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Overview NVIDIA

= QUDA Overview
= Single-GPU Wilson solver

* Multi-GPU strategy and performance
* Getting into QUDA
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QUDA overview =i

= “QCD on CUDA” - http://lattice.github.com/quda

» Effort started at Boston University in 2008, now in wide use
as the GPU backend for Chroma, MILC, and various home-
grown codes.

= Provides:

— Various solvers for several discretizations, including multi-GPU
support and domain-decomposed (Schwarz) preconditioners.

— Additional performance-critical routines needed for gauge field
generation.

= Contributors welcome!

Thursday, August 23, 12


http://lattice.github.com/quda
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QUDA overview

* Implements most discretized Dirac operators
— Wilson
— Wilson-Clover
— Twisted mass
— Improve staggered (ASQTAD and HISQ)
— Domain Wall
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Collaborators and QUDA developers nVIDIA

= Ron Babich (NVIDIA)

= Kip Barros (LANL)

» Rich Brower (Boston University)

= Justin Foley (University of Utah)

= Joel Giedt (Rensselaer Polytechnic Institute)
= Steve Gottlieb (Indiana University)

= Balint Joo (Jefferson Lab)

= Claudio Rebbi (Boston University)

» Guochun Shi (NCSA -> Google)

= Alexei Strelchenko (Cyprus Institute -> FNAL)
* Frank Winter (The University of Edinburgh)
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USQCD software stack nVIDIA

Chroma

Dslashes

QMP
Message Passing Linear Algebra Threading

(Many components developed under the DOE SciDAC program)
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Steps in a lattice QCD calculation nVIDIA

1. Generate an ensemble of gluon field (“gauge”)
configurations.
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Produced in sequence, with hundreds needed per ensemble. This
requires > O(10 Tflops) sustained for several months (traditionally
Crays, Blue Genes, etc.)

50-90% of the runtime is in the solver.
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Steps in a lattice QCD calculation nVIDIA

2. “Analyze” the configurations
= (Can be farmed out, assuming O(1 Tflops) per job.

= 80-99% of the runtime is in the solver.
GPUs have gained a lot of traction here.

DIF (e, y; DY () = nf (x)
or “Ax = b”
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Krylov solvers VIDIA

"= (Conjugate gradients, BiCGstab, and friends)
» Search for the solution to Ax = b in the subspace spanned
by {b, Ab, A®b, ... }.
= Upshot:

— We need fast code to apply A to an arbitrary
vector (called the Dslash operation in LQCD).

— ... as well as fast routines for vector addition,
inner products, etc. (home-grown “BLAS”)
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GPU Architecture: >
Two Main Components

® Global memory

Analogous to RAM in a CPU server
Accessible by both GPU and CPU
Currently up to

Bandwidth currently up to for Quadro and
Tesla products

option for Quadro and Tesla products

»

»

» »

»
DRAM I/F
4/l Wv¥a

® Streaming Multiprocessors (SMs)
Perform the actual computations

-«
¢ Each SM has its own:
® Control units, registers, execution pipelines, caches

4/l NVid 4/l NVdad

VA /[ Giga Thread HOST I/F

4/l ANVyd
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GPU Architecture - Fermi:
Streaming Multiprocessor (SM)

® 32 CUDA Cores per SM
32 fp32 ops/clock
16 fp64 ops/clock ==
¢ 32 int32 ops/clock

¢ 2 warp schedulers
¢ Up to 1536 threads concurrently

® 4 special-function units
¢ 64KB shared mem + L1 cache
& 32K 32-bit registers

¢ 63 registers-per-thread limit

¢ Exceeding this will cause variables
to spill into gmem

Core Core Core Core
Core Core Core Core
Core Core Core Core

Core Core Core Core

Core Core Core Core
Core Core Core Core
Core Core Core Core

Core Core Core Core

Load/Store Units x 16
pecial Func Units x 4

igurable
ie/Shared Mem

o] ache

=

nVvIDIA
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GPU Architecture - Fermi:
CUDA Core

Floating point & Integer unit
* |EEE 754-2008 floating-point

standard

Fused multiply-add (FMA) CUDA Core
instruction for both single and @Dispateh Port]
double precision Operand Collector

* Logic unit
¢ Move, compare unit
® Branch unit

| |
e
| |

 Result Queue
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GPU Kernels 2

¢ A parallel function that runs on the GPU is
called a kernel

® 1 1 Block Block Block
A kernel is launched as a grid of blocks of el e
threads

® blockIdx and threadIdx are 3D Block
s ??'%’%X S

.—’+L

¢ Built-in variables used to identify Block (1,1,0)

threads:
threadIdx
blockIdx

¢ blockDim
gridDim
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3 CUDA C N>

Standard C Parallel C
ﬂ'l obal__ \
void saxpy(int n, float a, void saxpy(int n, float a,
float *x, float *y) float *x, float *y)
{ {
for (int i = 0; 1 < n; ++1) int i = blockIdx.x*blockDim.x + threadIdx.x;
y[i]l = a*x[i] + y[il; if (1 <n) y[i]l = a*x[i] + y[i];
} }
int N = 1<<20; int N = 1<<20;

cudamemcpy(d_x, x, N, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, N, cudaMemcpyHostToDevice);

// Perform SAXPY on 1M elements // Perform SAXPY on 1M elements
saxpy(N, 2.0, X, y); saxpy<<<4096,256>>>(N, 2.0, d_x, d_y);

\\\\‘¥ 4"/// \\\iiiaMemcpy(y, d_y, N, cudaMemcpyDeviceToHost);4‘////

http://developer.nvidia.com/cuda-toolkit
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Theoretical

73X
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eDisparity worse with every generation
e All architectures have this problem
®Processors get wider

eMemory hierarchy gets deeper
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Memory Hierarchy

]
jl j
Most System
M -'_'.‘:::‘ -
~ 343 GB/s l
]
jl ——]
Host System
i —l R
T —
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ARSI ™ A\ G,
Single GPU Wilso Solve N
77\
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* Complete solver must be on GPU

Transfer b to GPU

Solve Mx=b

Transfer x to CPU

* Time-critical kernel is the mat-vec

Applying the Dirac operator to a spinor field

* Also require BLAS level-1 type operations

AXPY operations: b += ax - just like yesterday’s vector addition

NORM operations: ¢ = (b,b)

while (Jri[> €) {
Br = (ri,ri)/(rk-1,rk-1)
Pk+1 = Tk - PPk

o = (r,rk)/(Pk+1,APk+1)
rk+1 = Ik - OLApk+1

Xk+1 = Xk T OPk+1
k=k+1

conjugate
gradient

<

NVIDIA.
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QUDA - General Strategy AVIDIA

e Assign a single space-time point to each thread -> V = XYZT threads
e Map 4-d space-time index to a 1-d thread index

int gindex = threadIdx.x + blockIdx.x*blockDim.x

e Reverse mapping obtained from modular arithmetic
gindex = (((t*Z+z)*Y+y) *X+x

e V =24%=>3.3x10° threads

e Fine-grained parallelization

e Maximize performance
e Field reordering
e Exploit physical symmetries

e Mixed-precision methods
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Wilson Matrix AVIDIA

Dirac spin projector matrices

(4x4 spin space) SU(3) QCD gauge field
l wfﬁ Space\
1A
Mo = =5 (P O UE e + P UL o) 4 (4 )0
= —le o+ (4+m)dy o f
2 7 ’ m quark mass parameter

Nearest neighbor Local
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Wilson Matrix AVIDIA.

Dirac spin projector matrices

(4x4 spin space) SU(3) QCD gauge field
l wfﬂ Space\
Ly (P eULS P U 6 4
LU.’L'/_ 52 ®Ux zc—l—ua:’"" ®U Tr— ,uzc)‘l_( +m>5a§,a§/
| /
= — _-D.CI]' 33/ —l_ (4+m)5$7x/
2 m quark mass parameter

Nearest neighbor Local

4d nearest-neighbor stencil operator acting on a vector field
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* Looping over direction each thread must
e Load the neighboring spinor (24 numbers x8) Dm,aj’ —
e Load the color matrix connecting the sites (18 numbers x8)
* Do the computation
e Save the result (24 numbers)
e Minimum resources required
e 12 + 18 + 24 = 54 registers
 Fermi supports 63x 32-bit registers per thread
* Arithmetic intensity
e 1320 floating point operations per site
* 1440 bytes per site (single precision)

* (.92 naive arithmetic intensity

ﬁVIﬁIA

Thursday, August 23, 12



>
Mapping the Wilson Dslash to CUDA VDA,

=
+
<

O
* Looping over direction each thread must IUi
* Load the neighboring spinor (24 numbers x8) Da:,gc’ — , ‘T.ﬁﬁ
e Load the color matrix connecting the sites (18 numbers x8) vL» I
* Do the computation U .

e Save the result (24 numbers)
e Minimum resources required

e 12 + 18 + 24 = 54 registers

 Fermi supports 63x 32-bit registers per thread
* Arithmetic intensity

e 1320 floating point operations per site

* 1440 bytes per site (single precision)

* (.92 naive arithmetic intensity

=
|
<

Tesla M2090

Gflops 1333
GBytes/s 177
Al 7.5

bandwidth bound
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Memory Coalescing NVIDIA.

 To achieve maximum bandwidth threads within a warp
must read from consecutive regions of memory

— Each thread can load 32-bit, 64-bit or 128-bit words
— CUDA provides built-in vector types

int2 int4
float float float2 float4
double double double?2
char char4
short short2 short4
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Field Ordering >N

« Typical CPU spinor field ordering: array of spinors (V x 24 floats)

Threads read —1 1;: read
non-contiguous data ] 2" read

— 3" read
\/ ~

Spinor
(24 numbers)

e Reorder fields for coalescing: 6V x float4
0 1|2 3

AAAA

Threads read contiguous data

. Similar reordering required for color matrices: 3V x float4

. 16-bit uses short4, 64-bit uses double2
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NVIDIA.

e SU(3) matrices are all unitary complex matrices with det = 1
e 12-number parameterization: reconstruct full matrix on the fly in registers

a] a2 a3
d] a2 a3 _
( b1 bz b3 ) 9 ( b1 by bs ) ¢ = (axb)*

C1C2C3

« Additional 384 flops per site
e 8 number parameterization
ai az as ) arg(ai) arg(c1 Re(az) Im(az)
(bl b2 b3) ( Re(az) Im(az) Re(b1) Im(b1)
C1 C2 C3
« Additional 856 flops per site

¢ Gauge fix to unit gauge field along T-dimension
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Reducing Memory Traffic AVIDIA

e Impose similarity transforms to increase sparsity
e Globally change Dirac matrix basis

1 0 =+1 0 2 0 0 O 0O 00O
0 1 0 =+1 0 2 0 0 0O 00O
Pt — » +4 _ -4 _
+1 0 1 0 P 0O 0 0 O P 00 20
0 =+1 0 1 0O 0 0 O 0O 0 0 2

e (Advanced) Still memory bound - Can further reduce memory traffic by truncating the
precision

* Use 16-bit fixed-point representation
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NVIDIA.

 For illustration only; not our latest and greatest
* Runs were done on a single Fermi GTX 480 (~-M2090)

* Typical sing
— ~25 Gflo
— ~50 Gflo

le-node performance on Westmere
Ds for typical optimized production code

s when highly optimized (Smelyanskiy et al)

 Hold spatial lattice dimensions fixed 243, vary temporal

extent

— Demonstrates the need for minimum problem size to
hide latencies
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Wilson performance - single precision

Performance (Gflops)
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NVIDIA.
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Wilson performance - double precision

Performance (Gflops)
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NVIDIA.
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Wilson performance - half precision AVIDIA.
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NVIDIA.

« Common and important data parallel primitive in solvers

 Tree-based approach used within each thread block
— Use shared memory to communicate within thread blocks
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NVIDIA.

* Avoid global sync by decomposing computation into multiple
kernel invocations

RYRYRIRYREYREYIRERY et

8 blocks

Kernel 2:
ZE g 1 block
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Optimizing the Solver: Kernel Fusion

vector
reads

#z

#y

S

---vd/

2
vector
writes

>

NVIDIA.
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Optimizing the Solver: Kernel Fusion

vector
reads

> 2
—y 2
vector
writes
-------- ’ c
------ *-» d
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NVIDIA.

Often require solver tolerance beyond limit of single precision

But single and half precision much faster than double

Use mixed precision
— e.g.defect-correction

while (|rx|> €) {

High precision ” rr = b - Axx
mat-vec and solve Apx = rx «__ Inpgr low
H precision solve

accumulate Xx+1 = Xk + Pk

QUDA uses Reliable Updates (Sleijpen and Van der Worst 1996)
Almost a free lunch

— |teration count increases
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Time (seconds)
-—

0

323x96 Wilson results
on GTX 280 (for illustration)

NVIDIA.
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5 T T T T T @
| |
+
i —t NVIDIA.
@—® Double
4r m—m Double/Single
O—& Double/Half

3 I\./-; —_—=
5 —— g—0
o)
Q) -
O
o
N -

1+ ® @ @ @ @ o @ @ ®

0 | | | | | | | | |

-0.42 -0415 -041 -0.405 -04

mass
323x96 Wilson results < _ . —
on GTX 280 (for illustration) increasing condition number
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GPUs vs. CPUs NVIDIA.

24°x128 lattice, Chroma Single Prec Clover

I 1 I 1 1 1 I LILI 1 1 I LI 1 1 I LI 1 1 I LI 1 1
i ~146 cores ’
273.5 GFlops (per JLab GTX480 @ 4 GPUs)
A - - —
- _175 GFlops (per JLab Tesla C2050 @ 4GPUs) 7 _ A ___ _ 1
a L J
2
ol
&)
E o4 N
8 - -
2
16 —
| 3£ CG, 2x4 Barcelona@1.9GHz, DDR 1B ]
O—© CG, 2x4 Nehalem@2 .4GHz, QDR 1B
- 4—¢ IBiCGStab, 2x4 Nehalem@2 .4 GHz, QDR IB| A
I 1 I 1 1 1 I L1 1 1 I L1 1 1 I L1 1 1 I L1 1 1
4 8 16 32 64 128 256

#cores
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NVIDIA.

* Only yesterday’s lattice volumes fit on a single GPU

* More cost effective to build multi-GPU nodes
e Better use of resources if parallelized

* Gauge generation requires strong scaling
e Can GPUs replace traditional super computers?
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NVIDIA.

* Only yesterday’s lattice volumes fit on a single GPU

* More cost effective to build multi-GPU nodes
e Better use of resources if parallelized

* Gauge generation requires strong scaling
e Can GPUs replace traditional super computers?
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NVIDIA.

* Only yesterday’s lattice volumes fit on a single GPU

* More cost effective to build multi-GPU nodes
e Better use of resources if parallelized

* Gauge generation requires strong scaling
e Can GPUs replace traditional super computers?

>

>
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NVIDIA.

e Many different mechanisms for controlling multiple
GPUs

* MPI processes
 CPU threads
* Multiple GPU per thread and do explicit switching
 Combinations of the above
* QUDA uses the simplest: 1 GPU per MPI process

* Allows partitioning over node with multiple devices and
multiple nodes

* cudaSetDevice(local mpi rank);
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NVIDIA.

* CUDA provides the stream API for concurrent work queues
e Provides concurrent kernels and host<->device memcpys
e Kernels and memcpys are queued to a stream

* kernel<<<block, thread, shared, streamId>>>(arguments)

* cudaMemcpyAsync(dst, src, size, type, streamld)
 Each stream is an in-order execution queue

* Must synchronize device to ensure consistency between
streams

* cudaDeviceSynchronize()

* QUDA uses the stream API to overlap communication of the halo
region with computation on the interior
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1D Lattice decomposition AVIDIA.

1D decomposition Assign sub-lattice
(in ‘time’ direction) to GPU

/ face I/ | face \ face \ face

- ~_exchange ~exchange _exchange _exchange
wrap
o o o o o o o ~ around
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Multi-dimensional lattice decomposition nvioia

@y Lt Leod
- @ .

Qﬁ 2 Wl
-
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NVIDIA.

 Packing kernels
— Boundary faces are not contiguous memory buffers
— Need to pack data into contiguous buffers for communication
— One for each dimension
* Interior dslash
— Updates interior sites only
 Exterior dslash
— Does final update with halo region from neighbouring GPU
— One for each dimension
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Multi-dimensional Kernel Computation nvioa

]
]
O @ O 0.
---J' ------------ .L--- 2-d eXample
O : ®@ O @ O . @ * Checkerboard updating scheme employed, so
' ' only half of the sites are updated per application
| ]
e : © @ O @ ' o — Green: source sites
]
O'®@ O @ O0'®e — Purple: sites to be updated
' ' — Orange: site update complete
@, 0 @ 0 @,0
R B ) |
® O @ O,
]
1
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Multi-dimensional Kernel Computation nvioa

--- Step 1

» Gather boundary sites into contiguous buffers to
be shipped off to neighboring GPUs, one
direction at a time.

- --h--

!
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Multi-dimensional Kernel Computation nvioa

1 1
: :
S R —— T Step 1
. @ O @ : + Gather boundary sites into contiguous buffers to
' ' be shipped off to neighboring GPUs, one
O @ O 0! direction at a time.
1 1
'® O @ O«
0 @ 0 o!
4 >
L) L
1 !
1 L
1 1
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Multi-dimensional Kernel Computation nvioa

- Step 1

» Gather boundary sites into contiguous buffers to
be shipped off to neighboring GPUs, one
direction at a time.

e Y NN T L
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Multi-dimensional Kernel Computation nvioa

1 ]
1 1
1 '
TET TS EEPPRE ST Step 1
. ® @ X + Gather boundary sites into contiguous buffers to
' ' be shipped off to neighboring GPUs, one
O @ O o direction at a time.
1 '
@ O @ O]
0 @ 0 o
4 Ld
1 '
1 '
1 '
L] '
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Multi-dimensional Kernel Computation nvioa

O

© ©@¢ 0 ©

Step 2

An “interior kernel” updates all local sites to the
extent possible. Sites along the boundary
receive contributions from local neighbors.
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Multi-dimensional Kernel Computation nvioa

seedennnnnansans Low- Step 3

0+® O @ 0:0
O : O @ O @ : O Boundary sites are updated by a series of kernels
: : - one per direction.
O+®@ O @@ 0'0
' ' A given boundary kernel must wait for its ghost
© : © @ O © : O zone to arrive

]
: ’ Note in higher dimensions corner sites have a
race condition - serialization of kernels required
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Multi-dimensional Kernel Computation nvioa

seedennnnnansans Low- Step 3

©0:'® O @ 0:0
O : O @@ O .4'. O Boundary sites are updated by a series of kernels
: : - one per direction.
0, O @ 0,0
] ] . . .
A given boundary kernel must wait for its ghost
]
©,0 @ O .4’ © zone to arrive
- eEEEEEE------ | )
@ © 0 0.,
' ’ Note in higher dimensions corner sites have a

race condition - serialization of kernels required
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Multi-dimensional Kernel Computation nvioa

meedemeeee—.- bew- Step 3
©0:'® O @ 0:0
O : O @ O @ : Boundary sites are updated by a series of kernels
: - one per direction.
0, O @ 0,0
' o A given boundary kernel must wait for its ghost

@ @ 0 ©

]
]
'
]
'
] ]
©.0 2 ' zone to arrive
LR R B B N
]
'
]
1 ]

Note in higher dimensions corner sites have a
race condition - serialization of kernels required
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Multi-dimensional Kernel Computation nvioa

]
'
1 © 0 0 0.
,‘ ----- ‘t Step 3
! O ©:0
O : O @ O @ : O Boundary sites are updated by a series of kernels
: : - one per direction.
0, O @ 0,0
' ' A given boundary kernel must wait for its ghost
© : © @ O © : O zone to arrive
- eEEEEEE------ | )
@ © 0 0.,
: : Note in higher dimensions corner sites have a

race condition - serialization of kernels required
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Multi-dimensional
Communications Pipeline

Total 9 cuda Streams exterior

kernels
Interiorkernel X Y Z T

_—

0: kernels

GPU kernel
. . cudaMemcpy
sync
7: T-backward _
51 Torware i
=

gather kernel’

memcpy (host)

MPI send/recv

GPU idle

(] N BN B .

NVIDIA.
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NVIDIA.

e Results presented at SC’11 (not taking advantage of more
recent optimizations).

e Test Bed: “Edge” at LLNL
e 206 nodes available for batch jobs, with QDR infiniband

e 2 Intel Xeon X5660 processors per node (6-core Westmere @ 2.8
GHz)

e 2 Tesla M2050 cards per node, sharing 16 PCI-E lanes via a switch
e ECC enabled
e CUDA 4.0
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NVIDIA.
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32 I I I I I I @

NVIDIA.
@@ BiCGstab

16 — =

S =

=

4 f— - —
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Strong scaling 323x256 Number of GPUs

Wilson-clover BiCGstab
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Ttlops

Strong scaling 323x256

Lo

Wilson-clover BiCGstab

I

l

@@ BiCGstab

[

|

4

o0 b=

32

64

Number of GPUs

128

256

NVIDIA.
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NVIDIA.

" Inter-GPU communication hurts, so let’s avoid it.
* [n the strong-scaling regime, we
employ a solver with a domain- S 6 6 a
decomposed preconditioner. . .
= Most of the flops go into the
preconditioner, where e '
communication is turned off. e O
= Half precision is perfect here. @ ©

= [teration count goes up, but ® © o o
it’s worth it.
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NVIDIA.

" Inter-GPU communication hurts, so let’s avoid it.
* [n the strong-scaling regime, we
employ a solver with a domain- S 6 6 a
decomposed preconditioner. . .
= Most of the flops go into the
preconditioner, where e '
communication is turned off. e O
= Half precision is perfect here. @ ©

= [teration count goes up, but ® © o o
it’s worth it.
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Tflops

(g

Strong scaling 323x256
Wilson-clover BiCGstab

| I

@@ BiCGstab
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NVIDIA.
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Time to solution (sec)
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Strong scaling 323x256
Wilson-clover BiCGstab
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NVIDIA.
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This is the future of capability computing...

Tsubame 2.0 Tianhe-1A
4224 GPUs 7168 GPUs

; = LLERIN >20 Petaflops

18,688 GPUs
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Strong scaling on TitanDev (Cray XKé6) "™

* 960 nodes, each with:

— 1 Tesla X2090

— 1 Opteron (16-core/8-module “Interlagos”)
* Cray Gemini interconnect

* Development platform in anticipation of Titan
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Strong Scaling: 48°x512 Lattice (Weak Field), Chroma + QUDA

Results from TitanDev o

- 483x512 aniso clover
- scaling up 768 GPUs

Interlagos Sockets (16 core/socket)

- _1__ 1 T ___T___ e — - ___L___T7]
100 Tflops
— 7.5 Tflops =
L 38 Titan, XK6 nodes, CPU only: Single Precision Reliable-IBiCGStab Solver —
O—© Rosa, XE6 nodes, CPU only: Single Precision Reliable IBICGStab solver
H —¥ Titan, XK6 nodes, GPU only: Single Precision (single/single) Reliable BiCGStab solver —
O—© Titan, XK6 nodes, GPU only: Mixed Precision (half/single) Reliable BiCGStab solver
1 A—a Titan, XK6 nodes, GPU only: Mixed Precision (half/single) GCR solver with Domain -
Decomposed preconditioner
L ' | ' L ' L ' l
32 64 128 256 512 1024 2048 4096 8192

NVIDIA.
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NVIDIA.

* Non-solver kernels required for HMC
— Gauge force, fermion force, link fattening

» Advanced optimizations
— Using shared memory for cache blocking
— Autotuning
— Texture cache and half precision
—and lots more
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HMC timing breakdown

Time distribution for a run on 2048 XT3 (BigBen) cpus
using a 40% x 96 grid (5 x 10% x 6 per cpu) with 1m; = 0.1m:

Activity time(s) | MF/cpu | per cent
CG 2987 530 58.5
FF 1125 579 22.0
GF 489 469 9.5
Fat 442 627 8.7
Long 24 340 <1
Input config. 41 <1
total above 5108

unaccounted 104 1.9
wallclock 5212

NVIDIA.
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NVIDIA.

e Gauge field generation on GPUs, for 2 different
discretizations & applications:
— Improved staggered in MILC

— Wilson and Wilson-clover in Chroma (leveraging Frank Winter’s QDP-
JIT framework)

» Adaptive geometric multigrid on GPUs
— GPUs give 5-10x in price/performance

— Multigrid has the potential to give another 10x (at least for Wilson
and Wilson-clover) at light quark masses.
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Using QUDA nipis

* QUDA designed to accelerate pre-existing LQCD
applications

— Chroma, MILC, CPS, BQCD

* Solo QUDA workflow possible
— tests directory includes linear solver examples
— Gauge fields loaded through QIO

— tests main use is for self contained correctness
checking
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Using QUDA ninis

*QUDA provides a simple C finclude <quda.h>

interface for the outside int main() 1
world {{ Lnttiatiee the gk Librery
«Host applications simply // load the gauge field
_ .d . t loadGaugeQuda( (void*)gauge, &gauge param);
paSS Cpu S] e pO]n erS // perform the inversion
invertQuda(spinorOut, spinorIn, &inv param|
«QUDA takes care of all mene ’ -~
R . // free the gauge field
field reordering and data freeGaugeguda )
Copy]ng é;éﬁﬁ:ﬁfe the QUDA library
eBoth a blessing and curse }
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Getting Involved with QUDA nVIDIZ

* QUDA is open source
— All development done in github

» Features requests are welcome
* More developers are even more welcome
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Summary 5

* Glimpse into the QUDA library

— Implementing the Dslash
— Multi-GPU considerations

* Possible take-home messages
— Start experimenting with writing code with GPUs
« CUDA C/C++, OpenACC, it doesn’t matter
— Using GPUs + QUDA as a black box to accelerate physics
— Looking deeper into QUDA
« contact me mclark@nvidia.com
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Domain Decomposition

(Re)Start Generate Update

° Non-overlapping blocks - simply have to
switch off inter-GPU communication

° Preconditioner is a gross approximation

° Use an iterative solver to solve each domain system

° Require only 10 iterations of domain solver = 16-bit
° Need to use a flexible solver = GCR

° Block-diagonal preconditoner impose A cutoff
° Finer Blocks lose long-wavelength/low-energy modes
e keep wavelengths of ~ O(Aqcp?), Aqco ' ~ 1fm
° Aniso clover: (as=0.125fm, at=0.035fm) = 83x32 blocks are ideal

° 483x512 lattice: 83x32 blocks = 3456 GPUs
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Run-time autotuning AVIDI 2

= Motivation:

— Kernel performance (but not output) strongly dependent on launch
parameters:

= gridDim (trading off with work per thread), blockDim
= blocks/SM (controlled by over-allocating shared memory)

= Design objectives:

— Tune launch parameters for all performance-critical kernels at run-
time as needed (on first launch).

— Cache optimal parameters in memory between launches.
— Optionally cache parameters to disk between runs.
— Preserve correctness.
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Auto-tuned “warp-throttling” nVIDIA

= Motivation: Increase reuse in limited L2 cache.

500
450
400
350
300
250
200
150
100
50
0 -

® BlockDim only
M BlockDim & Blocks/SM

GTX 580 | GTX 680 GTX 680 | GTX580 | GTX 680

Double
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Run-time autotuning: Implementation """

» Parameters stored in a global cache:
static std::map<TuneKey, > tunecache;

= TuneKey is a struct of strings specifying the kernel name,
lattice volume, etc.

is a struct specifying the tune blockDim, gridDim,
etc.

= Kernels get wrapped in a child class of Tunable (next slide)

= tuneLaunch() searches the cache and tunes if not found:

TuneParam tuneLaunch(Tunable &tunable, QudaTune enabled,
QudaVerbosity verbosity);
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Run-time autotuning: Usage nVIDIZ

= Before:
myKernelWrapper(a, b, c);

= After:
MyKernelWrapper *k = new MyKernelWrapper(a, b, c);

k->apply(); // <-- automatically tunes if necessary

* Here MyKernelWrapper inherits from Tunable and optionally
overloads various virtual member functions (next slide).

* Wrapping related kernels in a class hierarchy is often useful
anyway, independent of tuning.
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Virtual member functions of Tunable "™

* [nvoke the kernel (tuning if necessary):
— apply()
= Save and restore state before/after tuning:
— preTune(), postTune()
* Advance to next set of trial parameters in the tuning:
— advanceGridDim(), advanceBlockDim(), advanceSharedBytes()
— advanceTuneParam() // simply calls the above by default
* Performance reporting
— flops(), bytes(), perfString()
" etc.
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