
An Introduction
to Computational Lattice QCD

Bálint Joó,
Scientific Computing Group

Jefferson Lab

Monday, August 20, 2012

Contents

• Introductory Lecture
• A lecture on Solvers (we’ll write a solver)
• A lecture on ‘optimization’
• A lecture on Hybrid Monte Carlo (we’ll write an HMC)
• A lecture on data analysis
• There will also be exercises

Monday, August 20, 2012

Lattice QCD
• Lattice QCD is the only known model independent, non-

perturbative technique for carrying out QCD calculations.
– Move to Euclidean Space, Replace space-time with lattice
– Move from Lie Algebra su(3) to group SU(3) for gluons
– Gluons live on links (Wilson Lines) as SU(3) matrices
– Quarks live on sites as 3-vectors.
– Produce Lattice Versions of the Action

Evaluate Path Integral Using Markov Chain Monte Carlo Method

Monday, August 20, 2012

Large Scale LQCD Simulations Today
• Stage 1: Generate Configurations

– snapshots of QCD vacuum
– configurations generated in sequence
– capability computing needed for large

lattices and light quarks

• Stage 2a: Compute quark propagators
– task parallelizable (per configuration)
– capacity workload (but can also use capability h/w)

• Stage 3: Extract Physics
– on workstations,

small cluster
partitions

• Stage 2b: Contract propagators into Correlation Functions
– determines the physics you’ll see
– complicated multi-index tensor contractions

Monday, August 20, 2012

Monte Carlo Method
Evaluating the Path Integral:
• There are 4V links. V~323x256 → 4V = ~ 33M links
• Direct evaluation unfeasible. Turn to Monte Carlo methods

• Basic Monte Carlo Recipe
– Generate some configurations U
– Evaluate Observable on each one
– Form the estimator.

Problem with uniform random sampling:
 most configurations have P(U) ~ 0

Monday, August 20, 2012

Importance Sampling
• Pick U, with probability P(U) if possible
• Integral reduces to straight average, errors decrease with statistics

• If we reject, next config is U (again)

Metropolis Method:
Start from some initial configuration.
Repeat until set of configs. is large enough:
• From config U, pick U' (reversibly)
• Accept with Metropolis probability:

Generates a Markov Chain of
configurations. Errors in observables
fall as the number of samples grows

Monday, August 20, 2012

Global Updating
• Imagine changing 'link by link'
• For each change one needs to evaluate the fermion action

twice: before and after

where

Two Degenerate Flavors of
fermion (eg: u & d). Guaranteed
• Hermitean
• Positive Definite

Linear system needs to be solved
on entire lattice.
 - Dimension: ~ O(10M)
 - Condition number: O(1-10M)

• 1 Sweep: 2x4V solves, with 4V ~ O(1M-33M) is
prohibitive

• Need a Global Update Method

Use Sparse Krylov
Subspace Solver:

eg: Conjugate Gradients

Monday, August 20, 2012

Hybrid Monte Carlo
• Big Trick: Go from config U to U' doing Hamiltonian

Molecular Dynamics in Fictitious Time

• start from config U
• generate momenta p
• evaluate H(U,p)
• perform MD in fictitious time t
• evaluate H(U', p')
• accept with Metropolis probability

• if accepted new config is U',
otherwise it is U

(U, pold)

(U, p) (U', p')

MD Conserves Energy
If done exactly P = 1 (always accept)
Otherwise dH depends on the error

from the integrator

surface of constant H

Selecting new
momenta boosts to
new energy surface, so
all phase space can be
explored

MD

Monday, August 20, 2012

After the Gauge Generation
Quark Propagator:

Correlation Functions:
x y

Mesons:

• Measure on each configuration, but only the 'average' is 'physical.
• Baryons also need color antisymmetrization
• Fourier transform fixes definite momenta, but loses volumetric info

– Not much in the way of pretty visualizations – mostly 2D plots

Fourier Transform in space,
transforms to Momentum Space.

G projects onto correct
spin-parity quantum numbers

quarkantiquark Translation invariance:
G(x,0) <=> G(z+x, y)

Meson: Baryon:

Monday, August 20, 2012

Lattice QCD and Parallel Computing
• We have two basic patterns in LQCD computations:

– do the same thing at every site
• either independently or
• depending on other nearby sites

– perform a global reduction (sum, inner product)

• This is a classic ‘data parallel’ pattern

Basics of Numerical Lattice QCD
Putting Lattice QCD On a Parallel Computer

Summary

Lattice Calculation Basics
Where is the Physics?
Where is the Computing?

The plaquette is:

Uµν(x) = Ux,µUx+µ̂,νUx+µ̂+ν̂,−µUx+ν̂,−ν

= Ux,µUx+µ̂,νU
†
x+ν̂,µU

†
x,ν(x)

where we use that Ux ,µ are unitary so

Ux+m̂u,−µ = U
−1
x ,µ = U

†
x ,µ

β = 2Nc

g2 is lattice version of the coupling

This action is has discretisation errors of O(a2)

More elaborate formulations involving bigger loops have
smaller discretisation errors

Joó Lecture One: A Numerical QCD “Hello World”

Monday, August 20, 2012

Expressing Data Parallelism: 1
• Data Parallel Expressions (QDP++, CM-Fortran, etc)

– Work on lattice wide objects : Global View
– Hide indices where possible
– Nearest neighbour => shift whole lattice
– Reductions: functions like sum(), norm2() etc

LatticeColorMatrix plaq = zero;
for(int mu=0; mu < Nd; mu++) {
 for(int nu=mu+1; nu < Nd; nu++) {
 LatticeColorMatrix tmp, tmp2,tmp3;
 // U_nu(x + mu)
 tmp = shift(u[nu] , FORWARD, mu);
 tmp2 = u[mu]*tmp;
 // U_mu(x + nu)
 tmp = shift(u[mu], FORWARD, nu);
 tmp3 = u[nu]*tmp;
 plaq += tmp2*adj(tmp3);
 }
}
Double w_plaq = sum(real(trace(plaq)));

Monday, August 20, 2012

Expressing Data Parallelism: 2
• ‘Map-Reduce’ like: CUDA/Thurst/TBB

– define “kernel” to execute per site: Local View (+reductions)
class PlaqKernel :public Kernel2Arg<const GaugeField&,LatticeColorMatrix&> {
public:
 PlaqKernel(GaugeField& u,LatticeColorMatrix& p_):u(u_),plaq(p_) {}

 void operator(int site) {
 plaq[site] = 0;
 for(int mu=0; mu < Nd; mu++) {

 for(int nu=mu+1; nu < Nd; nu++) {
 Matrix m1= u[mu][site];

 Matrix m2= getPlus(u[nu],mu,site);
 Matrix m3= getPlus(u[mu],nu,site);
 Matrix m4= u[nu][site];
 plaq[site] += m1*m2*adj(m3)*adj(m4);
 }
 }
 }
private:
 const GaugeField& u; LatticeColorMatrix& plaq;
};

Monday, August 20, 2012

Expressing Data Parallelism: 2
// Use
GaugeField u=...; // Get U somewhow
LatticeColorMatrix plaq;

// Call the kernel
map_2arg<PlaqKernel,GaugeField, LatticeColorMatrix>(u,plaq);

// Underneath in the framework:
template<class K, class T1, class T2>
map_2arg(T1& in1, T2& in2)
{
 K foo(in1, in2); // create kernel

 // Implement this in OpenMP/TBB/CUDA etc
 parallel_forall(sites) {

 // Call the kernel once for each
 // site. Uses the operator()
 foo(site);
 }
}

Generic 2 arg
map function

Monday, August 20, 2012

Trade-offs
• Trade offs come in terms of where you want to focus:

– expressions express maths better
• at the expense of expressing data re-use

– ‘Kernels’ can express data re-use/locality better
• at the risk of losing the expressiveness of the maths

• Mapping to underlying hardware
– CUDA and OpenCL organized around ‘Kernel’ approach
– Compile kernels to execute on the ‘device’.
– Provide Compiler/Language/Driver support for this.
– See Mike Clark’s lectures on GPUs for more.

• Can mix and match
– Can implement expressions, as kernels

Monday, August 20, 2012

What are QDP++ and Chroma
• QDP++ and Chroma are software packages for numerical

simulations of Lattice QCD (mostly)
• QDP++

– provides data parallel expressions for QCD
• ‘embedded domain specific language’,
• ‘virtual data parallel machine’

– plus I/O
– configure time: Nd, Nc, Ns (dimensions, colors, spins)

• Chroma
– provides the application on top of QDP++
– propagators, HMC, measurements
– also link to external libraries for dslash-es/solvers etc.

Monday, August 20, 2012

Place in USQCD Software Stack

Applications:

Optimization:

Programmer Productivity:

Portability/Optimization:

Monday, August 20, 2012

• QDP++ captures the tensor index structure of lattice QCD types

• To do this we use C++ templated types

• Heavy lifting: Portable Expression Template Engine(PETE)

QDP Templated Types

typedef OScalar < PScalar < PScalar< RScalar <REAL> > > > Real;
typedef OLattice< PScalar < PColorMatrix< RComplex<REAL>, Nc> > > LatticeColorMatrix;
typedef OLattice< PSpinMatrix< PColorMatrix< RComplex<REAL>, Nc>, Ns> > LatticePropagator;

Monday, August 20, 2012

Using QDP++ and Chroma
• Our experience:

– a large number of users use the ‘chroma’/‘hmc’ executables with
a XML input files

– relatively few users write QDP++/Chroma programs or interface
with QDP++/Chroma

– a small subset of users check code back in or send us patches
• These lectures will focus mostly on QDP++

– Chroma is very large and the ‘trees obscure the woods’
– I provide a software package which includes Chroma too.
– You should be able to build using the build scripts (possibly

modified to suit your system)

Monday, August 20, 2012

Code package
• package-int.tar.gz contains:

– sources for QDP++, Chroma, QUDA and support libraries
– build directories for

• scalar -- for use on your laptops
• parscalar -- a build with MPI
• quda - a parscalar build combined with QUDA for GPUs
• jit - a parscalar build over the JIT version of QDP++ for GPUs

as well as QUDA
– Builds from scalar -> jit require increasing amount of intrepidity
– QUDA version is older, but reasonably stable
– JIT branch of QDP++ is current
– As with all free and developing software: ‘Caveat Emptor!’

Monday, August 20, 2012

Untarring the package
• Download package-int.tar.gz
• After unzipping:

package/

src/

scalar/

parscalar/

quda/

jit/

qmp, qdp++,chroma,quda,chroma-jit, qdp-jit

package sources

libxml2

Monday, August 20, 2012

Structure of build directories
• Build directories have scripts to build and install packages

– filenames may change but the scheme is as below
– env.sh sets the environment. Tailor this to your system

package/scalar/

Set up PATHs, modules, compilers, etc

Purge and build everything

Configure and build an individual package

Wipe out build/installation directories

packages get installed here

build directories (created)

install/

build/

env.sh

build_all.sh

build_qdp++.sh

...

purge_build.sh

purge_install.sh

build_qmp, build_qdp++, ...

Monday, August 20, 2012

Setting up the environment
• env.sh (or env-jit.sh) sets up build environment

– sets up paths, compiler flags, copiler commands, parallel make etc
– e.g. on my Mac, the user servicable parts of scalar/env.sh look

like:
OMPFLAGS=""
OMPENABLE=""

COMPILER FLAGS
PK_CXXFLAGS=${OMPFLAGS}" -O3 -finline-limit=50000 -march=core2 -fargument-noali
as-global"

PK_CFLAGS=${OMPFLAGS}" -O3 -march=core2 -fargument-noalias-global -std=gnu99"

Make
MAKE="make -j 2"

MPI
PK_CC=gcc
PK_CXX=g++

don’t use
OpenMP for now

use parallel make with
2 processes

CFLAGS/
CXXFLAGS to
use

compiler
commands

Monday, August 20, 2012

Performing the builds
• Usually a script that looks like build_all-xxx.sh invokes

the build steps.
• E.g. for scalar build. Builds QDP++ only for the exercises
• commands to build chroma + DP versions commented out
#!/bin/bash

#BUILD QDP++ AND CHROMA IN PARALLEL WITHOUT QUDA
./purge_build.sh
./purge_install.sh

./build_libxml2.sh

BUILD Single Prec QDP++ -- sufficient for tutorials
./build_qdp++-scalar.sh

IF you feel brave you can build chroma too
#./build_chroma-scalar.sh
#
#./build_qdp++-double-scalar.sh
#./build_chroma-double-scalar.sh

Invokes:
configure/make/make
install chain for package

Monday, August 20, 2012

Running Chroma
• Main applications

– chroma - for measurements
– hmc - for gauge generation

• Typical command line (after the MPI options)
– ./chroma -i in.xml -o out.xml -geom Px Py Pz Pt
– in.xml - Input Parameter File
– out.xml - Output XML file
– Px Py Pz Pt are the dimensions of a virtual processor

grid: e.g.: -geom 4 4 8 8 implies 4x4x8x8 grid of MPI
processes

– for threaded builds need also OMP_NUM_THREADS/
QMT_NUM_THREADS env variables set

– env vars/thread binding etc are system specific

Monday, August 20, 2012

XML input files
<?xml version=”1.0” encoding=”UTF-8”?>
<chroma>
<annotation>Your annotation here</annotation>
<Param>
 <InlineMeasurements>
 <elem>
 <Name>MAKE_SOURCE</Name>
 <Frequency>1</Frequency>
 <Param/>
 <NamedObject>
 <gauge_id>default_gauge_field</gauge_id>
 <source_id>sh_source_0</source_id>
 </NamedObject>
 </elem>
 <elem>
 <Name>PROPAGATOR</Name>
 <Frequency>1</Frequency>
 <Param/>
 <NamedObject>
 <gauge_id>default_gauge_field<gauge_id>
 <source_id>sh_source_0</source_id>
 <prop_id>sh_prop_0</prop_id>
 </NamedObject>
 <xml_file>./prop_out.xml<xml_file>
 </elem>
 </InlineMeasurements>
 <nrow>4 4 4 8</nrow>
</Param>
<RNG/>
<Cfg>
 <cfg_type>SCIDAC</cfg_type>
 <cfg_file>foo.lime</cfg_file>
</Cfg>
</chroma>

Array of Measurements (Tasks)

Monday, August 20, 2012

XML Input Files
<?xml version=”1.0” encoding=”UTF-8”?>
<chroma>
<annotation>Your annotation here</annotation>
<Param>
 <InlineMeasurements>
 <elem>
 <Name>MAKE_SOURCE</Name>
 <Frequency>1</Frequency>
 <Param/>
 <NamedObject>
 <gauge_id>default_gauge_field</gauge_id>
 <source_id>sh_source_0</source_id>
 </NamedObject>
 </elem>
 <elem>
 <Name>PROPAGATOR</Name>
 <Frequency>1</Frequency>
 <Param/>
 <NamedObject>
 <gauge_id>default_gauge_field<gauge_id>
 <source_id>sh_source_0</source_id>
 <prop_id>sh_prop_0</prop_id>
 </NamedObject>
 <xml_file>./prop_out.xml<xml_file>
 </elem>
 </InlineMeasurements>
 <nrow>4 4 4 8</nrow>
</Param>
<RNG/>
<Cfg>
 <cfg_type>SCIDAC</cfg_type>
 <cfg_file>foo.lime</cfg_file>
</Cfg>
</chroma>

Task (array element)

Task name

Task Parameters

Named Objects
(communicate between tasks

-- like “in memory” files)

Monday, August 20, 2012

XML Input Files
<?xml version=”1.0” encoding=”UTF-8”?>
<chroma>
<annotation>Your annotation here</annotation>
<Param>
 <InlineMeasurements>
 <elem>
 <Name>MAKE_SOURCE</Name>
 <Frequency>1</Frequency>
 <Param/>
 <NamedObject>
 <gauge_id>default_gauge_field</gauge_id>
 <source_id>sh_source_0</source_id>
 </NamedObject>
 </elem>
 <elem>
 <Name>PROPAGATOR</Name>
 <Frequency>1</Frequency>
 <Param/>
 <NamedObject>
 <gauge_id>default_gauge_field<gauge_id>
 <source_id>sh_source_0</source_id>
 <prop_id>sh_prop_0</prop_id>
 </NamedObject>
 <xml_file>./prop_out.xml<xml_file>
 </elem>
 </InlineMeasurements>
 <nrow>4 4 4 8</nrow>
</Param>
<RNG/>
<Cfg>
 <cfg_type>SCIDAC</cfg_type>
 <cfg_file>foo.lime</cfg_file>
</Cfg>
</chroma>

Global Lattice Size

Input Configuration to use as
default_gauge_field

Monday, August 20, 2012

Where to find XML Examples

• Most up to date place:
– chroma/tests/

• All the regression tests inputs and outputs live here
• .ini.xml - input XML file
• .out.xml or .log.xml - expected output / log
• .metric.xml - metric file for XMLDIFF tool
• Typically suppose regression test produces foo.xml then

we can check
– xmldiff foo.xml expected.xml expected.metric.xml

Monday, August 20, 2012

Linking Against QDP++/Chroma
 Suppose QDP++ is installed in /foo/qdp++
 Use script qdp++-config in /foo/qdp++/bin

CXX=`/foo/qdp++/bin/qdp++-config --cxx`
CXXFLAGS=`/foo/qdp++/bin/qdp++-config --cxxflags`
LDFLAGS=`/foo/qdp++/bin/qdp++-config --ldflags`
LIBS=`/foo/qdp++/bin/qdp++-config --libs`

 Compile your program (prog.cc) with:
$(CXX) $(CXXFLAGS) prog.cc $(LDFLAGS) $(LIBS)
NB: Ordering of flags may be important.

Linking against chroma:
Use install path of chroma (instead of QDP++) and
Use chroma-config (instead of qdp++-config)

Monday, August 20, 2012

Stopping point
• Covered high level view of numerical LQCD
• Considered parallel programming ‘models’
• Gave a brief overview of QDP++ and Chroma
• Discussed getting and building the packages
• Discussed running chroma, linking against chroma

• Exercises follow:
– NB: The exercises are mostly using QDP++, rather than chroma
– However, plenty of chroma exercises in existing tutorials for you

to try:
• http://usqcd.jlab.org/usqcd-docs/chroma/

Monday, August 20, 2012

http://usqcd.jlab.org/usqcd-docs/chroma/
http://usqcd.jlab.org/usqcd-docs/chroma/

Exercises
• Basic:

– Compute the plaquette of a random configuration
• Advanced:

– Compute a Polyakov loop on the configuration
• Topics Touched on:

– Makefiles
– Basic QDP++ Boilerplate setup code
– Shifts
– Global Sums
– Simple printing in a pseudo-parallel world

Monday, August 20, 2012

Revision Control (RC)
• RC systems track changes of your code over its lifetime

– Lifecycle:
• You import an initial code to a REPOSITORY
• You check out a WORKING COPY of the files
• You make some changes
• You commit the changes
• You can label versions at any point with a human

readable label (eg: for releases)
• You can create branches (eg: for bugfixes)

- Which version control to use?
• Currently I prefer Git
• I cannot cover it in more detail here, but I recommend

it to you: http://git-scm.org

Monday, August 20, 2012

http://git-scm.org
http://git-scm.org

Revision Control and software lifecycle

v1.0

Repository

Initial code

import

working copy

checkout

hard work

v1.1

commit changes

Repository

...

...

v1.2

Repository

Version Stamp:
RELEASE_1

RELEASE: version
 RELEASE_1(=v1.2)

export

...

checkout

checkout by
other developer

commit changes

...

Monday, August 20, 2012

Why Should I use Revision Control
• A good revision control system provides the most important

safety and convenience features
– IT IS YOUR PANIC BUTTON

• You can revert changes even if you've lost the original
source in your working copy

– IT ALLOWS YOU TO DEVELOP ANYWHERE
• Most good Revision Control Systems allow you to

check out over the network and anonymously too.
– You can Branch off an existing revision to do

maintenance (bug fixes etc). The RC system will help
you merge changes back onto the main trunk

– Many RC-s have web features: http://git.jlab.org

Monday, August 20, 2012

http://git.jlab.org
http://git.jlab.org

Get the Code
• Download the code tarball
• Actually this is a fully fledged GIT repository
• The tarball should uncompress into a directory called seattle_tut
• seattle_tut has 4 subdirectories
-example1
-example2
-example3
-example4

• We will work in example1 in this session.

Monday, August 20, 2012

Edit the Makefile
• Go to the example directory you've just checked out
bash$ cd seattle_tut/example1

• Edit the Makefile :
– Replace the path in the CONFIG Makefile variable to reflect where

you've installed qdp++
– probably something like:
– /.../package/scalar/install/qdp++-scalar/bin/qdp++-config

• Do this also in seattle_tut/example1/lib/Makefile
• You can now build the code by typing ‘make’

Monday, August 20, 2012

Run the example

• NB: Cygwin Users should put .exe on the end of
executables:

bash$./example1
Finished init of RNG
Finished lattice layout
bash$

• Run the executable:

bash$./example1.exe
Finished init of RNG
Finished lattice layout
bash$

• Doesn't do much useful yet – just checking it works for now

Monday, August 20, 2012

Makefiles
• Makefile-s tell 'make' what to do

– Three main parts (for our purposes)
• MACROS (to make your life easier)
• Rules (to tell make how to compile)
• target/dependency pairs (tell make what to compile,

and what depends on what else)

Monday, August 20, 2012

example1/Makefile:
The config program of QDP++
CONFIG=/home/bjoo/install/qdp++/bin/qdp++-config

Use the config program to set up compilation
CXX=$(shell $(CONFIG) --cxx)
QDP_CXXFLAGS=$(shell $(CONFIG) --cxxflags)
QDP_LDFLAGS=$(shell $(CONFIG) --ldflags)
QDP_LIBS=$(shell $(CONFIG) --libs)

Some extra flags from us
CXXFLAGS=$(QDP_CXXFLAGS) -I./include
LDFLAGS=$(QDP_LDFLAGS) -L./lib
LIBS=-lexample $(QDP_LIBS)

all: example1

example1: example1.cc ex1_libs
 $(CXX) -o $@ $(CXXFLAGS) $< $(LDFLAGS) $(LIBS)

Makefile Macros

use macros as
$(macro)

TAB

Makefile Targets

Makefile Dependencies
Makefile
 action

Monday, August 20, 2012

example1/lib/Makefile

.SUFFIXES=.h .cc .o .a

... deleted some lines to save space

A rule to make a .o file from a .cc file
%.o: %.cc
 $(CXX) $(CXXFLAGS) -c $<

A rule that says:
To make all our object files, compile the .cc files to .o
files
OBJS=$(SRCS:%.cc=%.o)

#deleted lines to save space
#dependencies
reunit.o: reunit.cc ../include/reunit.h

Compile Rule:
make a .o file from .cc

Special macro: $<
== name of input file

Rule: Make .o files from all .cc files in $SRCS

Special target/dependency pair:
Only enforces dependency. Rest done by compile rule.

Monday, August 20, 2012

Now the code: example1/example1.cc
#include "qdp.h" // The core QDP++ library header
#include "reunit.h" // A reunitarizer I provide you with

using namespace std; // Import from STD namespace (io etc)
using namespace QDP; // Import from QDP namespace (QDP++ things)

// Here is our program
int main(int argc, char *argv[])
{
 // Set up QDP++
 QDP_initialize(&argc, &argv);
 multi1d<int> latt_size(Nd);
 latt_size[0] = 4; latt_size[1] = 4; latt_size[1]=4; latt_size[3]=8;

 Layout::setLattSize(latt_size);
 Layout::create(); // Setup the layout

 // QDP++ is now ready to rock

 // Clean up QDP++
 QDP_finalize();
 exit(0); // Normal exit
}

The .h for qdp++
in Namespace QDP

QDP++ Boiler plate setup
and finalization code

multi1d<int>
- resizable 1d array of int-s

(for holding lattice size)

Program Body Goes in Here

Monday, August 20, 2012

Doing Stuff with QDP++
• Lattice Wide Types: eg a Lattice of SU(3) Color matrices

– QDP++ Type: LatticeColorMatrix
– Gauge field: Nd (ie: 4)length array of SU(3) lattices:

• QDP Type: multi1d<LatticeColorMatrix> u(Nd);
• Can index as u[0], u[1] etc.

– Filling a LatticeColorMatrix with gaussian noise:
• QDP++ Function: gaussian(u[i]);

– Projecting back into SU(3):
• Function provided in the library in lib/
• void Example1::reunit(LatticeColorMatrix& u)

– in namespace Example1
– need to #include “reunit.h” for definition

Monday, August 20, 2012

Starting Up a Gauge Field
• A Unit Gauge (Free Field):

multi1d<LatticeColorMatrix> u(Nd); // Nd = 4 usually
for(int mu=0; mu < Nd; mu++) {
 u[mu] = Real(1);
}

• A Randomized Gauge Field (Disordered/Hot Start):

multi1d<LatticeColorMatrix> u(Nd); // Nd = 4 usually
for(int mu=0; mu < Nd; mu++) {
 gaussian(u[mu]); // Fill with gaussian Noise
 Example1::reunit(u[mu]); // project back to reunitarize
}

Monday, August 20, 2012

Arithmetic and Shifts

LatticeColorMatrix x,y,z;
gaussian(x); gaussian(y);
z = x*y; // multiply x and y together on each site -> z
z = z*y; // This involves 'aliasing' of z.
 // It'll compile but may have wrong result, use *=
z += x; // Add to
z = z + x; // This involes 'aliasing' again not recommended
 // use += in this case
z = x + y; // This is fine

• Can do 'normal' arithmetic: e.g.: Multiplies, adds, etc

• Shifts
LatticeColorMatrix x_x_plus_mu;
x_x_plus_mu = shift(x, FORWARD, mu); // get x from forward
 // mu direction

Monday, August 20, 2012

Utilities
• Things to know about the 'model computer' and the 'lattice'

– in namespace QDP::Layout
• Layout::sitesOnNode() - sites local to your

Processing element (MPI process)
• Layout::vol() - the global volume (sites)

• Text / IO to the screen:
– iostream like cout and cerr streams (master node prints)

• QDPIO::cout
• QDPIO::cerr

– C printf like routines (every node prints)
• QDP_info(“fmt”, variables);

Monday, August 20, 2012

Computing the Plaquette
int n_planes = Nd*(Nd-1)/2; // 6 in 4D
LatticeColorMatrix plaq = zero;
for(int mu=0; mu < Nd; mu++) {
 for(int nu=mu+1; nu < Nd; nu++) {
 LatticeColorMatrix tmp, tmp2,tmp3;
 tmp = shift(u[nu] , FORWARD, mu); // U_nu, x+mu
 tmp2 = u[mu]*tmp; // U_mu U_nu,x+mu
 tmp = shift(u[mu], FORWARD, nu); // U_mu, x+nu
 tmp3 = u[nu]*tmp; // U_x,nu U_mu,x+nu

 // U_mu U_nu,x+mu U^\dag_mu,x+nu U^\dag_nu,x
 plaq += tmp2*adj(tmp3);
 }
}
Double normalize = Real(3)*Real(n_planes)*Layout::vol();
Double w_plaq = (Double(1)/normalize)*sum(real(trace(plaq)));
QDPIO::cout << "Plaquette=" << w_plaq << endl;

Temporaries, disappear
at end of {} scope

Use Shifts to get
nearest neighbours

Collectives: alltoall (sum)/ local
(trace)Print Result

Monday, August 20, 2012

Some actual coding
• Add the code for starting up the random gauge field and

computing the plaquette after the line
// QDP++ is now ready to rock

in the example1.cc file
• remake example1 (or example1.exe) by typing 'make'
• rerun the example1 (or example1.exe)

– Output should be something like:

Finished init of RNG
Finished lattice layout
Plaquette=0.00127763178119898

• Replace the gauge startup code with the one for the free field
(unit gauge). Remake and Rerun. Verify that the Plaquette=1.

Monday, August 20, 2012

• Can you write a routine to perform a random gauge
transformation on u ?
– Hints:

• You'll need a LatticeColorMatrix but not a multi1d<>
one. (Gauge transform matrices - G- live on the sites.)

• You'll need to randomize it and make it SU(3)
• You'll need to shift and use the adj() function to get at

• Recompute the plaquette of the Random Gauge
Transformed 'u' and check it is gauge invariance.

• Compute the Link trace of the Random Gauge
transformed 'u' and the original one. Should be different...

Exercise 1: Random Gauge Transforms

Monday, August 20, 2012

Exercise 2: Polyakov Loop
• Can you compute the Polyakov Loop?

– This observable is an order parameter for the finite
temperature phase transition.

– This observable, modulo some normalization factor is the
“sum of the (complex) trace of the product of matrices
along the time direction of the lattice”

– Hints:
• You'll need to shift in the 't' direction
• the rest is similar to the plaquette.

Monday, August 20, 2012

Next Session: “Dances with Solvers”
• In the next session we'll play with Fermions, Fermion

matrices, solvers, propagators and correlation functions.
– See you then!

Monday, August 20, 2012

