
The need for speed...
Bálint Joó,

Scientific Computing Group
Jefferson Lab

Wednesday, August 22, 2012

Reduce, Reuse, Recycle
(as much as you possibly can)

Bálint Joó,
Scientific Computing Group

Jefferson Lab

Alternative Title:

Wednesday, August 22, 2012

Outline
• Some features of modern computing systems
• Optimization and Constraints
• Performance: Limits and Modeling
• Multi-socket, multi-node issues
• Amdahl’s Law and optimizations
• Summary

Wednesday, August 22, 2012

Parallel Processors

• Modern Computers
– multiple sockets
– SIMD vector units
– multiple cores
– co-processors
– deep memory

architectures
– on and off chip

communication
networks

– parallelism is ‘baked
in’ (literally)

Intel Sandy Bridge E CPU
 - 6 cores
 - 256 bit AVX (8 single/4 double)
 - 2 way Hyperthreading (SIMT)
 - large shared cache
 - 4 channel memory controller
 - QPI to connect sockets/PCI etc
(image source: anandtech.com)

IBM BlueGene/Q
 - 16 cores (+2 for system/etc)
 - 256 bit vectors (4 double)
 - 4 way SIMT
 - L2 caches/cores connected with
 on chip crossbar network
 - 2 DDR3 memory controllers
(image source: www.theregister.co.uk)

NVIDIA GF100 architecture
 - 16 Symmetric Multiprocessor blocks
 - 32 CUDA Cores per SM
 - 2 sets of 16 way SIMT (per warp)
 - Mike will have more details on this.

(image source: anandtech.com)

Wednesday, August 22, 2012

http://www.theregister.co.uk
http://www.theregister.co.uk

SIMD Vector Processing
• modern CPUs can

usually work on more
than one piece of data
simultaneously

• Typically organize
data as short ‘vectors’

• Data is kept in ‘vector
registers’ (vr here)

• Typically a CPU can
perform a * and +
simultaneously

• Some CPUs can also
do FMA, ie:
vr0*vr1+vr2

 vr0[0]
*vr1[0]

vr1

vr2

vr3

vr4 vr5

* +* * * + + +

vr0

 vr0[1]
*vr1[1]

 vr0[2]
*vr1[2]

 vr0[3]
*vr1[3]

 vr2[0]
+vr3[0]

 vr2[1]
+vr3[1]

 vr2[2]
+vr3[2]

 vr2[3]
+vr3[3]

Wednesday, August 22, 2012

Do I need to learn assembler?
• Depends... I have not coded in assembler in a long time
• But I do find compiler intrinsics can be useful

– Some compilers are better at vectorization than others.
• may do as good a job as you writing intrinsics in some instances.

– Intrinsics can tie you to specific vector length
• above is SSE (length 4). Modern x86 machines can do AVX (length 8)

– Intrinsics may tie you to specific compilers

#include <xmmintrin.h> // SSE ops defined in this file

// a,b,c should be arrays of length 4, aligned on 16 byte
// boundaries. Routine does a*b + c
void fmadd4(float* a, float* b, float* c)
{
 __m128 av, bv, cv; // SSE registers (vector length=4)
 av = _mm_load_ps(a); bv=_mm_load_ps(b); cv=_mm_load_ps(c);
 cv = _mm_add_ps(cv,_mm_mul_ps(av,bv));
 _mm_stream_ps(c, cv);
}

Wednesday, August 22, 2012

Memory Basics
• When data is not in registers, it needs

to be fetched from somewhere (e.g.
memory)

• Analogy:
– the CPU is like a water mill
– data is like the water
– no matter how fast the CPU can

run, if data is not flowing it will
remain idle

• Memory fetches have
– start up time (latency)
– a ‘flow rate’ (B/W)

Wednesday, August 22, 2012

Caches
• If CPU is waiting for

memory it sits idle
• memory fetches can

take a long time (100s of
CPU cycles)

• Hierarchy of “fast
memories” added to
store intermediate data

• These are called
‘caches’

Core

L1 $

L2 $

L3 $

DRAM

32K
Read Latency: 1.3ns (4cycles)
Read B/W: 45.6 GB/sec
Local to Core

256K
Read Latency: 3.4ns (10cycles)
Read B/W: 31.1 GB/sec
Local to Core

8M
Read Latency: 13.0ns (38 cycles)
Read B/W: 26.2 GB/sec
Shared between cores

Numbers from: “Memory Performance and Cache Coherency
Effects on an Intel Nehalem Multiprocessor System” by D.
Molka et. al., 2009 18th International Conference on Parallel
Architectures and Compilation Techniques. Latencies and
bandwidths are from local cores only. Latencies tend to
increase when reading from other cores. Multiple cores can
draw more bandwidth. These numbers are for illustration only

Large: e.g 6x2GB DDR3
1333 MHz Dimms.
Read Latency: 65.1ns
(~190 cycles)
Read B/W: 10.1 GB/sec

1 of 4 cores, from Xeon X5570
2.933 GHz, 23.46 GFlops peak.

Wednesday, August 22, 2012

Caches
• When the processor needs a data it will look in its

cache first
– if data is found (cache hit) it is fetched from cache
– if not found (cache miss) a higher level of cache/or

memory is tried.
• Caches work on the principle of locality

– Spatial Locality: If I need a piece of data, its likely
I will soon need another piece of data nearby in
memory.

– Temporal Locality: If I need a piece of data now,
it is likely I may need it again soon.

• Caches process data in ‘lines’ containing multiple
data values. (e.g. 64 bytes per line)

Wednesday, August 22, 2012

Multi-Core Complications
• Multiple latencies, BWs

– from different cores
– from different sockets

• Cache coherency
– a core wants to write

but who else has that
data in their cache?

– complicated protocols
(snooping other cores’
or sockets’ caches)

• Collectively: Cache
Coherent Non-Uniform
Memory Access (ccNUMA)

I/O

L3$

c0 c1 c2 c3

L1$

L2$

L1$ L1$ L1$

L2$ L2$ L2$

L3$

c0 c1 c2 c3

L1$

L2$

L1$ L1$ L1$

L2$ L2$ L2$

DRAM DRAM DRAM DRAM DRAM DRAM

QPI: 25.6 GB/s
per link

Socket 0 Socket 1

I/O

Wednesday, August 22, 2012

Memory and TLBs
• CPUs typically operate using “virtual memory”
• Each process has its own ‘virtual address space’

– as if the process owned all the memory
• In reality, multiple processes run share a physical memory
• CPUs have to translate virtual addresses from a process into

physical addresses
• The TLB is a ‘cache’ to allow quick translation of addresses

Wednesday, August 22, 2012

A TLB ‘hit’

0xBCDFE0xABCDE

0xBCDFE000

0xBCDFF000

0xBCDFE010

0xABCDE010
Virtual

address
 bits

Physical
address

bits

0xABCDD 0x01223A

0xFFFFA00x1263AB

0xBCDFD000

Virtual Address:

Translated
Physical
Address:

Physical
Memory

4 KB (000-FFF)
page

4 KB (000-FFF)
page

4 KB (000-FFF)
page

TLB

• number of TLB entries is limited
• TLB misses are expensive (page walk)
• frequent large jumps (larger than page

size) can cause frequent misses
• Often TLBs offer large pages (e.g. 2M)

...

Wednesday, August 22, 2012

Networks
• Typically compute nodes are connected by several types of

networks
– Interconnect between Cores on a Socket (usually custom)

• e.g. BG/Q crossbar

– Inter Socket, Socket to Off Chip
• e.g. Intel Quick Path Interconnect (QPI), AMD Hyper Transport (HT)

– Other on node networks:
• e.g. PCIe - to Graphics Processors or leading to Infiniband

– Networks between compute nodes
• Infiniband (commodity clusters),
• Cray Gemini - connected with AMD processors via HyperTransport
• BlueGene/Q - integrated onto the chip

• Like Memory: networks have latencies, and bandwidths
– can sometimes just think of it also as remote memory...

Wednesday, August 22, 2012

Brief Recap
• Fundamentally we have resources we must manage within

some constraints
– Resources:

• memory, cache, registers, vector units, cores, networks, accelerators

– Constraints:
• memory/network/cache latencies & bandwidths
• size limits (# of registers, # of cache lines, # of TLB entries)
• instruction issue limits (e.g. no of outstanding reads/writes, etc)

• Optimization is a process of balancing resources vs.
constraints
– Architect: balanced provision of resources within budget
– Code: optimal use of relevant resources

Wednesday, August 22, 2012

Performance Limits: Roofline
• Arithmetic Intensity: Floating Point Ops/ Bytes of Data Used

Arithmetic Intensity
(AI) of problem

Max FLOPS/Max BW
(system dependent)

Max FLOPS

FLOPS

“Roofline: An Insightful Visual Performance Model For Multicore
Architectures”, S. Williams, A. Waterman and D. Patterson”,
Communications of the ACM, vol 52, no 4, April 2009

Peak M
emory

Bandwidth

Floating point imbalance (e.g. more * than + etc)

Compute Bound Problems

Memory Bound
Problems

Wednesday, August 22, 2012

Example: No reuse (streaming)
• AXPY: y[i] = a*x[i] + y[i], a is real, i=0...N-1
• 2 Flops for each element of x & y.

– well balanced: 1 multiply, 1 add
– need to load x[i] and y[i] for each ‘i’: 2 x 4 = 8 bytes

• keep ‘a’ in a register

– need to write out y[i]: another 4 bytes
– Arithmetic Intensity: 2 FLOPS/12 bytes = 1/6
– Speed of light for performance (working from memory)

• on an Intel Core i7 3960X with mem b/w of 51.2 GB/sec: 8.53 Gflops
– even tho the socket has a peak speed of 316.8 Gflops

• if x & y fit into caches, higher cache B/W results in higher performance

• on an NVIDIA M2090 GPU with mem b/w of 177 GB/sec: 29.5 Gflops
– even tho GPU can do 1.3 Teraflops

Wednesday, August 22, 2012

Example 2
• SU(3)xSU(3) matrix multiplication: M[i] = M1[i]*M2[i], i=0..N-1

– 108 multiplies, 90 adds for each value of ‘i’: 198 flops
– 3x9 complex floats: 216 bytes
– Arithmetic intensity: 198/216=0.92

• Maximum achievable performance (from Memory):
– On system with mem B/W of 51.2 GB/sec: ~47 Gflops

• On a system with 316 GF peak and Mem B/W of 51.2 GB/s
– need > 6.17 Flop/Byte to be compute bound (from DRAM)

• On a system with ~1360 GF peak and Mem B/W of 177 GB/s
– need > 7.68 Flop/Byte to be compute bound (from GDDR)

Wednesday, August 22, 2012

What to take home from this
• If you can, run on enough nodes, so the local problem size fits

in caches: then you are bound by cache bandwidth rather than
main memory
– but can have strong scaling issues elsewhere... (see later)

• If you are memory bandwidth bound, it means there are ‘free’
FLOPs. Use these where possible.

// AI: 1/6=2 flops/12 bytes
for(int i=0; i < N; i++){
 y[i]=a*x[i] + y[i];
}

// AI: 1/4=1 flop/4 bytes
double sum=0;
for(int i=0; i < N; i++) {
 sum+=y[i];
}

// AI: 1/4
// 12 bytes form axpy
// 3 flops
double sum=0;
for(int i=0; i < N; i++){
 y[i]=a*x[i] + y[i];
 sum +=y[i];
}

Loop Fusion

Wednesday, August 22, 2012

Case Study: Wilson Dslash
• We met Wilson Dslash in Lecture 2
• Naively: 1320 flops

– For each of 8 directions (4 forward, 4 back)
• SU(3) x color vector multiply for 2 spins: Total 8x2x66 flops
• spin-projection: 8x12 flops,
• spin reconstruct is ‘free’ (sign flips only)

– Sum up 8 components => 7 summations: 7x24 flops
– Total: 1320 flops

• Naive Bytes: 1440 bytes (single precision)
– 8 gauge links (4 forward, 4 backward): 8x18x4 = 576 bytes
– 8 input spinors (4 forward, 4 back): 8x24x4 = 768 bytes
– 1 output spinor: 24x4=96 bytes

• Naive Flops/Bytes: 0.92 (Single Prec), 0.46 (double prec)

x
x+μx-μ

x+ν

x-ν

Wednesday, August 22, 2012

Exploiting Spatial Reuse
• Consider 3D version (y,z,t

plane)
– ‘balls’ = spinors
– ‘arrows’ = gauge links

• If cache is big enough
– load input spinors for slice

t, when working on t-1
– load input spinor for slice

t-1 when working on t-2
• 8-fold reuse of spinors (in 4D)
• no spatial reuse of gauge

fields here
– but for a 5D DWF type dslash, one

can reuse gauge field L5 times...

t

t-1

t+1

y

z
t

only need
to load this
for black site

already in
cache,
loaded when
working on
slice t-1

already in
cache,
loaded when
working on
slice t-2

Wednesday, August 22, 2012

Dslash Perfomance Model
• If we can fit 3-time slices of spinors into a shared cache...
• Naive model:

– Still 1320 FLOPs,
– But only 768 bytes

• still 576 for gauge, 96 for output spinor, but only 96 for the 1 spinor we load

– Flops / Bytes ~ 1.72, much better than 0.92
• More sophisticated model (assume infinitely fast cache):

• RBW, WBW are read/write bandwidths respectively
• s=0, if one has streaming stores, 1 otherwise
• For 2 dslashes in a row, there is also temporal reuse: see paper

1320

(576 + 96 + 96s)/RBW + 96/WBW

M. Smelyanskiy et. al.: “High-performance lattice QCD for multi-core
based parallel systems using a cache-friendly hybrid threaded-MPI
approach”, SC '11 Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis,
Article No. 69

FLOPS=

Wednesday, August 22, 2012

Squeezing More from Memory
• SU(3) matrices allow several representations

– 2 row representation, 8 real-number representation
– reconstructing the full 3x3 matrix takes extra flops
– but if we are memory bound, flops are ‘free’
– 2 row reconstruction: 42 flops/link, 336 flops/dslash
– Arithmetic Intensity now:

• Actual: 1656 flops/576 bytes = 2.875
• Useful: 1320 flops/576 bytes = 2.29 (not counting the extra 336 flops)

– See paper: Clark, et. al., Comp. Phys. Commun. 181:1517-1528, 2010

Wednesday, August 22, 2012

Inter Socket Communication
• NUMA and ‘first touch’

– the socket who writes memory
first, ‘owns’ that memory.

– e.g: this is not so good:

– master thread (e.g. socket 0, core
0) allocates and initializes ‘array’

– all worker threads get their array[i]
from socket 0

– QPI imposes bandwidth limit for
cores on socket 1.

I/O

L3$

c0 c1 c2 c3

L1$

L2$

L1$ L1$ L1$

L2$ L2$ L2$

L3$

c0 c1 c2 c3

L1$

L2$

L1$ L1$ L1$

L2$ L2$ L2$

DRAM DRAM DRAM DRAM DRAM DRAM

QPI: 25.6 GB/s
per link

Socket 0 Socket 1

I/O

double array=new double[N];
for(i=0; i < N; i++)
 array[i]=drand48();

// sometime later on...
#pragma omp parallel for
for(i=0; i < N; i++) {
 array[i] *= 5*array[i];
} array[0-N]

Wednesday, August 22, 2012

Inter Socket Communication
• Solutions:

– use threaded loop to initialize
array:

– master thread (e.g. socket 0,
core 0)

– worker threads write to array to
initialize

– relevant parts of ‘array’ are
‘locally owned’

I/O

L3$

c0 c1 c2 c3

L1$

L2$

L1$ L1$ L1$

L2$ L2$ L2$

L3$

c0 c1 c2 c3

L1$

L2$

L1$ L1$ L1$

L2$ L2$ L2$

DRAM DRAM DRAM DRAM DRAM DRAM

QPI: 25.6 GB/s
per link

Socket 0 Socket 1

I/O

double array=new double[N];
#pragma omp parallel for
for(i=0; i < N; i++)
 array[i]=drand48();

// sometime later on...
#pragma omp parallel for
for(i=0; i < N; i++) {
 array[i] *= 5*array[i];
} array[0..N/2-1] array[N/2..N-1]

– for this to work, threads must not
migrate between sockets

– alternative solution:
‣ use one MPI Process per socket
‣ all memory accesses ‘local’ unless

sent via explicit messages.

Wednesday, August 22, 2012

Inter Node Communication
• Lattice QCD is local

– mostly nearest/next-to-nearest
neighbour communications.

• Need to communicate ‘faces’ of
lattice

• This is a surface effect.
• Usually done via message passing

through a network
– network latency, bandwidth

constraints
• Can work on local data while

messages are ‘in flight’
• Overlap computation &

communication

Wednesday, August 22, 2012

Messaging Characteristics

 0

 100

 200

 300

 400

 500

 600

 700

 1 10 100 1000 10000 100000 1e+06 1e+07

Th
ro

ug
hp

ut
, M

B/
se

c

Message size, bytes

Netpipe Tests - PCI-X HCA, E7500 Chipset

rdma_write
NCSA MPI

OSU MPI
IPoIB

Latency Bound

Bandwidth bound

1/2 Max Bandwidth

Performance of MPI over infiniband: http://lqcd.fnal.gov/benchmarks/newib/index.html

Wednesday, August 22, 2012

http://lqcd.fnal.gov/benchmarks/newib/index.html
http://lqcd.fnal.gov/benchmarks/newib/index.html

Optimality depends on situation
• Strong scaling regime

– fix global volume, increase number of nodes
• per node volumes become smaller
• GOOD: We’ll fit into caches better.
• but also BAD: Surface to volume ratio gets worse
• Makes overlapping computation w. communication more difficult

– e.g. 4x23 local lattice, 24 after checkerboarding, all surface, no ‘body’
– Small messages become latency bound, need low latency interconnects

• Larger volumes, fewer nodes (e.g. a cluster)
– large volumes per node

• Surface to volume small: Bandwidth Bound
• More local data: less likely to fit in cache, need more memory bandwidth
• Fewer nodes: need more powerful nodes (e.g. GPU accelerated)

– Optimal choice of hardware depends on many factors
• e.g. FLOP/$, FLOP/W & W/$, but $$$$ always in there somewhere.

Wednesday, August 22, 2012

0

17.5

35.0

52.5

70.0

0 17,500 35,000 52,500 70,000

Strong Scaling of DWF CG Inverter

P
e
rf

o
rm

a
n
c
e
 (
G

F
lo

p
s/

n
o

d
e
)

Number of BG/Q Nodes

!"#$%#$&$'"($#%)*%+$,$-%."*'$%/,%,0$%123!%456#$#%789:!%4/;8'8,*%/,%<#86)5-=0

BG/Q is designed to strong scale

~2.5PFlops total

Figure courtesy
of M. Buchoff
(LLNL)

On BG/Q
messaging unit
and network
are integrated
on-chip.

Wednesday, August 22, 2012

16 32 64 128 256 512 1024 2048 4096 8192
Interlagos Sockets (16 core/socket)

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

64

128

Tf
lo

ps
 S

us
ta

in
ed

Titan, XK6 nodes, CPU only: Single Precision Reliable-IBiCGStab Solver
Rosa, XE6 nodes, CPU only: Single Precision Reliable IBiCGStab solver
Titan, XK6 nodes, GPU only: Single Precision (single/single) Reliable BiCGStab solver
Titan, XK6 nodes, GPU only: Mixed Precision (half/single) Reliable BiCGStab solver
Titan, XK6 nodes, GPU only: Mixed Precision (half/single) GCR solver with Domain
 Decomposed preconditioner

Strong Scaling: 483x512 Lattice (Weak Field), Chroma + QUDA

100 Tflops

Optimization: Communicate less
• Strong scaling can be difficult for GPU systems

– PCIe-2 bus bandwidth (8+8 GB/s peak, 5+5 GB/s in practice)
– multiple-hops: GPU to CPU to Network to CPU to GPU (high latency)
– situation is getting better: PCIe-3 is coming, GPUDirect reduces latency
– can one strong scale in the interim? Yes: use reduced communication algorithm

BiCGStab, regular communications

DD+GCR: reduced communications algorithm

• DD+GCR
- GCR solver with Block Diagonal

preconditioner
- Preconditioner does no comms.
- scaling now limited by

• comms in outer GCR process
• GPU performance at small local

volumes

Wednesday, August 22, 2012

Amdahl’s Law
• Puts optimization into perspective.

– Speed up part of code where proportion
‘P’ of time is spent by a factor ‘S’

– Overall execution is Sapp faster

• ie: Optimize where it matters!
• Accelerate 60% of code by 6x and

your overall speed up is 2x
• Amdahl’s law can also be applied

to any other form of speed
increase to a portion of the code
– using more processors,

accelerators etc.
• Rule: increase P if you can.

Sapp =
1

(1− P) + P
S

50%

P
60%

(1-P)
40%

E
xe

cu
tio

n
Ti

m
e

Original AcceleratedOriginal

Accelerate by 6x

S=6

Wednesday, August 22, 2012

Benchmark Measurements Chroma

lfn://ldg/qcdsf/clover_nf2/b5p20kp13420-16x32/ape.003.004600.dat
Significant reduction of execution time when using QDP++(GPU)
QUDA inverter gains speedup too (residuum calculation with QDP++)

Frank Winter (University of Edinburgh) QDP++/Chroma on GPUs Sep 26, 2011 24 / 26

Accelerate
solver only

using QUDA
Library:

~2x speedup
(P~0.52, S~14x)Accelerate

all of
 QDP++:

~10x
speedup

Beating Down Amdahl’s Law on GPUs

• Results from Frank Winter’s talk at Autumn StrongNET meeting (Trento, 2011)
• QUDA alone only gave ~2x speedup on full application
• QUDA + moving all of QDP++ to GPU resulted in ~10x speedup
• See also: F. Winter "Accelerating QDP++ using GPUs" arXiv:1105:2279[hep-lat]

Wednesday, August 22, 2012

http://www.physik.uni-regensburg.de/strongnet/2011/documents/winter.pdf
http://www.physik.uni-regensburg.de/strongnet/2011/documents/winter.pdf
http://arxiv.org/abs/1105.2279
http://arxiv.org/abs/1105.2279

16 32 64 128 256
number of XK6 nodes

128

256

512

1024

2048

4096

Ti
m

e
fo

r t
ra

je
ct

or
y

(s
ec

)

Chroma (CPU only)
Chroma(CPU) + QUDA Solvers
Chroma(QDP-JIT) + QUDA

2 Flavor Wilson HMC (Gauge + 2 Flavor + Hasenbusch monomials), 323x96 lattice

Works also for Gauge Generation

Amdahl’s
law gain

Everything on GPU

Only Solver
 on GPU

Everything on CPU

GPU Solver bottlenecked by
comms, and small local volume.

PRELIMINARY

Wednesday, August 22, 2012

Messages to take away
• You should be systematic about your optimization

– measure where your code spends time
– identify which parts you want to speed up
– consider the kind of optimization, the effort and payback

• consider performance limits, work with a perf model if you have one
• consider algorithmic improvement, rather than just performance

improvement (work smarter, not just harder/faster)
• Consider the effort involved. Would you have finished with the original

code by the time you make the improvements? Will the improvements
benefit you later on?

• Consider whole application performance improvements (Amdahl’s law).
How much overall improvement will your specific optimization bring.

Wednesday, August 22, 2012

Conclusions
• The ideas here are generic, and should be transferable
• Ideas used in GPUs not always so different from CPUs

• The hard part is figuring out how to exploit the resources you
have and how you will deal with the constraints & bottlenecks

• The rest is just typing... -- but lots of typing...
• Optimization and performance tuning can be all consuming

– but sometimes a lot of fun :)

GPU CPU

coalesced reads cache-line reads

block for shared memory block for cache

manage grid of thread blocks manage thread placement/binding

host/device data movement message passing, NUMA 1st touch

shared memory bank conflict cache associativity conflict
register blocking SIMD vectorization

Wednesday, August 22, 2012

