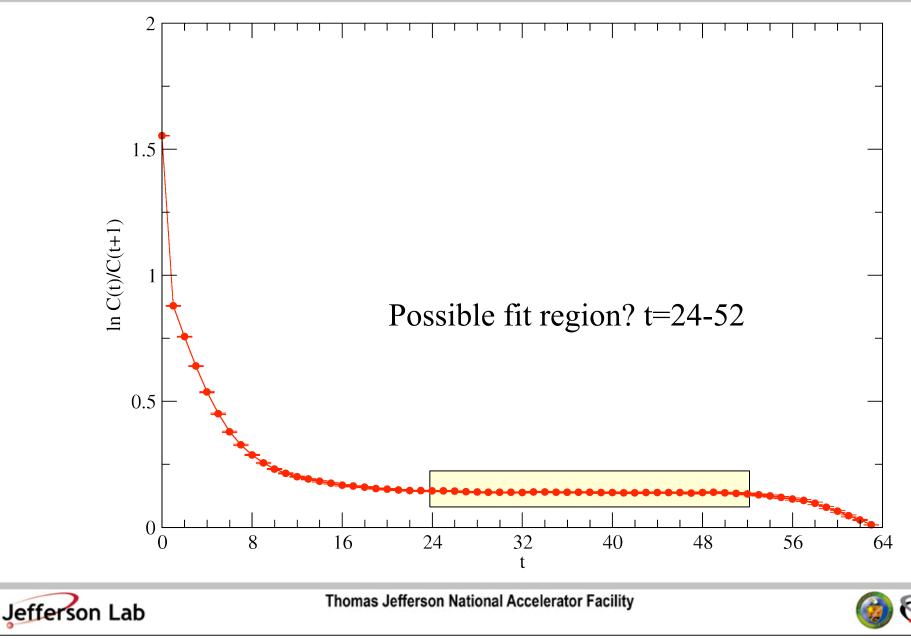
Folding the propagator

- Mesons are symmetric about the midpoint in time
- We can use this fact to 'double' our statistics by folding the meson correlator about the midpoint

$$C_F = \frac{1}{2} \left(C(t) + C(L_T - t) \right)$$

Thomas Jefferson National Accelerator Facility

Folded Pion Effective Mass



Exercise

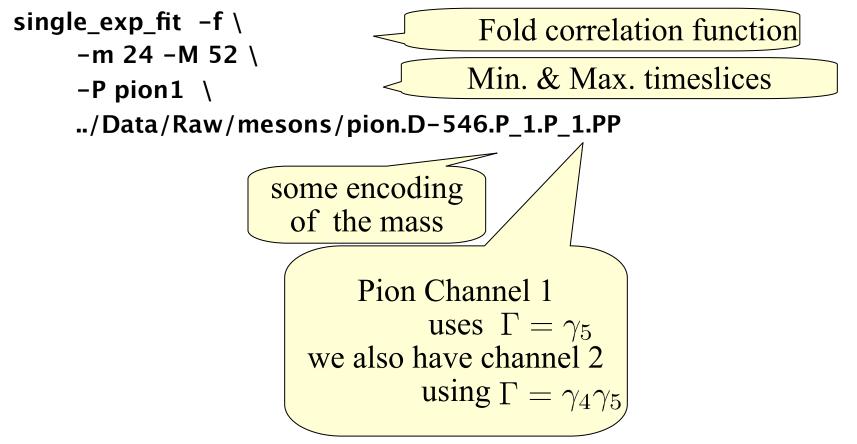
• In seattle_tut/example4/Data/Raw/baryons is the correlation file for a zero momentum proton

```
– proton.D-546.P_1.P_1.PP
```

- Have a look at its average correlation function and effective mass
- Is the correlation function symmetric?
- The program **av_chroma_corr_and_effmass** automatically folds the correlator about the midpoint.
 - Does it make sense to fold proton or other baryons?

Fitting the folded pion

• Let us fit the folded pion. Again in your work directory, run the (installed) program:

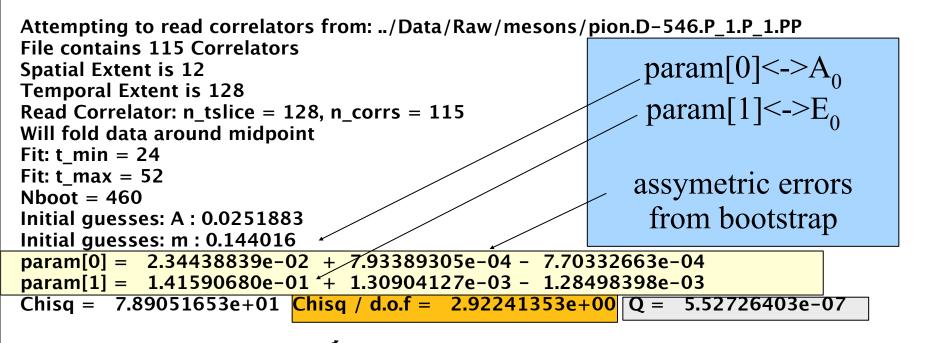


Friday, August 24, 2012

Jefferson Lab

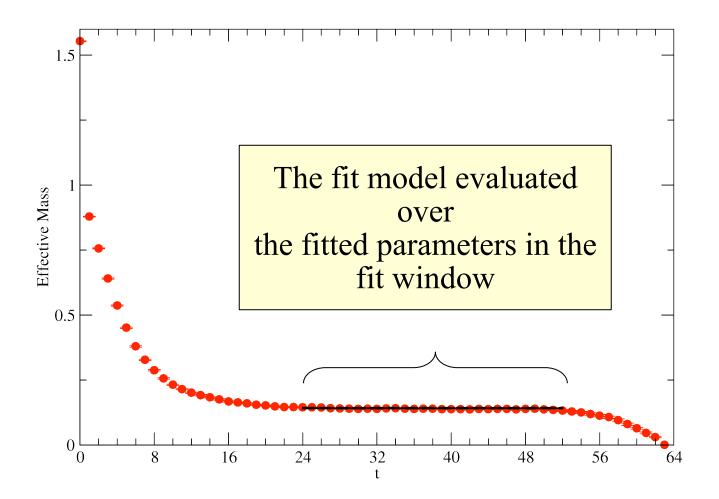
Fitting the folded Pion

• The Output from the program should look like:



The fitter also outputs a plot

• The file is: pion1_fit_results_24_52.agr – a file for xmgrace



Friday, August 24, 2012

Jefferson Lab

A couple of files

- The fitter also output a few other files:

 - pion1_t_24_52_param_01.boot00 E_0
- These are files containing the bootstrapped means of the parameters ie:
 - the best value from the original data
 - the N values computed on the N re-sampled datasets
 - These files are needed if we want to do some secondary fitting.

Exercises

- Re-fit the pion but vary the range of the fit window
 - How does the χ^2 change?
 - Can you find a better fit window?
 - Is the answer for the mass (param1) stable?
- Have a look at the other pion channel:
 - pion.D-546.P_2.P_2.PP (using $G = \gamma_4 \gamma_5$)
- Have a look at pions at non zero momenta:
 - pion_pxA_pyB_pzC.D-546.P_1.P_1.PP
 - eg (A,B,C)=(1,0,0) $\leq > (px,py,pz) = (1,0,0)$
 - Do they get noisier?
- Try fitting the proton. Remember about baryons and folding?

Secondary Fitting: Dispersion Relation

- You have the data, for pions at zero momentum and other momenta, for several channels.
- This data is from a simulation with an anisotropic action (the temporal and spatial lattice spacings are different)
- Here we need to tune parameters so that the speed of light is

c = 1

• We can find the speed of light from the dispersion relation

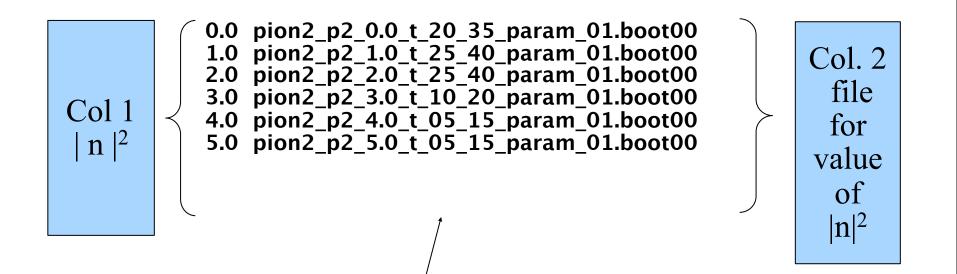


Exercise: Doing it

- We need to fit the lowest energy on our pion correlators at zero and finite momenta:
 - Use the pion_pxA_pyB_pzC.D-546.DG4_2.P_2.SP files (smeared a the source, point sink)
 - cleaner signal than most
 - Use 500 bootstrap samples for all (-b 500 option to single_exp_fit) the fits.
 - We have data for $|n^2| = \{0,1,2,3,4,5\}$
 - We'll keep the resulting ***_param_01.boot00** files.
 - The program c2_check will perform a secondary fit.
 - We need to tell it which .boot00 file corresponds to which momentum.

The input file

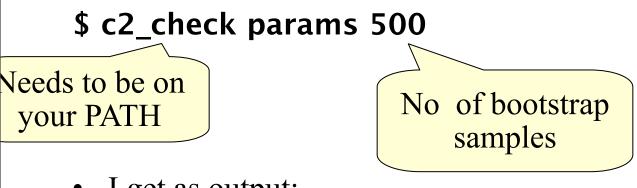
• Create a file looking called params which looks like this



Control the name of the output file using the -P prefix> option of single_exp_fit

Now run c2_check

• Now run the c2_check program:

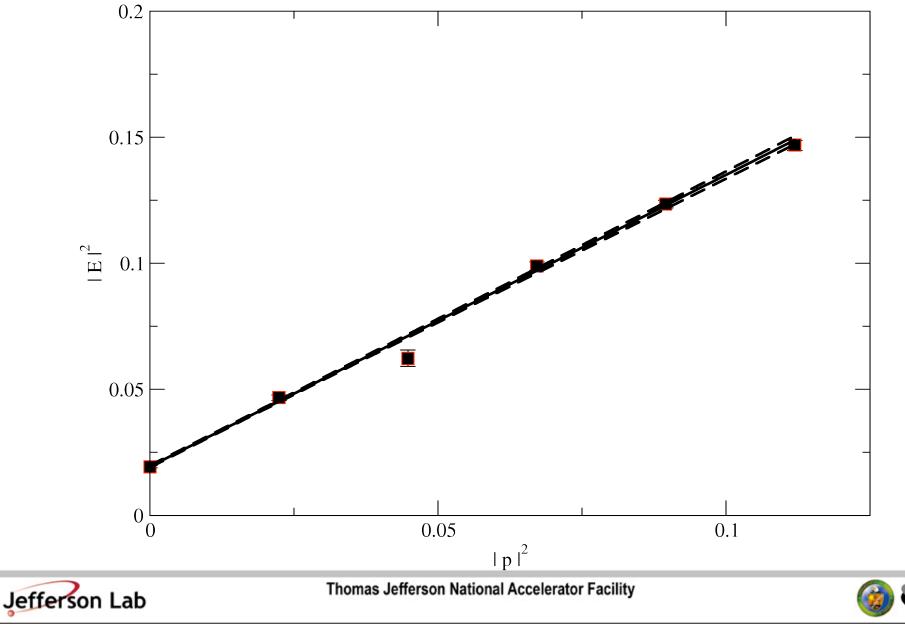


• I get as output:

m^2: 0.019448 (+ 0.000438, - 0.000399)
c^2: 1.156078 (+ 0.015552, - 0.015632)
c: 1.075187 (+ 0.007232, - 0.007270)
Chisq / d.o.f: 3.580948 (+ 1.593725, - 1.638315)

Thomas Jefferson National Accelerator Facility

c2_check also produces a graph



Summary

- We have dealt with
 - Pruning HMC Data
 - Resampling methods for Error estimation
 - In particular the Jackknife
 - Looking at Correlation Function data
 - Looking at Effective Masses
 - Fitting single exponentials using a 'black box' fitter
 - Performing a secondary fit using a 'black box' fitter
 - All this with real data.

