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n  Precise theoretical calculation becomes even more 
important to confirm or reject  the standard model 
More than half of CPU cycles of lattice QCD are for 
valence calculations 
•  on physics point QCD simulation 
•  multi hadron simulation 

 

It’s shame to be limited by  statistical error  

RBRC-967

A new class of variance reduction techniques using lattice symmetries

Thomas Blum,
1, 2

Taku Izubuchi,
3, 2

and Eigo Shintani
2

1Physics Department, University of Connecticut, Storrs, CT 06269-3046, USA
2RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA

3Brookhaven National Laboratory, Upton, NY 11973, USA

We present a general class of unbiased improved estimators for physical observables in lattice gauge
theory computations which significantly reduces statistical errors at modest computational cost. The
error reduction techniques, referred to as covariant approximation averaging, utilize approximations
which are covariant under lattice symmetry transformations. We observed cost reductions from the
new method compared to the traditional one, for fixed statistical error, of 16 times for the nucleon
mass at Mπ ∼ 330 MeV (Domain-Wall quark) and 2.6-20 times for the hadronic vacuum polarization
at Mπ ∼ 480 MeV (Asqtad quark). These cost reductions should improve with decreasing quark
mass and increasing lattice sizes.
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As non-perturbative computations using lattice gauge

theory are applied to a wider range of physically interest-

ing observables, it is increasingly important to find nu-

merical strategies that provide precise results. In Monte

Carlo simulations our reach to important physics is still

often limited by statistical uncertainties. Examples in-

clude hadronic contributions to the muon’s anomalous

magnetic moment [1], nucleon form factors and structure

functions [2], including nucleon electric dipole moments

[3–6], hadron matrix elements relevant to flavor physics

(e.g., K → ππ amplitudes) [7], and multi-hadron state

physics [8], to name only a few.

As a generalization of low-mode averaging (LMA) [9,

10], we present a class of unbiased statistical error reduc-

tion techniques, utilizing approximations that are covari-

ant under lattice symmetry transformations. LMA has

worked well in cases where low eigenmodes of the Dirac

operator dominate [11]: low energy constants in the ε-
regime [9, 12–15], pseudoscalar meson masses and decay

constants [16–18], an so on. With a modest increase in

computational cost, the generalized method can reduce

statistical errors by an order of magnitude, or more, even

in cases where LMA fails.

Unlike LMA, we account for all modes of the Dirac

operator, averaging over (most of) the lattice volume,

with modest additional computational cost. The all-to-

all methods [19, 20] implement this stochastically for the

higher modes, while treating the low-modes exactly. For

expectation values invariant under translations, statistics

effectively increase by averaging over the whole lattice.

The all-to-all method is advantageous when the stochas-

tic noise introduced in the target observable is compa-

rable to, or smaller than, the gauge field fluctuations of

the ensemble [21], which typically holds only for many

random source vectors per measurement. The error re-

duction techniques presented here, which do not rely on

stochastic noise, are potentially more effective, provided
an inexpensive approximation can be found for the de-

sired observable.

In lattice gauge theory simulations an ensemble of

gauge field configurations {U1, · · · , UNconf} is generated

randomly, according to the Boltzmann weight, e−S[U ]
,

where S[U ] is the lattice-regularized action. The expec-

tation value of a primary, covariant observable, O,

�O� = 1

Nconf

Nconf�

i=1

O[Ui] +O

�
1√
Nconf

�
, (1)

is estimated as the ensemble average, over a large number

of configurations, Nconf ∼ O(100 − 1000). Here, we pri-

marily consider observables made of fermion propagators

SF [U ] computed on the background gauge configuration

U .

By exploiting lattice symmetry transformations g ∈ G,

that transform U → Ug
, a general class of variance re-

duction techniques is introduced. First construct an ap-
proximation O(appx)

to O which must fulfill the following

conditions,

appx-1: O(appx)
should fluctuate closely with O,

r ≡ Corr(O,O(appx)
) =

�∆O∆O
(appx)�√

�(∆O)2��(∆O(appx))2�
≈ 1,

and �(∆O)
2� ≈ �(∆O(appx)

)
2� , where ∆X = X −

�X�.

appx-2: the cost to compute O(appx)
is smaller than O’s,

cost(O(appx)
) � cost(O).

appx-3: �O(appx)� is covariant under a lattice sym-

metry transformation, g ∈ G, �O(appx)
[Ug

]� =

�O(appx),g
[U ]� (in the examples below, a stronger

condition holds: O(appx)
is covariant on each con-

figuration, rather than on average, O(appx)
[Ug

] =

O(appx),g
[U ]).

Note O(appx)
and O(appx),g

refers to the approximations

before and after applying a symmetry transformation g.

Using O and O(appx)
one can define an improved ob-
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 statistical noise reduction techniques	


n  LMA   
  L. Giusti, P. Hernandez, M. Laine, P. Weisz and H. Wittig, JHEP 0404, 013 (2004) 
   see also H. Neff, N. Eicker, T. Lippert, J. W. Negele and K. Schilling, Phys. Rev. D 64 (2001) 114509 and T. DeGrand and S. Schaefer, Comput. Phys. 
Commun. 159 (2004) 185 

    works for low mode dominant quantities 
 
n  Truncated Solver Method  (TSM)  
   G. Bali, S. Collins, A. Schaefer, Comput. Phys. Commun. 181 (2010) 1570 

   uses stochastic noise to avoid systematic error 
 
n  All-to-all propagator [S. Ryan’s lecture ]   

 J.Foley, K.Juge, A. O’Cais, M. Peardon, S. Ryan, J-I. Skullerud, Comput.Phys.Commun. 172 (2005) 145 
   uses stochastic noise 
   could use CAA as a part of A2A 
 

n  Also  closely  related to the improved solvers 
 
    Deflations, EigCG, Domain decomposition, MultiGrid, ….. 
 

n  Other application specific reductions 
   multi-hit (pure Gauge) 

        multi level:   Luscher, M. and Weisz, P. (2001). J. High Energy Phys., 09, 010	




Multiple timestep in HMC	

n  Multiple time steps in MD integrators 

 
n  Sexton & Weingarten trick 
n  Hasenbusch trick : introduce intermediate mass 

 
 
 

n  Clark & Kennedy RHMC (quotient force term)	
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State of Obvious 	


n  Many interesting physics are limited by statistical 
error 
 
 

n  Do more number of measurements,  Nmeas 
 

n  Change to  observable with smaller fluctuation,  C  
 

n  Covariant Approximation Averaging (CAA)  
 Combine the above using 
•  symmetries of the lattice action 
•  (crude) approximations 



Covariant Approximation Averaging 
( CAA )	


n  Original observable 
 

n  Covariant approximation of the observable 
under a lattice symmetry   
 
 

n  Unbiased improved estimator	




Covariant approximation	


n  O(appx) needs to be precisely (to the numerical 
accuracy required)  covariant under the 
symmetry of lattice action to avoid systematic 
errors. 

100 1 2 3 4 5 6 7 8 9

X 

 

U(x)

O(x,y),  y=1

100 1 2 3 4 5 6 7 8 9

X 

 

U^g(x)

O^g(x,y),  y=4

Delta x = 4

Figure 1: Transformed link field U g
µ(x) and a bi-local observable Og(x, y). If O is covariant

observable, the shape of Og(x, y) are exactly same as O(x, y).

The basic formula for the covariant approximation averaging is the following. The original
observable O is divided into its approximation O(appx) and the rest O(rest),

O = O
(appx) +O

(rest) . (7)

If the approximation is good, O ≈ O(appx), then O(rest) � O, and the statistical fluctuation
originated from O(rest) is suppressed. To reduce the statistical noise from O(appx), we will
average its translation O(appx),g over the set of translations, g ∈ G :

Oimp =
1

NG

�

g∈G

O
(appx),g +O

(rest) . (8)

If g is a symmetry of lattice action and if the approximation O(appx),g is covariant, this
improved estimator has the correct ensemble average without introducing systematic errors
:

�Oimp� = �O� (9)

1It could be extended to the cases for general symmetry transformation, but for conciseness, we restrict
to the translations. Christoph may be able to help here.

3
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Unbiasness proof	


n  Consider a element g of lattice symmetry G e.g. 
n  transformation of fields  

 
 
 
 
 
 

n  Observable (and its approximation) is called to have  covariance under g iff 
 
 
or, more explicitly,  

n  When  g is a symmetry of lattice, and  O(appx) is covariant	




Why expect improvements ?	


n  O(imp) has smaller error, smaller C 
      <=  accuracy of approximation controls error, 
      need not to be too accurate (0.1% is good enough) 
 

n  NG  suppresses the bulk part of noise cheaply 
        Valence	
  version	
  of	
  Hasenbushing	
  in	
  HMC	




AMA : a smart work sharing	


n  Ideal approximation 

ensemble	


ensemble	
  	


• 	
  	
  ε, accuracy	
  of	
  approximaRon	
  should	
  be	
  smaller	
  than	
  Oave	
  appx	
  	
  	
  
•   ΔΟrest	
  which	
  is	
  staRsRcal	
  error	
  of	
  Orest	
  depends	
  on	
  the	
  strength	
  of	
  
correlaRon.	


• 	
  	
  The	
  computaRonal	
  cost	
  of	
  Oappx	
  should	
  be	
  much	
  smaller	
  than	
  
original.	


Oappx	
  is	
  strongly	
  correlated	
  
with	
  original	
  one.	


ε	


ε	


10	


R(corr)	
  b/w	
  O	
  and	
  O(appx)	
  needs	
  to	
  	
  
be	
  larger	
  than	
  0.5	
  	
  	
  	
  [C.	
  Lehner]	




n  Nightmare case 
•  Anti-correlated or bad approximation 

AMA : not working	


ensemble	


ensemble	
  	


ensemble	


ensemble	
  	


11	




Examples of covariant approximations	


n  Low mode approximation used in the Low Mode 
Averaging ( LMA )    
         L. Giusti et al (2004), see also  T. DeGrand et al. (2004) 

   accuracy control :  # of eigen mode 

0 0.5 1 1.5 2 2.5

1

10

100

1000

Figure 3: Polynomial approximation of 1/λ, Npoly = 10, the mini-max approximation for
the relative error, for λ ∈ [0.052, 1.672].
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Deflation using low eigenmodes from 
Lanczos [ Neff et al,  JLQCD ]	


n  4D even/odd preconditioning 
 

    [ R. Arthur ] 

n  Polynomial accelerated 
  Pn( H_DWF) 

n  With shift 
  H->  H-c 

n  eigen Compression 
 / decompression 
 
ψ      =      v1 +     v2 
H (ψ) = λ1 v1+λ2 v2 
	


We can also describe the Dirac operator of domain-wall fermion as 4D even-odd bases,

DDW =

(

M5 K(M4)eo

K(M4)oe M5

)

, (10)

and the inverse of Dirac operator is given as 4D even-odd preconditioned form,

D−1
DW =

(

1 0
−KM−1

5 (M4)oe M−1
5

) (

D−1
ee 0
0 1

) (

1 −K(M4)eoM
−1
5

0 1

)

, (11)

Dee = M5 − K2(M4)eoM
−1
5 (M4)oe (12)

and then we need to solve the inverse of Dee by CG method. The inverse of M5 is given by

M−1
5 (s, t) = As,tPR + Bs,tPL + δst, (13)

As,t = −
1

1 + mfκLs



















mfκ
Ls mfκ

Ls−1 mfκ
Ls−2 · · · mfκ

−κ mfκ
Ls mfκ

Ls−1 · · · mfκ
2

−κ2 −κ mfκ
Ls · · · mfκ

3

...
...

...
...

−κLs−1 −κLs−2 −κLs−3 · · · mfκ
Ls



















, (14)

Bs,t = AT
s,t, (15)

κ =
1

5 − M5

. (16)

It has important property that the Γ5 (not γ5) Hermicity of Dee does not flip the even-odd
bases in contrast to 5D even-odd bases, and therefore Hermitian matrix is given by single
multiplication of Γ5,

D†
ee = Γ5DeeΓ5, Hee = Γ5Dee. (17)

In Lanczos procedure with acceleration of Chebychev polynomial function, we use the
following matrix function,

Tn(X), X =
2H2 − α2 − β2

β2 − α2
, α < β (18)

where α, β are arbitrary number constrained on Tn ∈ [−1, 1] for UNWANTED eigenmode.
For obtaining WANTED eigenmode, we have to choose α slightly above the maximum
WANTED eigenvalue. For staging process, X is changed to be shifted form:

X(µ) =
2(H − µ)2 − α2 − (β + |µ|)2

(β + |µ|)2 − α2
, (19)

with parameter µ and in order to obtain the next stage of eigenvalue distribution, we tune
this parameter to an appropriate value.

2 Spinor decomposition

Recalling the explicit form of Hee in Eq.(17), it can be simply represented in Weyl spinor
basis using notation of gamma matrix:

Hee = Γ5Dee = Γ5

[

M5 − K2(M4)eoM
−1
5 (M4)oe

]

(20)
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Examples of Covariant Approximations 
(contd.)	


n  All Mode Averaging 
AMA 
 Sloppy CG  or 
 Polynomial  
   approximations 
 

0 0.5 1 1.5 2 2.5

1

10

100

1000

Figure 3: Polynomial approximation of 1/λ, Npoly = 10, the mini-max approximation for
the relative error, for λ ∈ [0.052, 1.672].
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accuracy	
  control	
  :	
  
•  	
  low	
  mode	
  part	
  :	
  #	
  of	
  eig-­‐mode	
  
•  	
  mid-­‐high	
  mode	
  :	
  	
  degree	
  of	
  poly.	




All mode approximation via sloppy CG	
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err-inv_poly.nev_rsd1e-8_k234

| poly(lam) * lam - 1 |     vs lam
16x32x16, ml=0.01, traj 2200, nev=100

Figure 5: Same as Fig. 4 except the 100 lowest eigen modes are used to deflate the CG.
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| poly(lam) * lam  - 1 |  vs  lam 
16x32x16, ml=0.01, traj 2200, nev=0

Figure 4: Quality of the approximation in CG, λ × px,k(λ) ≈ 1, for various stopping condi-
tions. The top plot is λ× px,k(λ) as a function of λ in the spectrum region of (4D-even-odd)
DWF Dirac operator for 163×32,ml = 0.01 trajectory = 2,200. No deflation is done for CG.
In legend, one could also see the degree of polynomial k. The bottom plot is the relative
error of of the approximation, |λ× px,k(λ)− 1|.
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no	
  eigenvector	
  assists	
 100	
  eigenvector	
  assists	


rsd	
  =	
  1e-­‐2	


rsd	
  =	
  1e-­‐3	


rsd	
  =	
  1e-­‐4	


rsd	
  =	
  1e-­‐6	


•  Conjugate	
  residual	
  with	
  sloppy	
  convergence	
  criteria,	
  which	
  is	
  equivalent	
  to	
  	
  
construct	
  a	
  polynomial	
  approximaRng	
  1/λ	
  

•  The	
  starRng	
  vector	
  needs	
  to	
  be	
  translaRon	
  invariant	
  to	
  be	
  a	
  covariant	
  approx.	
  
•  low	
  eigenvectors	
  reduces	
  the	
  size	
  of	
  the	
  dynamic	
  range	
  of	
  1/λ	
  
	
  	
  	
  	
  	
  	
  	
  →　Beher	
  approximaRon	
  with	
  smaller	
  polynomial	
  degrees	
  
•  low	
  λ　region	
  has	
  larger	
  relaRve	
  errors	
  
•  One	
  could	
  employ	
  other	
  construcRon	
  of	
  polynomial	
  approximaRon	
  for	
  1/λ,	
  	
  

such	
  as	
  min-­‐max,	
  conjugate	
  rasidual	




Correlation	


n  NN propagator at short time-slice 	


18	




Correlation	


n  NN propagator (LMA) at short time-slice 	
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Correlation	


n  NN propagator (AMA) at short time-slice 	
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AMA results for hadron 2pt functions 
[ E. Shintani ]	


 



Nucleon effective mass 
using DWF	
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Hadronic vacuum polarization( AsqTad )	
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Cost comparison for test cases	

n  x 16 for DWF Nucleon mass (MPS=330MeV, 3fm) 
n  x 20 for AsqTad HVP  (MPS=470 MeV, 5 fm) 
n  should be better for lighter mass & larger volume ?	


5

TABLE IV. Computational cost. The unit of cost is one quark
propagator without deflated CG, per configuration. NG = 32
for nucleon masses and 708 for HVP. The last column gives
the cost to achieve the same error for each method, normalized
to [2] (nucleon mass mN ) and [1] (HVP) and scaled by the er-
rors in Tab. III. HVP scaled costs are maximum and minimum
in the range Q2 = 0 − 1 GeV2. For m = 0.005, in [2], non-
relativistic spinors were used which means the scaled costs in
this case were increased by two. The cost of O(appx)

G for AMA
is split to show the sloppy CG and low-mode costs separately.

Nconf Nmeas LM O O
(appx)
G Tot. scaled cost

mN m = 0.005, 400 LM gauss pt

AMA 110 1 213 18 91+23 350 0.063 0.065

LMA 110 1 213 18 23 254 0.279 0.265

Ref. [2] 932 4 - 3728 - 3728a 1 1

m = 0.01, 180 LM

AMA 158 1 297 74 300+22 693 0.203 0.214

LMA 158 1 297 74 22 393 0.699 0.937

Ref. [2] 356 4 - 1424 - 1424 1 1

HVP m = 0.0036, 1400 LM max min

AMA 20 1 96 11 504+420 1031 0.387 0.050

LMA 20 1 96 11 420 527 10.3 3.56

Ref. [1] 292 2 - 584 - 584 1 1

a In [2] a doubled source was used to reduce this cost by two.

covariant under lattice symmetries. This is a general-
ization of low-mode averaging which reduces the statisti-
cal error for observables that are not dominated by low-
modes. We have shown through several numerical ex-
amples that all-mode averaging is a powerful example
of CAA, performing better than LMA and works well
even in cases where LMA fails. In the examples given
here, AMA reduced the cost by factors up to ∼ 20, over
conventional computations, and these factors will only
increase for larger lattice sizes and smaller quark masses.
The method has great potential for investigations of dif-
ficult but important physics problems where statistical
fluctuations still dominate the total uncertainty, like the
nucleon electric dipole moment or hadronic contributions
to the muon anomalous magnetic moment. Since CAA
works without introducing any statistical bias (so long
as condition appx-3 holds), there are many possibilities
that also satisfy appx-1 and appx-2: One can construct
O(appx) using different lattice fermions and parameters
(mass, Ls (for DWF), boundary conditions and so on).

�O(appx)
G � can be measured on a larger number of gauge

configurations, which is potentially advantageous for ob-
servables dominated by gauge noise such as disconnected
diagrams. One may also consider other types of approx-
imations such as the hopping parameter expansion used
in [21], or approximations at the level of hadronic Green’s
functions.
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Variants of CAA	


n  CAA  (Covariant Approximation Averaging) 
•  Name 

   approximation,   
   approximation accuracy control 
 

•  LMA (Low Mode Averaging)    
   low mode approx of propagator,   
   # of eigen vectors  

•  AMA (All Mode Averaging),   
   low mode (optional)+Polynomial approx,  
    (# of eigenV) Polynomial degree 
      (also other type of minimization) 

•  Heavy quark averaging  [T. Kawanai] 
    heavier mass quark prop as an approx of light prop 
     quark mass 

•  ?????	




Other Examples of Covariant 
Approximations	


n  Less expensive (parameters of) fermions : 
 
•     Larger mf 
•     Smaller Ls DWF 
•     Mobius    
•   even staggered or Wilson ….. 

 

n  Different boundary conditions 
n  More than one kinds of approximation  

  (c.f. multi mass Hasenbushing) 
 
Strongly depends on Observables / Physics  (YMMV) 
Would work better for EXPENSIVE observables and/or 
fermion,  potentially a game changer ?	




Larger mass as CAA 
  [ Taichi Kawanai ]	


reduces the dispersion of rest part. Also I plot the parameter t and q. These parameters satisfy the

relation r = q + 1. We need r > 1/2 to reduce the statistical error in final analysis.

Finally I show the results for the effective mass in the Fig.3. and Table 1. The results for im-

provement are consistent with original ones within error bars and its statustical error bars are slightly

smaller than original ones. Actually approximation plotted as green points is corresponding to Bs

meson in this test. The ratio of dispersion for improvement to original one is also plotted as gray line

on the right axis. Fitting results are shown in Table 1. As a result, the improvement finaly gives 82 %

statistical error of original. This improvement rate is corresponding to statistics increased by half. As

an experiment, I have tried to extrapolate the data by using the improvement and approximate one.

The advantage of this error reduction techniques using heavier quark propagator is what approximate

is used to extrapolate to physical point. Finally I show the results for the effective mass in the Fig.3.
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Figure 3: (left) The effective mass plots. The ratio of dispersion for improvement to original one is

also plotted as gray line. (right)Extrapolation

and Table 1.

3 Estimation for error reduction per cost.

In this section, I will discuss what is optimal choice of NG. Here, let me consider following game. one

firstly has N measurement for target observable, but none for improvement and standard deviation is

defined as σ in this case. He is still thinking which increasing statistics for target or improvement is

more economical to get a minimal error. Cost parameter c is define here, which indicate that how much

cost to calculate single measurement for improvement is smaller than original one. For example, if the

time to calculate for the improvement is twice shorter than original, c = 0.5. Therefore, The cost to

calculate NNG improvement observables is same as cost to add cNNG statistics to original observables.

He compare the errors obtained from both case with the same cost: (i) N original measurements +

NNG improvement measurements (ii) only N(1+cNG) original measurements. The standard deviation

Table 1: Result for masses

fit range χ2/d.o.f. p-vale improvement rate

org [6:15] 3.06142e+00 +/- 3.76763e-03 3.0614(38) 1.20 29% -

NG = 8 [6:15] 3.06306e+00 +/- 2.45807e-03 3.0631(25) 1.55 12% 65%

NG = 4 [6:15] 3.06355e+00 +/- 2.70984e-03 3.0636(27) 1.19 30% 72%

NG = 2 [6:15] 3.06379e+00 +/- 3.09905e-03 3.0638(31) 0.89 53% 82%

extrapolate org 3.02130e+00 +/- 6.50622e-03 3.0213(65) -

NG = 8 3.02518e+00 +/- 3.78378e-03 3.0252(38) 74%

3

24^3x64x16,	
  20	
  config	
  	
  	
  	
  ,	
  	
  	
  	
  
	
  	
  mf=0.01	
  (target)	
  	
  	
  	
  mf=0.04	
  	
  “approximaRon”	




Summary	


n  CAA , LMA, AMA, ….  :  Class of Statistical error reduction technique 
 
•  AMA is a  valence version of the Hasenbush trick 
•  AMA could improve existing data easily 

 
1.   Do Full CG for selected config / source 

     (existing data :   This expensive part is already done ) 
 

2.   Find a good approximation (accuracy of sloppiness / number of eigenvalue) that reproduce your 
exact CG result by, say, 95% 
  (mathematically find a strongly correlated approximation,  R(corr) > 0.5 ) 

3.  Subtract the approx obs with same source location as full CG   
 
        

4.  Perform many source location using approx obs, average, add back 
       
 
 

         You could use other config. 
 
 

l  Your Millage May Varies…. 
l  Home Work :   find a good / cheap / funny  approximations 

        

 



AMA in USQCD Static-light  
[ PI Tomomi Ishikawa ] 	


0 5 10 15
t

0

0.5

1

po
rti

on
 o

f 2
pt

 fu
nc

tio
n

0 5 10 15
t

0

10

20

30
er

ro
r n

or
m

al
iz

ed
 b

y 
<O

> 
[%

]
O
O - Oapprox
Oapprox
Oapprox src summedO - Oapprox

Oapprox

0 5 10 15
t

0

0.5

1

po
rti

on
 o

f 2
pt

 fu
nc

tio
n

0 5 10 15
t

0

10

20

30

40

er
ro

r n
or

m
al

iz
ed

 b
y 

O
 [%

]

O - Oapprox
Oapprox
Oapprox src summed

O - Oapprox

Oapprox

LMA	
 AMA	


16^3x64x16,	
  	
  20	
  conf,	
  100	
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3pt function  [ E. Shintani ]	


n  Application to the form factor measurement 
•  CP-even and CP-odd nucleon EM form factor 

•  Complicated structure in the ratio method 

 
Ratio has complicated combination of both low and high 

mode, 
so AMA has more advantage than LMA even if AMA need larger 

cost.	


Cf.	
  Yamazaki	
  et	
  al.,	
  PRD79,	
  114505	
  (2009)	
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LMA	
 AMA	


q2	
  GeV2	
 Ge	
  (LMA)	
 Ge	
  (AMA)	


0.0	
 0.96(11)	
 0.98(3)	


0.198	
 0.72(12)	
 0.73(3)	


0.382	
 0.58(10)	
 0.56(3)	


0.574	
 0.48(10)	
 0.45(2)	


0.733	
 0.52(12)	
 0.44(3)	


StaRsRcal	
  error	
  of	
  AMA	
  is	
  
about	
  3-­‐-­‐5	
  Rmes	
  smaller	
  
than	
  LMA.	
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Comparison of isovector F1,2 

[ E. Shintani ]	


• 	
  	
  Results	
  are	
  well	
  consistent	
  with	
  full	
  staRsRcs.	
  
• 	
  	
  StaRsRcal	
  error	
  is	
  much	
  reduced	
  in	
  AMA	
  rather	
  than	
  LMA.	
  
• 	
  	
  Compared	
  to	
  full	
  staRsRcs,	
  AMA	
  results	
  (m=0.01)	
  have	
  sRll	
  1.2	
  -­‐-­‐	
  1.5	
  
Rmes	
  larger	
  staRsRcal	
  error	
  (except	
  for	
  F1(0)).	
  
• 	
  	
  This	
  may	
  be	
  due	
  to	
  correlaRon	
  between	
  different	
  source	
  points.	
  

m=0.01	
 m=0.01	
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CP-odd part	


n  Nucleon 2pt function with θ reweighting 

•  Q is topological charge. 
•  α which is CP-odd phase is necessary to extract EDM form 

factor. 
•  It is good check of applicability of LMA/AMA to CP-odd sector. 
•  Effective mass plot shows the consistency of the above formula 
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CP-odd part [ E. Shintani ]	


• 	
  	
  There	
  is	
  good	
  plateau	
  in	
  AMA,	
  and	
  this	
  figure	
  actually	
  shows	
  CP-­‐odd	
  part	
  
has	
  consistent	
  exponent	
  with	
  CP-­‐even(nucleon	
  mass)	
  part	
  as	
  expected.	
  
• 	
  	
  CP-­‐odd	
  part	
  has	
  both	
  contribuRon	
  from	
  high	
  and	
  low	
  lying	
  mode.	
  	
  
• 	
  	
  AMA	
  works	
  well	
  even	
  in	
  CP-­‐odd	
  sector	
  !	
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Nucleon Magnetic formfactor 
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Figure 7: Gm for neutron at m = 0.01. (Top) Original, (Middle) LMA, (Bottom) AMA.
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Original	
  CG	
 AMA	




N,	
  m=0.01,	
  point	
  sink	
 N,	
  m=0.005,	
  point	
  sink	


LMA	
  
[7,15]	


AMA	
  
[7,15]	


staRsRcs	
 Full	
  staRsRcs	
  (Gaussian	
  sink)	


m	
  =	
  0.01	
 0.712(16)	
 0.710(5)	
 Nconf=80,	
  N’mes=32	
 0.703(4),	
  Nconf	
  =	
  356,	
  Nmes=4	


m	
  =	
  0.005	
 0.673(22)	
 0.666(13)	
 Nconf=26,	
  N’mes=32	
 0.663(4),	
  Nconf	
  =	
  932,	
  Nmes=4	


Yamazaki	
  et	
  al.,	
  PRD79,	
  114505	
  (2009)	
  

Full	
  staRsRcs	
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Cost (in the case of 24cube m=0.01)	


Use of unit of quark propagator “prop” in full CG w/o 
deflation 

n  Case of full statistics  
In Nconf = 356, Nmes=4, 
              Total :  356×4 = 1424 prop 

n  Case of AMA w/o deflation 
Since calculation of Oappx need 1/50 prop, then in Nconf=81, 

N’mes=32 
              Total :  80 + 80×32/50 = 131 prop ⇒ 10 times fast 

n  Case of AMA w/ deflation 
When using 180 eigenmode, calculation of Oappx need 1/80 prop,  
but in this case the calculation of lowmode is ~1 prop/configs. 
Deflated CG makes reduction of full CG to 1/3 prop, then 
              Total :  80/3 + 80×32/80 + 80 = 138 prop ⇒ 10 times fast 
Note that stored eigehmode is useful for other works. 

Yamazaki	
  et	
  al.,	
  PRD79,	
  114505	
  (2009)	
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Correlation	


n  NN propagator at long time-slice 	
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Correlation	


n  NN propagator (LMA) at long time-slice 	
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Correlation	


n  NN propagator (AMA) at long time-slice 	
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Other technical details	


n  Implicitly Restarted Lanczos with Polynomial 
acceleration and spectrum shifts for DWF and 
staggered in CPS++  [ E. Shintani, T. Blum, TI ]. 

n  Eigen Vector compression / decompression 

n  Sea Electric Charge is now controlled by QED 
reweighting 
     [ T. Ishikawa et. al. arXiv:1202.6018 ] 

n  Aslash-SeqSrc method 


