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Parallel Processors

• Modern Computers 
– multiple sockets
– SIMD vector units
– multiple cores
– co-processors
– deep memory 

architectures
– on and off chip 

communication 
networks

– parallelism is ‘baked 
in’ (literally)

Intel Sandy Bridge E CPU
 - 6 cores 
 - 256 bit AVX (8 single/4 double)
 - 2 way Hyperthreading (SIMT)
 - large shared cache
 - 4 channel memory controller
 - QPI to connect sockets/PCI etc
(image source: anandtech.com)

IBM BlueGene/Q 
 - 16 cores ( +2 for system/etc)
 - 256 bit vectors (4 double)
 - 4 way SIMT 
 - L2 caches/cores connected with
   on chip crossbar network
 - 2 DDR3 memory controllers
(image source: www.theregister.co.uk) 

NVIDIA GF100 architecture
 - 16 Symmetric Multiprocessor blocks
 - 32 CUDA Cores per SM  
 - 2 sets of 16 way SIMT (per warp) 
 -  Mike will have more details on this.

(image source: anandtech.com) 
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SIMD Vector Processing
• modern CPUs can 

usually work on more 
than one piece of data 
simultaneously

• Typically organize 
data as short ‘vectors’

• Data is kept in ‘vector 
registers’ (vr here)

• Typically a CPU can 
perform a * and + 
simultaneously

• Some CPUs can also 
do FMA, ie:    
vr0*vr1+vr2

 vr0[0]
*vr1[0]

vr1

vr2

vr3

vr4 vr5

* +* * * + + +

vr0

 vr0[1]
*vr1[1]

 vr0[2]
*vr1[2]

 vr0[3]
*vr1[3]

 vr2[0]
+vr3[0]

 vr2[1]
+vr3[1]

 vr2[2]
+vr3[2]

 vr2[3]
+vr3[3]
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Do I need to learn assembler?
• Depends... I have not coded in assembler in a long time
• But I do find compiler intrinsics can be useful

– Some compilers are better at vectorization than others.
• may do as good a job as you writing intrinsics in some instances.

– Intrinsics can tie you to specific vector length 
• above is SSE (length 4). Modern x86 machines can do AVX (length 8)

– Intrinsics may tie you to specific compilers

#include <xmmintrin.h> // SSE ops defined in this file

// a,b,c should be arrays of length 4, aligned on 16 byte 
// boundaries. Routine does  a*b + c
void fmadd4( float* a, float* b, float* c ) 
{
   __m128 av, bv, cv;   // SSE registers (vector length=4)
   av = _mm_load_ps(a); bv=_mm_load_ps(b); cv=_mm_load_ps(c);
   cv = _mm_add_ps(cv,_mm_mul_ps(av,bv));  
   _mm_stream_ps(c, cv);  
}
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Memory Basics
• When data is not in registers, it needs 

to be fetched from somewhere (e.g. 
memory)

• Analogy: 
– the CPU is like a water mill
– data is like the water
– no matter how fast the CPU can 

run, if data is not flowing it will 
remain idle

•  Memory fetches have
– start up time (latency) 
– a ‘flow rate’  (B/W)
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Caches
• If CPU is waiting for 

memory it sits idle
• memory fetches can 

take a long time (100s of 
CPU cycles)

• Hierarchy of “fast 
memories” added to 
store intermediate data

• These are called 
‘caches’

Core

L1 $

L2 $

L3 $

DRAM

32K
Read Latency: 1.3ns (4cycles)
Read B/W: 45.6 GB/sec
Local to Core

256K
Read Latency: 3.4ns (10cycles)
Read B/W: 31.1 GB/sec
Local to Core

8M
Read Latency: 13.0ns (38 cycles)
Read B/W: 26.2 GB/sec 
Shared between cores

Numbers from: “Memory Performance and Cache Coherency 
Effects on an Intel Nehalem Multiprocessor System” by D. 
Molka et. al., 2009 18th International Conference on Parallel 
Architectures and Compilation Techniques. Latencies and 
bandwidths are from local cores only. Latencies tend to 
increase when reading from other cores. Multiple cores can 
draw more bandwidth.  These numbers are for illustration only

Large: e.g 6x2GB DDR3
1333 MHz Dimms. 
Read Latency: 65.1ns 
(~190 cycles)
Read B/W: 10.1 GB/sec

1 of 4 cores, from Xeon X5570 
2.933 GHz, 23.46 GFlops peak.
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Caches
• When the processor needs a data it will look in its 

cache first
– if data is found (cache hit) it is fetched from cache
– if not found (cache miss) a higher level of cache/or 

memory is tried.
• Caches work on the principle of locality

– Spatial Locality: If I need a piece of data, its likely 
I will soon need another piece of data nearby in 
memory.

– Temporal Locality: If I need a piece of data now, 
it is likely I may need it again soon.

• Caches process data in ‘lines’ containing multiple 
data values. (e.g.  64 bytes per line)

Wednesday, August 22, 2012



Multi-Core Complications
• Multiple latencies, BWs

– from different cores
– from different sockets

• Cache coherency 
– a core wants to write 

but who else has that 
data in their cache?

– complicated protocols 
(snooping other cores’ 
or sockets’ caches)

• Collectively: Cache 
Coherent Non-Uniform 
Memory Access (ccNUMA)

I/O 

L3$

c0 c1 c2 c3

L1$

L2$

L1$ L1$ L1$

L2$ L2$ L2$

L3$

c0 c1 c2 c3

L1$

L2$

L1$ L1$ L1$

L2$ L2$ L2$

DRAM DRAM DRAM DRAM DRAM DRAM

QPI: 25.6 GB/s
per link 

Socket 0 Socket 1

I/O
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Memory and TLBs
• CPUs typically operate using “virtual memory”
• Each process has its own ‘virtual address space’

– as if the process owned all the memory
• In reality, multiple processes run share a physical memory
• CPUs have to translate virtual addresses from a process into 

physical addresses
• The TLB is a ‘cache’ to allow quick translation of addresses
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A TLB ‘hit’

0xBCDFE0xABCDE

0xBCDFE000

0xBCDFF000

0xBCDFE010

0xABCDE010
Virtual

address
 bits 

Physical
address

bits

0xABCDD 0x01223A

0xFFFFA00x1263AB

 ... ....

0xBCDFD000

Virtual Address:

Translated 
Physical  
Address:

Physical 
Memory

4 KB (000-FFF)
page

4 KB (000-FFF)
page

4 KB (000-FFF)
page

TLB

• number of TLB entries is limited
• TLB misses are expensive (page walk)
• frequent large jumps (larger than page 

size) can cause frequent misses
• Often TLBs offer large pages (e.g. 2M)

...
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Networks
• Typically compute nodes are connected by several types of 

networks
– Interconnect between Cores on a Socket (usually custom)

• e.g. BG/Q crossbar

– Inter Socket, Socket to Off Chip
• e.g. Intel Quick Path Interconnect (QPI), AMD Hyper Transport (HT)

– Other on node networks:
• e.g. PCIe - to Graphics Processors or leading to Infiniband

– Networks between compute nodes
• Infiniband  (commodity clusters), 
• Cray Gemini - connected with AMD processors via HyperTransport
• BlueGene/Q - integrated onto the chip

• Like Memory: networks have latencies, and bandwidths 
– can sometimes just think of it also as remote memory...
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Brief Recap
• Fundamentally we have resources we must manage within 

some constraints
– Resources: 

• memory, cache, registers, vector units, cores, networks, accelerators

– Constraints: 
• memory/network/cache latencies & bandwidths
• size limits (# of registers, # of cache lines, # of TLB entries)
• instruction issue limits (e.g. no of outstanding reads/writes, etc)

• Optimization is a process of balancing resources vs. 
constraints
– Architect: balanced provision of resources within budget
– Code: optimal use of relevant resources 
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Performance Limits: Roofline
• Arithmetic Intensity: Floating Point Ops/ Bytes of Data Used

Arithmetic Intensity
(AI) of problem

Max FLOPS/Max BW
(system dependent)

Max FLOPS

FLOPS

“Roofline: An Insightful Visual Performance Model For Multicore 
Architectures”, S. Williams, A.  Waterman and D. Patterson”, 
Communications of the ACM, vol 52, no 4, April 2009

Peak M
emory 

Bandwidth

Floating point imbalance (e.g. more * than + etc)

Compute Bound Problems

Memory Bound 
Problems
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Example: No reuse (streaming)
• AXPY:  y[i] = a*x[i] + y[i], a is real, i=0...N-1
• 2 Flops for each element of x & y.

– well balanced: 1 multiply, 1 add
– need to load x[i] and y[i] for each ‘i’: 2 x 4 = 8 bytes

• keep ‘a’ in a register

– need to write out y[i]: another 4 bytes
– Arithmetic Intensity: 2 FLOPS/12 bytes = 1/6
– Speed of light for performance (working from memory)

• on an Intel Core i7 3960X with mem b/w of  51.2 GB/sec:    8.53 Gflops
– even tho the socket has a peak speed of 316.8 Gflops

• if x & y fit into caches, higher cache B/W results in higher performance

• on an NVIDIA M2090 GPU with mem b/w of 177 GB/sec:  29.5 Gflops
– even tho GPU can do 1.3 Teraflops
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Example 2
• SU(3)xSU(3) matrix multiplication: M[i] = M1[i]*M2[i],   i=0..N-1

– 108 multiplies, 90 adds for each value of ‘i’: 198 flops
– 3x9 complex floats: 216 bytes
– Arithmetic intensity: 198/216=0.92

• Maximum achievable performance (from Memory):
– On system with mem B/W of 51.2 GB/sec: ~47 Gflops

• On a system with 316 GF peak and Mem B/W of 51.2 GB/s
– need > 6.17 Flop/Byte to be compute bound (from DRAM)

• On a system with ~1360 GF peak and Mem B/W of 177 GB/s
– need > 7.68 Flop/Byte to be compute bound (from GDDR)
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What to take home from this
• If you can, run on enough nodes, so the local problem size fits 

in caches: then you are bound by cache bandwidth rather than 
main memory
– but can have strong scaling issues elsewhere... (see later)

• If you are memory bandwidth bound, it means there are ‘free’ 
FLOPs.  Use these where possible.

// AI: 1/6=2 flops/12 bytes
for(int i=0; i < N; i++){
   y[i]=a*x[i] + y[i];
}

// AI: 1/4=1 flop/4 bytes
double sum=0;
for(int i=0; i < N; i++) {
  sum+=y[i];
}

// AI: 1/4
// 12 bytes form axpy
// 3 flops
double sum=0;
for(int i=0; i < N; i++){
   y[i]=a*x[i] + y[i];
   sum +=y[i];
}

Loop Fusion
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Case Study: Wilson Dslash
• We met Wilson Dslash in Lecture 2
• Naively: 1320 flops

– For each of 8 directions (4 forward, 4 back)
• SU(3) x color vector multiply for 2 spins: Total 8x2x66 flops
• spin-projection: 8x12 flops, 
• spin reconstruct is ‘free’ (sign flips only)

– Sum up 8 components => 7 summations: 7x24 flops
– Total: 1320 flops

• Naive Bytes: 1440 bytes (single precision)
– 8 gauge links (4 forward, 4 backward): 8x18x4 = 576 bytes
– 8 input spinors (4 forward, 4 back): 8x24x4 = 768 bytes
– 1 output spinor: 24x4=96 bytes

• Naive Flops/Bytes: 0.92 (Single Prec), 0.46 (double prec)

x
x+μx-μ

x+ν

x-ν
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Exploiting Spatial Reuse
• Consider 3D version (y,z,t 

plane) 
– ‘balls’ = spinors
– ‘arrows’ = gauge links

• If cache is big enough
– load input spinors for slice 

t, when working on t-1
– load input spinor for slice 

t-1 when working on t-2
• 8-fold reuse of spinors (in 4D)
• no spatial reuse of gauge 

fields here
– but for a 5D DWF type dslash, one 

can reuse gauge field L5 times...

t

t-1

t+1

y

z
t

only need 
to load this 
for black site

already in 
cache, 
loaded when 
working on 
slice t-1

already in 
cache, 
loaded when 
working on 
slice t-2
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Dslash Perfomance Model
• If we can fit 3-time slices of spinors into a shared cache...
• Naive model: 

– Still 1320 FLOPs, 
– But only 768 bytes 

• still 576 for gauge, 96 for output spinor, but only 96 for the 1 spinor we load

– Flops / Bytes ~ 1.72, much better than 0.92
• More sophisticated model (assume infinitely fast cache):

• RBW, WBW are read/write bandwidths respectively
• s=0, if one has streaming stores, 1 otherwise
• For 2 dslashes in a row, there is also temporal reuse: see paper

1320

(576 + 96 + 96s)/RBW + 96/WBW

M. Smelyanskiy et. al.: “High-performance lattice QCD for multi-core 
based parallel systems using a cache-friendly hybrid threaded-MPI 
approach”, SC '11 Proceedings of 2011 International Conference for 
High Performance Computing, Networking, Storage and Analysis, 
Article No. 69

FLOPS=
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Squeezing More from Memory
• SU(3) matrices allow several representations

– 2 row representation, 8 real-number representation
– reconstructing the full 3x3 matrix takes extra flops
– but if we are memory bound, flops are ‘free’
– 2 row reconstruction: 42 flops/link, 336 flops/dslash
– Arithmetic Intensity now: 

• Actual:    1656 flops/576 bytes = 2.875 
• Useful:    1320 flops/576 bytes = 2.29  (not counting the extra 336 flops)

– See paper: Clark, et. al., Comp. Phys. Commun. 181:1517-1528, 2010
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Inter Socket Communication
• NUMA and ‘first touch’

– the socket who writes memory 
first, ‘owns’ that memory.

– e.g: this is not so good:

– master thread (e.g. socket 0, core 
0) allocates and initializes ‘array’

– all worker threads get their array[i] 
from socket 0

– QPI imposes bandwidth limit for 
cores on socket 1. 

I/O 

L3$

c0 c1 c2 c3

L1$

L2$

L1$ L1$ L1$

L2$ L2$ L2$

L3$

c0 c1 c2 c3

L1$

L2$

L1$ L1$ L1$

L2$ L2$ L2$

DRAM DRAM DRAM DRAM DRAM DRAM

QPI: 25.6 GB/s
per link 

Socket 0 Socket 1

I/O

double array=new double[N];
for(i=0; i < N; i++) 
  array[i]=drand48();

// sometime later on...
#pragma omp parallel for
for(i=0; i < N; i++) {
  array[i] *= 5*array[i];
} array[0-N]
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Inter Socket Communication
• Solutions:

– use threaded loop to initialize 
array:

– master thread (e.g. socket 0, 
core 0) 

– worker threads write to array to 
initialize

– relevant parts of ‘array’ are 
‘locally owned’

I/O 

L3$

c0 c1 c2 c3

L1$

L2$

L1$ L1$ L1$

L2$ L2$ L2$

L3$

c0 c1 c2 c3

L1$

L2$

L1$ L1$ L1$

L2$ L2$ L2$

DRAM DRAM DRAM DRAM DRAM DRAM

QPI: 25.6 GB/s
per link 

Socket 0 Socket 1

I/O

double array=new double[N];
#pragma omp parallel for
for(i=0; i < N; i++) 
  array[i]=drand48();

// sometime later on...
#pragma omp parallel for
for(i=0; i < N; i++) {
  array[i] *= 5*array[i];
} array[0..N/2-1] array[N/2..N-1]

– for this to work, threads must not 
migrate between sockets

– alternative solution: 
‣ use one MPI Process per socket
‣ all memory accesses ‘local’ unless 

sent via explicit messages.
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Inter Node Communication
• Lattice QCD is local

– mostly nearest/next-to-nearest 
neighbour communications.

• Need to communicate ‘faces’ of 
lattice

• This is a surface effect.
• Usually done via message passing 

through a network
– network latency, bandwidth 

constraints
• Can work on local data while 

messages are ‘in flight’
• Overlap computation & 

communication
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Messaging Characteristics
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Netpipe Tests - PCI-X HCA, E7500 Chipset

rdma_write
NCSA MPI

OSU MPI
IPoIB

Latency Bound

Bandwidth bound

1/2 Max Bandwidth

Performance of MPI over infiniband: http://lqcd.fnal.gov/benchmarks/newib/index.html
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Optimality depends on situation
• Strong scaling regime

– fix global volume, increase number of nodes
• per node volumes become smaller
• GOOD: We’ll fit into caches better.
• but also BAD: Surface to volume ratio gets worse 
• Makes overlapping computation w. communication more difficult

– e.g. 4x23 local lattice, 24 after checkerboarding, all surface, no ‘body’
– Small messages become latency bound, need low latency interconnects 

• Larger volumes, fewer nodes (e.g. a cluster)
– large volumes per node

• Surface to volume small: Bandwidth Bound
• More local data: less likely to fit in cache, need more memory bandwidth
• Fewer nodes: need more powerful nodes (e.g. GPU accelerated)

– Optimal choice of hardware depends on many factors 
• e.g. FLOP/$,   FLOP/W & W/$, but $$$$ always in there somewhere.
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Figure courtesy 
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On BG/Q 
messaging unit 
and network 
are integrated 
on-chip.
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Titan, XK6 nodes, CPU only: Single Precision Reliable-IBiCGStab Solver
Rosa, XE6 nodes, CPU only: Single Precision Reliable IBiCGStab solver
Titan, XK6 nodes, GPU only: Single Precision (single/single) Reliable BiCGStab solver
Titan, XK6 nodes, GPU only: Mixed Precision (half/single) Reliable BiCGStab solver
Titan, XK6 nodes, GPU only: Mixed Precision (half/single) GCR solver with Domain
 Decomposed preconditioner

Strong Scaling: 483x512 Lattice (Weak Field), Chroma + QUDA 

100 Tflops

Optimization: Communicate less 
• Strong scaling can be difficult for GPU systems

– PCIe-2 bus bandwidth (8+8 GB/s peak, 5+5 GB/s in practice)
– multiple-hops: GPU to CPU to Network to CPU to GPU (high latency)
– situation is getting better: PCIe-3 is coming, GPUDirect reduces latency
– can one strong scale in the interim?  Yes: use reduced communication algorithm

BiCGStab, regular communications

DD+GCR: reduced communications algorithm

• DD+GCR
- GCR solver with Block Diagonal 

preconditioner
- Preconditioner does no comms.
- scaling now limited by

• comms in outer GCR process 
• GPU performance at small local 

volumes
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Amdahl’s Law
• Puts optimization into perspective.

– Speed up part of code where proportion 
‘P’ of time is spent by a factor ‘S’

– Overall execution is Sapp faster

• ie: Optimize where it matters!
• Accelerate 60% of code by 6x and 

your overall speed up is 2x
• Amdahl’s law can also be applied 

to any other form of speed 
increase to a portion of the code
– using more processors, 

accelerators etc.
• Rule: increase P if you can.

Sapp =
1

(1− P ) + P
S

50%

P
60%

(1-P)
40%

E
xe

cu
tio

n 
Ti

m
e

Original AcceleratedOriginal

Accelerate        by 6x

S=6
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Benchmark Measurements Chroma

lfn://ldg/qcdsf/clover_nf2/b5p20kp13420-16x32/ape.003.004600.dat
Significant reduction of execution time when using QDP++(GPU)
QUDA inverter gains speedup too (residuum calculation with QDP++)

Frank Winter (University of Edinburgh) QDP++/Chroma on GPUs Sep 26, 2011 24 / 26

Accelerate 
solver only 

using QUDA
Library:

~2x speedup
(P~0.52, S~14x)Accelerate 

all of
 QDP++:

~10x 
speedup

Beating Down Amdahl’s Law on GPUs 

• Results from Frank Winter’s talk at Autumn StrongNET meeting (Trento, 2011)
• QUDA alone only gave ~2x speedup on full application
• QUDA + moving all of QDP++ to GPU resulted in ~10x speedup
• See also: F. Winter "Accelerating QDP++ using GPUs" arXiv:1105:2279[hep-lat]
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PRELIMINARY
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Messages to take away 
• You should be systematic about your optimization

– measure where your code spends time
– identify which parts you want to speed up
– consider the kind of optimization, the effort and payback

• consider performance limits, work with a perf model if you have one
• consider algorithmic improvement, rather than just performance 

improvement (work smarter, not just harder/faster)
• Consider the effort involved. Would you have finished with the original 

code by the time you make the improvements? Will the improvements 
benefit you later on?

• Consider whole application performance improvements  (Amdahl’s law). 
How much overall improvement will your specific optimization bring.
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Conclusions 
• The ideas here are generic, and should be transferable
• Ideas used in GPUs not always so different from CPUs

• The hard part is figuring out how to exploit the resources you 
have and how you will deal with the constraints & bottlenecks

• The rest is just typing... -- but lots of typing...  
• Optimization and performance tuning can be all consuming

– but sometimes a lot of fun :) 

GPU CPU

coalesced reads cache-line reads

block for shared memory block for cache

manage grid of thread blocks manage thread placement/binding

host/device data movement message passing, NUMA 1st touch

shared memory bank conflict cache associativity conflict
register blocking SIMD vectorization
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