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Overview

§ QUDA Overview
§ Single-GPU Wilson solver
§ Multi-GPU strategy and performance
§ Getting into QUDA
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QUDA overview

§ “QCD on CUDA” – http://lattice.github.com/quda
§ Effort started at Boston University in 2008, now in wide use 

as the GPU backend for Chroma, MILC, and various home-
grown codes.

§ Provides:
— Various solvers for several discretizations, including multi-GPU 

support and domain-decomposed (Schwarz) preconditioners.
— Additional performance-critical routines needed for gauge field 

generation.

§ Contributors welcome!
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QUDA overview

• Implements most discretized Dirac operators
– Wilson
– Wilson-Clover
– Twisted mass
– Improve staggered (ASQTAD and HISQ)
– Domain Wall
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Collaborators and QUDA developers

§ Ron Babich (NVIDIA)
§ Kip Barros (LANL)
§ Rich Brower (Boston University)
§ Justin Foley (University of Utah)
§ Joel Giedt (Rensselaer Polytechnic Institute)
§ Steve Gottlieb (Indiana University)
§ Bálint Joó (Jefferson Lab)
§ Claudio Rebbi (Boston University)
§ Guochun Shi (NCSA -> Google)
§ Alexei Strelchenko (Cyprus Institute -> FNAL)
§ Frank Winter (The University of Edinburgh)
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USQCD software stack

(Many components developed under the DOE SciDAC program)
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Steps in a lattice QCD calculation

1. Generate an ensemble of gluon field (“gauge”) 
configurations.
§ Produced in sequence, with hundreds needed per ensemble.  This 

requires > O(10 Tflops) sustained for several months (traditionally 
Crays, Blue Genes, etc.)

§ 50-90% of the runtime is in the solver.

Thursday, August 23, 12



Steps in a lattice QCD calculation

2. “Analyze” the configurations
§ Can be farmed out, assuming O(1 Tflops) per job.
§ 80-99% of the runtime is in the solver.

GPUs have gained a lot of traction here.
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§  

Krylov solvers
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GPU Architecture:
Two Main Components

Global memory
Analogous to RAM in a CPU server
Accessible by both GPU and CPU
Currently up to 6 GB
Bandwidth currently up to 177 GB/s for Quadro and 
Tesla products
ECC on/off option for Quadro and Tesla products

Streaming Multiprocessors (SMs)
Perform the actual computations
Each SM has its own:

Control units, registers, execution pipelines, caches
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GPU Architecture – Fermi:
Streaming Multiprocessor (SM)

32 CUDA Cores per SM
32 fp32 ops/clock
16 fp64 ops/clock
32 int32 ops/clock

2 warp schedulers
Up to 1536 threads concurrently

4 special-function units
64KB shared mem + L1 cache
32K 32-bit registers
63 registers-per-thread limit

Exceeding this will cause variables 
to spill into gmem
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GPU Architecture – Fermi:
CUDA Core

Floating point & Integer unit
IEEE 754-2008 floating-point 
standard
Fused multiply-add (FMA) 
instruction for both single and 
double precision

Logic unit
Move, compare unit
Branch unit
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GPU Kernels

A parallel function that runs on the GPU is 
called a kernel

A kernel is launched as a grid of blocks of 
threads

blockIdx and threadIdx are 3D

Built-in variables used to identify 
threads:

threadIdx
blockIdx
blockDim
gridDim

Device

Grid 1

Block
(0,0,0)

Block
(1,0,0)

Block
(2,0,0)

Block
(1,1,0)

Block
(2,1,0)

Block
(0,1,0)

Block (1,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

Thread
(4,0,0)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(4,1,0)

Thread
(0,2,0)

Thread
(1,2,0)

Thread
(2,2,0)

Thread
(3,2,0)

Thread
(4,2,0)
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void saxpy(int n, float a,  

   float *x, float *y) 

{ 

  for (int i = 0; i < n; ++i) 

    y[i] = a*x[i] + y[i]; 

} 

 

int N = 1<<20; 

 

 

 

// Perform SAXPY on 1M elements 

saxpy(N, 2.0, x, y); 

__global__  

void saxpy(int n, float a,  

   float *x, float *y) 

{ 

  int i = blockIdx.x*blockDim.x + threadIdx.x; 

  if (i < n) y[i] = a*x[i] + y[i]; 

} 

 

int N = 1<<20; 

cudaMemcpy(d_x, x, N, cudaMemcpyHostToDevice); 

cudaMemcpy(d_y, y, N, cudaMemcpyHostToDevice); 

 

// Perform SAXPY on 1M elements 

saxpy<<<4096,256>>>(N, 2.0, d_x, d_y); 

 

cudaMemcpy(y, d_y, N, cudaMemcpyDeviceToHost); 

 

 

CUDA C 
Standard C Parallel C 

http://developer.nvidia.com/cuda-toolkit 
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•Disparity worse with every generation

•All architectures have this problem

•Processors get wider

•Memory hierarchy gets deeper
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Memory Hierarchy
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Single GPU Wilson Solver
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Krylov Solver Implementation

• Complete solver must be on GPU

• Transfer b to GPU

• Solve Mx=b

• Transfer x to CPU 

• Time-critical kernel is the mat-vec

• Applying the Dirac operator to a spinor field

• Also require BLAS level-1 type operations

• AXPY operations: b += ax - just like yesterday’s vector addition

• NORM operations: c = (b,b)

while (|rk|> ε) {
βk = (rk,rk)/(rk-1,rk-1)
pk+1 = rk - βkpk

α = (rk,rk)/(pk+1,Apk+1)
rk+1 = rk - αApk+1
xk+1 = xk + αpk+1
k = k+1

}

conjugate 
gradient
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QUDA - General Strategy

• Assign a single space-time point to each thread -> V = XYZT threads
• Map 4-d space-time index to a 1-d thread index

• Reverse mapping obtained from modular arithmetic

• V = 244 => 3.3x106 threads

• Fine-grained parallelization

• Maximize performance
• Field reordering

• Exploit physical symmetries

• Mixed-precision methods

gindex = (((t*Z+z)*Y+y)*X+x

int gindex = threadIdx.x + blockIdx.x*blockDim.x
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Wilson Matrix
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Wilson Matrix
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Mapping the Wilson Dslash to CUDA

• Looping over direction each thread must

• Load the neighboring spinor (24 numbers x8)

• Load the color matrix connecting the sites (18 numbers x8)

• Do the computation

• Save the result (24 numbers)

• Minimum resources required

• 12 + 18 + 24 = 54 registers

• Fermi supports 63x 32-bit registers per thread

• Arithmetic intensity

• 1320 floating point operations per site

• 1440 bytes per site (single precision)

• 0.92 naive arithmetic intensity                                       

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

D
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0 =

Thursday, August 23, 12



Mapping the Wilson Dslash to CUDA

• Looping over direction each thread must

• Load the neighboring spinor (24 numbers x8)

• Load the color matrix connecting the sites (18 numbers x8)

• Do the computation

• Save the result (24 numbers)

• Minimum resources required

• 12 + 18 + 24 = 54 registers

• Fermi supports 63x 32-bit registers per thread

• Arithmetic intensity

• 1320 floating point operations per site

• 1440 bytes per site (single precision)

• 0.92 naive arithmetic intensity                                       

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2
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Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.
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Memory Coalescing

• To achieve maximum bandwidth threads within a warp 
must read from consecutive regions of memory

– Each thread can load 32-bit, 64-bit or 128-bit words
– CUDA provides built-in vector types 

type 32-bit 64-bit 128-bit

int int int2 int4

float float float2 float4

double double double2

char char4

short short2 short4
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• Similar reordering required for color matrices: 3V x float4

• 16-bit uses short4, 64-bit uses double2

Spinor
(24 numbers)

Threads read 
non-contiguous data

• Reorder fields for coalescing: 6V x float4

• Typical CPU spinor field ordering: array of spinors (V x 24 floats)

Threads read contiguous data

0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 30 1 2 3

1st read
2nd read
3rd read

Field Ordering
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• SU(3) matrices are all unitary complex matrices with det = 1

• 12-number parameterization: reconstruct full matrix on the fly in registers

• Additional 384 flops per site

• 8 number parameterization

• Additional 856 flops per site

• Gauge fix to unit gauge field along T-dimension

a1 a2 a3
b1 b2 b3
c1 c2 c3

( ) c = (axb)*a1 a2 a3
b1 b2 b3( )

Reducing Memory Traffic

a1 a2 a3
b1 b2 b3
c1 c2 c3

( ) arg(a1) arg(c1) Re(a2) Im(a2)
 Re(a3) Im(a3) Re(b1) Im(b1) )(
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• Impose similarity transforms to increase sparsity

• Globally change Dirac matrix basis

• (Advanced) Still memory bound - Can further reduce memory traffic by truncating the 
precision

• Use 16-bit fixed-point representation

B. Gamma Matrix Conventions

It is conventional in lattice QCD software to use the DeGrand-Rossi basis
for the � matrix projectors which appear in the Wilson-Dirac operator o�-
diagonals. In this basis, these are given by

P±1 =

�

⇧⇧⇤

1 0 0 ±i
0 1 ±i 0
0 ⇥i 1 0
⇥i 0 0 1

⇥

⌃⌃⌅ P±2 =

�

⇧⇧⇤

1 0 0 ⇥1
0 1 ±1 0
0 ±1 1 0
⇥1 0 0 1

⇥

⌃⌃⌅

P±3 =

�

⇧⇧⇤

1 0 ±i 0
0 1 0 ⇥i
⇥i 0 1 0
0 ±i 0 1

⇥

⌃⌃⌅ P±4 =

�

⇧⇧⇤

1 0 ±1 0
0 1 0 ±1
±1 0 1 0

0 ±1 0 1

⇥

⌃⌃⌅ .

We must always load all spinor components regardless of the dimension or
direction. An alternative basis is the UKQCD basis, in which the projectors
have the form

P±1 =

�

⇧⇧⇤

1 0 0 ±i
0 1 ±i 0
0 ⇥i 1 0
⇥i 0 0 1

⇥

⌃⌃⌅ P±2 =

�

⇧⇧⇤

1 0 0 ±1
0 1 ⇥1 0
0 ⇥1 1 0
±1 0 0 1

⇥

⌃⌃⌅

P±3 =

�

⇧⇧⇤

1 0 ±i 0
0 1 0 ⇥i
⇥i 0 1 0
0 ±i 0 1

⇥

⌃⌃⌅ P+4 =

�

⇧⇧⇤

2 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0

⇥

⌃⌃⌅ P�4 =

�

⇧⇧⇤

0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 2

⇥

⌃⌃⌅ .

The advantage of this approach is that in the temporal dimension we need
only load the upper (lower) spin components for the backwards (forwards)
gather. This halves the amount of bandwidth required to perform the tem-
poral gather, and so increases the kernel’s performance.
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�

⇧⇧⇤

1 0 ±i 0
0 1 0 ⇥i
⇥i 0 1 0
0 ±i 0 1

⇥

⌃⌃⌅ P+4 =

�

⇧⇧⇤

2 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0

⇥

⌃⌃⌅ P�4 =

�

⇧⇧⇤

0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 2

⇥

⌃⌃⌅ .

The advantage of this approach is that in the temporal dimension we need
only load the upper (lower) spin components for the backwards (forwards)
gather. This halves the amount of bandwidth required to perform the tem-
poral gather, and so increases the kernel’s performance.
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Wilson-Dslash Performance

• For illustration only; not our latest and greatest
• Runs were done on a single Fermi GTX 480 (~M2090)
• Typical single-node performance on Westmere

– ~25 Gflops for typical optimized production code
– ~50 Gflops when highly optimized (Smelyanskiy et al)

• Hold spatial lattice dimensions fixed 243, vary temporal 
extent 

– Demonstrates the need for minimum problem size to 
hide latencies
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Wilson performance - single precision 

243xT
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Wilson performance - double precision

243xT
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Wilson performance - half precision

243xT
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Parallel Reduction

• Common and important data parallel primitive in solvers
• Tree-based approach used within each thread block

– Use shared memory to communicate within thread blocks

4 7 5 9

11 14

25

3 1 7 0 4 1 6 3
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Parallel Reduction

• Avoid  global sync by decomposing computation into multiple 
kernel invocations

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3
4 7 5 9

11 14
25

3 1 7 0 4 1 6 3
4 7 5 9

11 14
25

3 1 7 0 4 1 6 3
4 7 5 9

11 14
25

3 1 7 0 4 1 6 3
4 7 5 9

11 14
25

3 1 7 0 4 1 6 3
4 7 5 9

11 14
25

3 1 7 0 4 1 6 3
4 7 5 9

11 14
25

3 1 7 0 4 1 6 3
4 7 5 9

11 14
25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

Kernel 1:
8 blocks

Kernel 2:
1 block
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Optimizing the Solver: Kernel Fusion
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Optimizing the Solver: Kernel Fusion

Thursday, August 23, 12



Mixed-Precision Solvers

• Often require solver tolerance beyond limit of single precision

• But single and half precision much faster than double

• Use mixed precision

– e.g.defect-correction

• QUDA uses Reliable Updates (Sleijpen and Van der Worst 1996)

• Almost a free lunch

– Iteration count increases

while (|rk|> ε) {
rk = b - Axk
solve Apk = rk
xk+1 = xk + pk

}

High precision
mat-vec and 
accumulate

Inner low 
precision solve
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323x96 Wilson results 
on GTX 280 (for illustration)
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323x96 Wilson results 
on GTX 280 (for illustration)
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GPUs vs. CPUs
Compare to Multi-Core cluster

4 8 16 32 64 128 256
#cores

16

64

256

su
st

ai
ne

d 
G

Fl
op

s

CG, 2x4 Barcelona@1.9GHz, DDR IB
CG, 2x4 Nehalem@2.4GHz, QDR IB
IBiCGStab, 2x4 Nehalem@2.4 GHz, QDR IB

243x128 lattice, Chroma Single Prec Clover 

175 GFlops (per JLab Tesla C2050 @ 4 GPUs)

273.5 GFlops (per JLab GTX480 @ 4 GPUs)

~146 cores

Modulo David 
Bailey caveats 

regarding 
comparing apples 
with non-apples

Friday, January 28, 2011
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Multiple GPUs
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The need for multiple GPUs

•Only yesterday’s lattice volumes fit on a single GPU
•More cost effective to build multi-GPU nodes

• Better use of resources if parallelized

•Gauge generation requires strong scaling
• Can GPUs replace traditional super computers?
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Multiple GPUs

• Many different mechanisms for controlling multiple 
GPUs

• MPI processes
• CPU threads
• Multiple GPU per thread and do explicit switching
• Combinations of the above

• QUDA uses the simplest: 1 GPU per MPI process
• Allows partitioning over node with multiple devices and 

multiple nodes
• cudaSetDevice(local_mpi_rank);
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CUDA Stream API

• CUDA provides the stream API for concurrent work queues
• Provides concurrent kernels and host<->device memcpys
• Kernels and memcpys are queued to a stream

• kernel<<<block, thread, shared, streamId>>>(arguments)

• cudaMemcpyAsync(dst, src, size, type, streamId)

• Each stream is an in-order execution queue
• Must synchronize device to ensure consistency between 

streams
• cudaDeviceSynchronize()

• QUDA uses the stream API to overlap communication of the halo 
region with computation on the interior
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1D Lattice decompositionQUDA Parallelization

1D decomposition
(in ‘time’ direction)

Assign sub-lattice 
to GPU

face
exchange

face
exchange

face
exchange

face
exchange

wrap
around
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Multi-dimensional lattice decompositionMulti GPU Parallelization

face
exchange

wrap
around

face
exchange

wrap
around

Tuesday, July 12, 2011
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Multi-dimensional Ingredients

• Packing kernels
– Boundary faces are not contiguous memory buffers
– Need to pack data into contiguous buffers for communication
– One for each dimension

• Interior dslash
– Updates interior sites only

• Exterior dslash
– Does final update with halo region from neighbouring GPU
– One for each dimension 
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Multi-dimensional Kernel Computation

2-d example
• Checkerboard updating scheme employed, so 

only half of the sites are updated per application

– Green: source sites

– Purple: sites to be updated

– Orange: site update complete
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Multi-dimensional Kernel Computation

Step 1
• Gather boundary sites into contiguous buffers to 

be shipped off to neighboring GPUs, one 
direction at a time.
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Multi-dimensional Kernel Computation

Step 1
• Gather boundary sites into contiguous buffers to 

be shipped off to neighboring GPUs, one 
direction at a time.
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Multi-dimensional Kernel Computation

Step 2

• An “interior kernel” updates all local sites to the 
extent possible.  Sites along the boundary 
receive contributions from local neighbors.

•
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Multi-dimensional Kernel Computation

Step 3

• Boundary sites are updated by a series of kernels 
- one per direction.

• A given boundary kernel must wait for its ghost 
zone to arrive

• Note in higher dimensions corner sites have a 
race condition - serialization of kernels required
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Multi-dimensional 
Communications Pipeline











 





 

Figure 3: Gauge field layout in host and GPU mem-
ory. The gauge field consists of 18 floating point
numbers per site (when no reconstruction is em-
ployed) and is ordered on the GPU so as to en-
sure that memory accesses in both interior and
boundary-update kernels are coalesced to the extent
possible.

terior kernel so that it computes the full results for the in-
ner spinors and the partial results for spinors in the bound-
aries. The interior kernel computes any contributions to the
boundary spinors that does not involve with ghost spinors,
e.g. if a spinor is located only in the T+ boundary, the in-
terior kernel computes the space contribution for this spinor
as well as the negative T direction’s. The positive T direc-
tion’s contribution for this spinor, will be computed in the
exterior kernel for T dimension using the ghost spinor and
ghost gauge fields from the T+ neighbor. Since spinors in
the corners belong to multiple boundaries, For the interior
kernel and T exterior kernel, the 4-d to 1-d mapping strat-
egy is the same for the spinor and gauge field, with X being
the fastest changing index and T the slowest changing in-
dex, and all gauge field and spinor access are coalesced. The
use of memory padding avoids the GPU memory partition
camping problem [23] and further improves the performance.
However, in the X, Y, Z exterior kernels, the ghost spinor
and gauge field follows di�erent mapping scheme, but the
reading and writing of the destination spinors, which is lo-
cated in local spinor region, still follows the T slowest 4-D
to 1-D mapping scheme. Such di�erent data mapping makes
complete coalesced access impossible and one has to choose
one or another. We choose to compute our index using the
X, Y, Z slowest 4-D to 1-D mapping schedule with X-, Y-, Z-
exterior kernels to minimize the un-coalesced access penalty
since most of the data trafic comes from the gauge field and
source spinors. It is also clear from the above description
that because of the spinors in corners, the exterior kernels
has data dependency with each other and must be executed
in sequential order.

6.2.2 Computation, Communication and Streams
CUDA streams are extensively used to overlap computa-

tion with communication as well as overlapping the di�er-
ent type of communications. Two streams per dimension
are used, one for gathering and exchanging spinors in the
forward direction and the other in the backward direction.
One extra stream is used for interior and exterior kernels,
making the total CUDA streams number up to 9, as shown
in Fig. 4. The gather kernels for all directions are launched
in GPU at the beginning so that the communications in all
directions can start early. The interior kernel is executed
after all gather kernels finishes, overlapping completely with
the communications. We use di�erent streams for di�erent
dimensions so that the di�erent communication components
can overlap with each other, including the device to host cu-
daMemcpy, memcpy from pinned host memory to pagable
host memory, MPI send and receive, memcpy from pagable
memory to pinned memory and host to device memory copy.
While the interior kernel can be overlapped with communi-
cations, the exterior kernels have data dependency with the
ghost data, the interior kernel and other exterior kernels
therefore must be placed in the same stream and be syn-
chronized with the communication in the corresponding di-
mension.The accumulation of communication over multiple
dimensions is likely to exceed the interior kernel run time,
leading to the idle GPU (see Fig. 4), thus degrading the
overall dslash performance.







 

 








  



 





















Figure 4: Usage of CUDA streams in dslash compu-
tation, and multiple stages of communications. One
stream is used for interior and exterior kernels and
two streams per dimension are used for gather ker-
nels, PCIe data transfer, host memcpy and inter-
node communications

When communicating over multiple dimensions, the com-
munication cost dominates the computations and any reduc-
tion in the communication is likely to improve the perfor-
mance. The two host memcpy are required due to the fact
GPU pinned memory is not compatible with the MPI pinned
memory and the GPU direct technology [24] is not readily
available in the existing GPU cluster. We expect these extra
memcpys to be removed in the future when better support
from GPU and MPI venders are available. The recent avail-
able CUDA SDK 4.0 has an interesting GPU to GPU direct
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Performance results

•Results presented at SC’11 (not taking advantage of more 
recent optimizations).
•Test Bed: “Edge” at LLNL

• 206 nodes available for batch jobs, with QDR infiniband

• 2 Intel Xeon X5660 processors per node (6-core Westmere @ 2.8 
GHz)

• 2 Tesla M2050 cards per node, sharing 16 PCI-E lanes via a switch

• ECC enabled

• CUDA 4.0
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Matrix-vector performance

Strong scaling 323x256
Wilson-clover dslash
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Strong scaling 323x256
Wilson-clover BiCGstab
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Comms-bound

Strong scaling 323x256
Wilson-clover BiCGstab
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Building a scalable solver

§ Inter-GPU communication hurts, so let’s avoid it.
§ In the strong-scaling regime, we

employ a solver with a domain-
decomposed preconditioner.

§ Most of the flops go into the
preconditioner, where
communication is turned off.

§ Half precision is perfect here.
§ Iteration count goes up, but

it’s worth it.
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Building a scalable solver

§ Inter-GPU communication hurts, so let’s avoid it.
§ In the strong-scaling regime, we

employ a solver with a domain-
decomposed preconditioner.

§ Most of the flops go into the
preconditioner, where
communication is turned off.

§ Half precision is perfect here.
§ Iteration count goes up, but

it’s worth it.
Done!
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Strong scaling 323x256
Wilson-clover BiCGstab
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Strong scaling 323x256
Wilson-clover BiCGstab
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Figure 9: Strong Scaling benchmarks on a lattice
of size 323 � 256 sites from Cray XT4 (Jaguar),
Cray XT5 (JaguarPF) and BlueGene/P (Intrepid).
Solves were done to double precision accuracy. The
Cray solvers used mixed (single-double) precision,
the BG/P solver was done purely in double preci-
sion

mains or using multi-levels of Schwarz-type blocking to take
advantage of the multiple levels of memory locality that a
GPU cluster o�ers can be devised to improve the scaling
substantially. Moreover we view the GPU and the use of
the Schwarz preconditioner as part of a larger restructur-
ing of algorithms and software to address the inevitable fu-
ture at the extreme scale of heterogeneous architectures with
deep memory hierarchies. We anticipate that the arsenal
of tools needed for the future of lattice QCD and similarly
structured problems ( e.g., finite di�erence problems, ma-
terial simulations etc.) at the exascale will include domain
decomposition, mixed-precision solvers and data compres-
sion/recomputation strategies.
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This is the future of capability computing...

Titan
>20 Petaflops
18,688 GPUs

Tsubame 2.0
4224 GPUs

coming soon...

Tianhe-1A
7168 GPUs
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Strong scaling on TitanDev (Cray XK6)

§ 960 nodes, each with:
— 1 Tesla X2090
— 1 Opteron (16-core/8-module “Interlagos”)

§ Cray Gemini interconnect
§ Development platform in anticipation of Titan
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Results from TitanDev
- 483x512 aniso clover
- scaling up 768 GPUs

102 Tflops
  37 Tflops

  7.5 Tflops
  32 Tflops
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What haven’t we covered?

• Non-solver kernels required for HMC
– Gauge force, fermion force, link fattening

• Advanced optimizations
– Using shared memory for cache blocking
– Autotuning
– Texture cache and half precision
– and lots more
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HMC timing breakdown
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Work in progress

• Gauge field generation on GPUs, for 2 different 
discretizations & applications:

— Improved staggered in MILC
— Wilson and Wilson-clover in Chroma (leveraging Frank Winter’s QDP-

JIT framework)

• Adaptive geometric multigrid on GPUs
— GPUs give 5-10x in price/performance
— Multigrid has the potential to give another 10x (at least for Wilson 

and Wilson-clover) at light quark masses.
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Getting into QUDA
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• QUDA designed to accelerate pre-existing LQCD 
applications

– Chroma, MILC, CPS, BQCD
• Solo QUDA workflow possible

– tests directory includes linear solver examples
– Gauge fields loaded through QIO 
– tests main use is for self contained correctness 

checking

Using QUDA
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Using QUDA

#include <quda.h>

int main() {

  // initialize the QUDA library
  initQuda(device);

  // load the gauge field
  loadGaugeQuda((void*)gauge, &gauge_param);

  // perform the inversion
  invertQuda(spinorOut, spinorIn, &inv_param);

  // free the gauge field
  freeGaugeQuda();

  // finalize the QUDA library
  endQuda();

}

•QUDA provides a simple C 
interface for the outside 
world

•Host applications simply 
pass cpu-side pointers
•QUDA takes care of all 
field reordering and data 
copying

•Both a blessing and curse
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Getting Involved with QUDA

• QUDA is open source
– All development done in github

• Features requests are welcome
• More developers are even more welcome
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Summary

• Glimpse into the QUDA library
– Implementing the Dslash
– Multi-GPU considerations

• Possible take-home messages
– Start experimenting with writing code with GPUs

• CUDA C/C++, OpenACC, it doesn’t matter
– Using GPUs + QUDA as a black box to accelerate physics
– Looking deeper into QUDA

• contact me  mclark@nvidia.com
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Backup slides
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• Non-overlapping blocks - simply have to 
switch off inter-GPU communication

• Preconditioner is a gross approximation

• Use an iterative solver to solve each domain system

• Require only 10 iterations of domain solver  ⟹ 16-bit  

• Need to use a flexible solver ⟹  GCR

• Block-diagonal preconditoner impose λ cutoff

• Finer Blocks lose long-wavelength/low-energy modes

• keep wavelengths of ~ O(ΛQCD-1),   ΛQCD -1 ~ 1fm 

• Aniso clover:  (as=0.125fm, at=0.035fm)  ⟹   83x32 blocks are ideal

• 483x512 lattice: 83x32 blocks  ⟹   3456 GPUs

Domain Decomposition

Solve for χl   l=k,k-1,...,0:

Compute correction 

(Re)Start Generate Update 

repeat for all k or 
Full precision restartQuantities with ^ are in reduced

normalize ẑk

Orthogonalize ẑ-s

Apply 
Reduced 
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Run-time autotuning

§ Motivation:
— Kernel performance (but not output) strongly dependent on launch 

parameters:
§ gridDim (trading off with work per thread), blockDim
§ blocks/SM (controlled by over-allocating shared memory)

§ Design objectives:
— Tune launch parameters for all performance-critical kernels at run-

time as needed (on first launch).
— Cache optimal parameters in memory between launches.
— Optionally cache parameters to disk between runs.
— Preserve correctness.
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Auto-tuned “warp-throttling”

§ Motivation: Increase reuse in limited L2 cache.
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BlockDim only 
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Run-time autotuning: Implementation

§ Parameters stored in a global cache:
static	  std::map<TuneKey,	  TuneParam>	  tunecache;

§ TuneKey is a struct of strings specifying the kernel name, 
lattice volume, etc.

§ TuneParam is a struct specifying the tune blockDim, gridDim, 
etc.

§ Kernels get wrapped in a child class of Tunable (next slide)
§ tuneLaunch() searches the cache and tunes if not found:

TuneParam	  tuneLaunch(Tunable	  &tunable,	  QudaTune	  enabled,	  
QudaVerbosity	  verbosity);
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Run-time autotuning: Usage

§ Before:
myKernelWrapper(a,	  b,	  c);

§ After:
MyKernelWrapper	  *k	  =	  new	  MyKernelWrapper(a,	  b,	  c);
k-‐>apply();	  	  //	  <-‐-‐	  automatically	  tunes	  if	  necessary

§ Here MyKernelWrapper inherits from Tunable and optionally 
overloads various virtual member functions (next slide).

§ Wrapping related kernels in a class hierarchy is often useful 
anyway, independent of tuning.
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Virtual member functions of Tunable

§ Invoke the kernel (tuning if necessary):
— apply()

§ Save and restore state before/after tuning:
— preTune(), postTune()

§ Advance to next set of trial parameters in the tuning:
— advanceGridDim(), advanceBlockDim(), advanceSharedBytes()
— advanceTuneParam()  // simply calls the above by default

§ Performance reporting
— flops(), bytes(), perfString()

§ etc.
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