QUDA: QCD on GPUs

Mike Clark, NVIDIA Developer Technology Group

Overview

- QUDA Overview
- Single-GPU Wilson solver
- Multi-GPU strategy and performance
- Getting into QUDA

QUDA overview

- "QCD on CUDA" <u>http://lattice.github.com/quda</u>
- Effort started at Boston University in 2008, now in wide use as the GPU backend for Chroma, MILC, and various homegrown codes.
- Provides:
 - Various solvers for several discretizations, including multi-GPU support and domain-decomposed (Schwarz) preconditioners.
 - Additional performance-critical routines needed for gauge field generation.
- Contributors welcome!

QUDA overview

- Implements most discretized Dirac operators
 - Wilson
 - Wilson-Clover
 - Twisted mass
 - Improve staggered (ASQTAD and HISQ)
 - Domain Wall

Collaborators and QUDA developers

- Ron Babich (NVIDIA)
- Kip Barros (LANL)
- Rich Brower (Boston University)
- Justin Foley (University of Utah)
- Joel Giedt (Rensselaer Polytechnic Institute)
- Steve Gottlieb (Indiana University)
- Bálint Joó (Jefferson Lab)
- Claudio Rebbi (Boston University)
- Guochun Shi (NCSA -> Google)
- Alexei Strelchenko (Cyprus Institute -> FNAL)
- Frank Winter (The University of Edinburgh)

USQCD software stack

(Many components developed under the DOE SciDAC program)

Steps in a lattice QCD calculation

- 1. Generate an ensemble of gluon field ("gauge") configurations.
 - Produced in sequence, with hundreds needed per ensemble. This requires > O(10 Tflops) sustained for several months (traditionally Crays, Blue Genes, etc.)
 - 50-90% of the runtime is in the solver.

Steps in a lattice QCD calculation

- 2. "Analyze" the configurations
 - Can be farmed out, assuming O(1 Tflops) per job.
 - 80-99% of the runtime is in the solver.
 GPUs have gained a lot of traction here.

$$D_{ij}^{\alpha\beta}(x,y;U)\psi_{j}^{\beta}(y) = \eta_{i}^{\alpha}(x)$$

or "Ax = b"

Krylov solvers

- (Conjugate gradients, BiCGstab, and friends)
 - Search for the solution to Ax = b in the subspace spanned by {b, Ab, A²b, ... }.
 - Upshot:
 - We need fast code to apply A to an arbitrary vector (called the *Dslash* operation in LQCD).
 - ... as well as fast routines for vector addition, inner products, etc. (home-grown "BLAS")

GPU Architecture: Two Main Components

Global memory

- Analogous to RAM in a CPU server
- Accessible by both GPU and CPU
- Currently up to 6 GB
- Bandwidth currently up to 177 GB/s for Quadro and Tesla products
- ECC on/off option for Quadro and Tesla products

Streaming Multiprocessors (SMs)

- Perform the actual computations
- Each SM has its own:
 - Control units, registers, execution pipelines, caches

GPU Architecture - Fermi: Streaming Multiprocessor (SM)

- 32 CUDA Cores per SM
 - 32 fp32 ops/clock
 - 16 fp64 ops/clock
 - 32 int32 ops/clock
- 2 warp schedulers
 - Up to 1536 threads concurrently
- 4 special-function units
- 64KB shared mem + L1 cache
- 32K 32-bit registers
- 63 registers-per-thread limit
 - Exceeding this will cause variables to spill into gmem

	Instruction Cache				
	Scheduler Dispatch		Scheduler		
			Dispatch		
		Regist	er File		
	Core	Core	Core	Core	
	Core	Core	Core	Core	
	Core	Core	Core	Core	
	Core	Core	Core	Core	
	Core	Core	Core	Core	
	Core	Core	Core	Core	
	Core	Core	Core	Core	
	Core	Core	Core	Core	
	Load/Store Units x 16				
	Special Func Units x 4				
	Interconnect Network				
	64K Configurable Cache/Shared Mem				
	Uniform Cache				

GPU Architecture - Fermi: CUDA Core

- Floating point & Integer unit
 - IEEE 754-2008 floating-point standard
 - Fused multiply-add (FMA) instruction for both single and double precision
- Logic unit
- Move, compare unit
- Branch unit

Core

Thursday, August 23, 12

GPU Kernels

- A parallel function that runs on the GPU is called a kernel
- A kernel is launched as a grid of blocks of threads
 - IckIdx and threadIdx are 3D
- Built-in variables used to identify threads:
 - threadIdx
 - blockIdx
 - blockDim
 - gridDim

Standard C

Parallel C

```
void saxpy(int n, float a,
                                float *x, float *y)
{
    for (int i = 0; i < n; ++i)
    y[i] = a*x[i] + y[i];
}
```

```
int N = 1 << 20;
```

```
// Perform SAXPY on 1M elements
saxpy(N, 2.0, x, y);
```

```
__global__
void saxpy(int n, float a,
                              float *x, float *y)
{
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if (i < n) y[i] = a*x[i] + y[i];
}</pre>
```

```
int N = 1<<20;
cudaMemcpy(d_x, x, N, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, N, cudaMemcpyHostToDevice);
```

```
// Perform SAXPY on 1M elements
saxpy<<<<4096,256>>>(N, 2.0, d_x, d_y);
```

cudaMemcpy(y, d_y, N, cudaMemcpyDeviceToHost);

http://developer.nvidia.com/cuda-toolkit

- Disparity worse with every generation
- •All architectures have this problem
- •Processors get wider
- •Memory hierarchy gets deeper

Memory Hierarchy

Single GPU Wilson Solver

Krylov Solver Implementation

- Complete solver **must** be on GPU
 - Transfer b to GPU
 - Solve Mx=b
 - Transfer x to CPU
- Time-critical kernel is the mat-vec
 - Applying the Dirac operator to a spinor field
- Also require BLAS level-1 type operations
 - AXPY operations: b += ax just like yesterday's vector addition
 - NORM operations: c = (b,b)

while $(|\mathbf{r}_k| \geq \varepsilon)$ { $\beta_k = (\mathbf{r}_k, \mathbf{r}_k)/(\mathbf{r}_{k-1}, \mathbf{r}_{k-1})$ $\mathbf{p}_{k+1} = \mathbf{r}_k - \beta_k \mathbf{p}_k$ $\alpha = (\mathbf{r}_k, \mathbf{r}_k)/(\mathbf{p}_{k+1}, \mathbf{A}\mathbf{p}_{k+1})$ $\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha \mathbf{A}\mathbf{p}_{k+1}$ $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \mathbf{p}_{k+1}$ k = k+1}

conjugate gradient

QUDA - General Strategy

- Assign a single space-time point to each thread -> V = XYZT threads
 - Map 4-d space-time index to a 1-d thread index

int gindex = threadIdx.x + blockIdx.x*blockDim.x

• Reverse mapping obtained from modular arithmetic

gindex = (((t*Z+z)*Y+y)*X+x

- $V = 24^4 => 3.3 \times 10^6$ threads
- Fine-grained parallelization
- Maximize performance
 - Field reordering
 - Exploit physical symmetries
 - Mixed-precision methods

Wilson Matrix

Nearest neighbor Local

Wilson Matrix

4d nearest-neighbor stencil operator acting on a vector field

Mapping the Wilson Dslash to CUDA

- Looping over direction each thread must
 - Load the neighboring spinor (24 numbers x8)
 - Load the color matrix connecting the sites (18 numbers x8)
 - Do the computation
 - Save the result (24 numbers)
- Minimum resources required
 - 12 + 18 + 24 = 54 registers
 - Fermi supports 63x 32-bit registers per thread
- Arithmetic intensity
 - 1320 floating point operations per site
 - 1440 bytes per site (single precision)
 - 0.92 naive arithmetic intensity

Mapping the Wilson Dslash to CUDA

- Looping over direction each thread must
 - Load the neighboring spinor (24 numbers x8)
 - Load the color matrix connecting the sites (18 numbers x8)
 - Do the computation
 - Save the result (24 numbers)
- Minimum resources required
 - 12 + 18 + 24 = 54 registers
 - Fermi supports 63x 32-bit registers per thread
- Arithmetic intensity
 - 1320 floating point operations per site
 - 1440 bytes per site (single precision)
 - 0.92 naive arithmetic intensity

Tesla M2090			
Gflops	1333		
GBytes/s	177		
AI	7.5		

bandwidth bound

Memory Coalescing

- To achieve maximum bandwidth threads within a warp must read from consecutive regions of memory
 - Each thread can load 32-bit, 64-bit or 128-bit words
 - CUDA provides built-in vector types

type	32-bit	64-bit	128-bit
int	int	int2	int4
float	float	float2	float4
double		double	double2
char	char4		
short	short2	short4	

Field Ordering

• Typical CPU spinor field ordering: array of spinors (V x 24 floats)

• Reorder fields for coalescing: 6V x float4

- Similar reordering required for color matrices: 3V x float4
- 16-bit uses short4, 64-bit uses double2

Reducing Memory Traffic

- SU(3) matrices are all unitary complex matrices with det = 1
 - 12-number parameterization: reconstruct full matrix on the fly in registers

$$\begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} \longrightarrow \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} c = (axb)^*$$

- Additional 384 flops per site
- 8 number parameterization

- Additional 856 flops per site
- Gauge fix to unit gauge field along T-dimension

Reducing Memory Traffic

- Impose similarity transforms to increase sparsity
 - Globally change Dirac matrix basis

- (Advanced) Still memory bound Can further reduce memory traffic by truncating the precision
 - Use 16-bit fixed-point representation

Wilson-Dslash Performance

- For illustration only; not our latest and greatest
- Runs were done on a single Fermi GTX 480 (~M2090)
- Typical single-node performance on Westmere
 - ~25 Gflops for typical optimized production code
 - ~50 Gflops when highly optimized (Smelyanskiy et al)
- Hold spatial lattice dimensions fixed 24³, vary temporal extent
 - Demonstrates the need for minimum problem size to hide latencies

Wilson performance - single precision

Wilson performance - double precision

Wilson performance - half precision

Parallel Reduction

- Common and important data parallel primitive in solvers
- Tree-based approach used within each thread block
 - Use shared memory to communicate within thread blocks

Parallel Reduction

• Avoid global sync by decomposing computation into multiple kernel invocations

Optimizing the Solver: Kernel Fusion

Optimizing the Solver: Kernel Fusion

Mixed-Precision Solvers

- Often require solver tolerance beyond limit of single precision
- But single and half precision much faster than double
- Use mixed precision
 - e.g.defect-correction

- QUDA uses Reliable Updates (Sleijpen and Van der Worst 1996)
- Almost a free lunch
 - Iteration count increases

Thursday, August 23, 12

Compare to Multi-Core cluster GPUs vs. CPUs

Multiple GPUs

The need for multiple GPUs

- Only yesterday's lattice volumes fit on a single GPU
- More cost effective to build multi-GPU nodes
 - Better use of resources if parallelized
- Gauge generation requires strong scaling
 - Can GPUs replace traditional super computers?

The need for multiple GPUs

- Only yesterday's lattice volumes fit on a single GPU
- More cost effective to build multi-GPU nodes
 - Better use of resources if parallelized
- Gauge generation requires strong scaling
 - Can GPUs replace traditional super computers?

The need for multiple GPUs

- Only yesterday's lattice volumes fit on a single GPU
- More cost effective to build multi-GPU nodes
 - Better use of resources if parallelized
- Gauge generation requires strong scaling
 - Can GPUs replace traditional super computers?

Multiple GPUs

- Many different mechanisms for controlling multiple GPUs
 - MPI processes
 - CPU threads
 - Multiple GPU per thread and do explicit switching
 - Combinations of the above
- QUDA uses the simplest: 1 GPU per MPI process
 - Allows partitioning over node with multiple devices and multiple nodes
 - cudaSetDevice(local_mpi_rank);

CUDA Stream API

- CUDA provides the stream API for concurrent work queues
 - Provides concurrent kernels and host<->device memcpys
 - Kernels and memcpys are queued to a stream
 - kernel<<<block, thread, shared, streamId>>>(arguments)
 - cudaMemcpyAsync(dst, src, size, type, streamId)
 - Each stream is an in-order execution queue
 - Must synchronize device to ensure consistency between streams
 - cudaDeviceSynchronize()
- QUDA uses the stream API to overlap communication of the halo region with computation on the interior

1D Lattice de Paraiteization

Multi-dimensional lattice decomposition

Multi-dimensional Ingredients

- Packing kernels
 - Boundary faces are not contiguous memory buffers
 - Need to pack data into contiguous buffers for communication
 - One for each dimension
- Interior dslash
 - Updates interior sites only
- Exterior dslash
 - Does final update with halo region from neighbouring GPU
 - One for each dimension

2-d example

- Checkerboard updating scheme employed, so only half of the sites are updated per application
 - Green: source sites
 - Purple: sites to be updated
 - Orange: site update complete

Step 1

• Gather boundary sites into contiguous buffers to be shipped off to neighboring GPUs, one direction at a time.

Step 1

Gather boundary sites into contiguous buffers to be shipped off to neighboring GPUs, one direction at a time.

Step 1

• Gather boundary sites into contiguous buffers to be shipped off to neighboring GPUs, one direction at a time.

Step 1

• Gather boundary sites into contiguous buffers to be shipped off to neighboring GPUs, one direction at a time.

Step 2

An "interior kernel" updates all local sites to the extent possible. Sites along the boundary receive contributions from local neighbors.

Step 3

Boundary sites are updated by a series of kernels - one per direction.

A given boundary kernel must wait for its ghost zone to arrive

Step 3

Boundary sites are updated by a series of kernels - one per direction.

A given boundary kernel must wait for its ghost zone to arrive

Step 3

Boundary sites are updated by a series of kernels - one per direction.

A given boundary kernel must wait for its ghost zone to arrive

Step 3

Boundary sites are updated by a series of kernels - one per direction.

A given boundary kernel must wait for its ghost zone to arrive

Multi-dimensional Communications Pipeline

Performance results

- Results presented at SC'11 (not taking advantage of more recent optimizations).
- Test Bed: "Edge" at LLNL
 - 206 nodes available for batch jobs, with QDR infiniband
 - 2 Intel Xeon X5660 processors per node (6-core Westmere @ 2.8 GHz)
 - 2 Tesla M2050 cards per node, sharing 16 PCI-E lanes via a switch
 - ECC enabled
 - CUDA 4.0

Building a scalable solver

- Inter-GPU communication hurts, so let's avoid it.
- In the strong-scaling regime, we employ a solver with a domaindecomposed preconditioner.
- Most of the flops go into the preconditioner, where communication is turned off.
- Half precision is perfect here.
- Iteration count goes up, but it's worth it.

Building a scalable solver

- Inter-GPU communication hurts, so let's avoid it.
- In the strong-scaling regime, we employ a solver with a domaindecomposed preconditioner.
- Most of the flops go into the preconditioner, where communication is turned off.
- Half precision is perfect here.
- Iteration count goes up, but it's worth it.

*GPU Tflops scaled according solver iterations

This is the future of capability computing...

Tsubame 2.0 4224 GPUs

Tianhe-1A 7168 GPUs

coming soon...

Titan >20 Petaflops 18,688 GPUs

Strong scaling on TitanDev (Cray XK6)

960 nodes, each with:

- 1 Tesla X2090
- 1 Opteron (16-core/8-module "Interlagos")
- Cray Gemini interconnect
- Development platform in anticipation of Titan

What haven't we covered?

- Non-solver kernels required for HMC
 - Gauge force, fermion force, link fattening
- Advanced optimizations
 - Using shared memory for cache blocking
 - Autotuning
 - Texture cache and half precision
 - and lots more
HMC timing breakdown

Time distribution for a run on 2048 XT3 (BigBen) cpus using a $40^3 \times 96$ grid ($5 \times 10^2 \times 6$ per cpu) with $m_l = 0.1 m_s$:

Activity	time(s)	MF/cpu	per cent
CG	2987	530	58.5
FF	1125	579	22.0
GF	489	469	9.5
Fat	442	627	8.7
Long	24	340	<1
Input config.	41		<1
total above	5108		
unaccounted	104		1.9
wallclock	5212		

Work in progress

- Gauge field generation on GPUs, for 2 different discretizations & applications:
 - Improved staggered in MILC
 - Wilson and Wilson-clover in Chroma (leveraging Frank Winter's QDP-JIT framework)
- Adaptive geometric multigrid on GPUs
 - GPUs give 5-10x in price/performance
 - Multigrid has the potential to give another 10x (at least for Wilson and Wilson-clover) at light quark masses.

Getting into QUDA

Using QUDA

- QUDA designed to accelerate pre-existing LQCD applications
 - Chroma, MILC, CPS, BQCD
- Solo QUDA workflow possible
 - tests directory includes linear solver examples
 - Gauge fields loaded through QIO
 - tests main use is for self contained correctness checking

Using QUDA

•QUDA provides a simple C interface for the outside world

Host applications simply pass cpu-side pointers
QUDA takes care of all field reordering and data copying
Both a blessing and curse

#include <quda.h>

int main() {

// initialize the QUDA library
initQuda(device);

// load the gauge field
loadGaugeQuda((void*)gauge, &gauge_param);

// perform the inversion
invertQuda(spinorOut, spinorIn, &inv_param)

// free the gauge field
freeGaugeQuda();

// finalize the QUDA library
endQuda();

Getting Involved with QUDA

- QUDA is open source
 - All development done in github
- Features requests are welcome
- More developers are even more welcome

Summary

- Glimpse into the QUDA library
 - Implementing the Dslash
 - Multi-GPU considerations
- Possible take-home messages
 - Start experimenting with writing code with GPUs
 - CUDA C/C++, OpenACC, it doesn't matter
 - Using GPUs + QUDA as a black box to accelerate physics
 - Looking deeper into QUDA
 - contact me <u>mclark@nvidia.com</u>

Backup slides

Domain Decomposition

- Non-overlapping blocks simply have to switch off inter-GPU communication
- Preconditioner is a gross approximation
 - Use an iterative solver to solve each domain system
 - Require only 10 iterations of domain solver \Rightarrow 16-bit
- Need to use a flexible solver \Rightarrow GCR
- Block-diagonal preconditoner impose λ cutoff
- Finer Blocks lose long-wavelength/low-energy modes
 - keep wavelengths of ~ $O(\Lambda_{QCD}^{-1})$, Λ_{QCD}^{-1} ~ 1fm
- Aniso clover: $(a_s=0.125 \text{fm}, a_t=0.035 \text{fm}) \implies 8^3x32$ blocks are ideal
 - 48^3x512 lattice: 8^3x32 blocks \implies 3456 GPUs

Run-time autotuning

Motivation:

- Kernel performance (but not output) strongly dependent on launch parameters:
 - gridDim (trading off with work per thread), blockDim
 - blocks/SM (controlled by over-allocating shared memory)

Design objectives:

- Tune launch parameters for all performance-critical kernels at runtime as needed (on first launch).
- Cache optimal parameters in memory between launches.
- Optionally cache parameters to disk between runs.
- Preserve correctness.

Auto-tuned "warp-throttling"

Motivation: Increase reuse in limited L2 cache.

Thursday, August 23, 12

Run-time autotuning: Implementation

Parameters stored in a global cache: static std::map<TuneKey, TuneParam> tunecache;

- TuneKey is a struct of strings specifying the kernel name, lattice volume, etc.
- TuneParam is a struct specifying the tune blockDim, gridDim, etc.
- Kernels get wrapped in a child class of Tunable (next slide)
 tuneLaunch() searches the cache and tunes if not found: TuneParam tuneLaunch(Tunable &tunable, QudaTune enabled, QudaVerbosity verbosity);

Run-time autotuning: Usage

Before:

myKernelWrapper(a, b, c);

After:

MyKernelWrapper *k = new MyKernelWrapper(a, b, c);

k->apply(); // <-- automatically tunes if necessary</pre>

- Here MyKernelWrapper inherits from Tunable and optionally overloads various virtual member functions (next slide).
- Wrapping related kernels in a class hierarchy is often useful anyway, independent of tuning.

Virtual member functions of Tunable

Invoke the kernel (tuning if necessary):

- apply()

- Save and restore state before/after tuning:
 - preTune(), postTune()

Advance to next set of trial parameters in the tuning:

- advanceGridDim(), advanceBlockDim(), advanceSharedBytes()
- advanceTuneParam() // simply calls the above by default

Performance reporting

- flops(), bytes(), perfString()

• etc.