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Chiral Perturbation Theory

IV.  Convergence



Reminder: Asymptotic Expansions

• Non-analytic quark mass dependence implies asymptotic expansion                                                  
(but obviously so: zero radius of convergence)
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Include more terms: 
limits to smaller x

Make better at larger x 
by dropping terms



Reminder: Asymptotic Expansions

• Non-analytic quark mass dependence implies asymptotic expansion                                                  
(but obviously so: zero radius of convergence)

Chiral expansion m2
π/Λ

2
χ ∼ 0.02 (may even be OK for larger pion masses)

m2
π/m

2
ρ ∼ 0.03

m2
π/m

2
σ ∼ 0.08

Heavy nucleon expansion M ∼ 800 MeV mπ/M ∼ 0.2

mπ/∆ ∼ 0.5Delta resonance contributions

• Higher orders introduce more parameters (low-energy 
constants)

• Makes addressing convergence difficult without 
knowing the chiral limit values of these parameters 

∆/Λχ ∼ 0.3



Three-Flavor Chiral Limit

mq/ΛQCD ∼ 0.01

ms/ΛQCD ∼ 0.3

Ignore the warning signs

Lψ =
3�

i=1

ψi (D/ +mi)ψi



Three-Flavor Chiral Limit

Lψ =
3�

i=1

ψiD/ψi + . . .

U(1)V ⊗ SU(3)L ⊗ SU(3)R −→ U(1)V ⊗ SU(3)V

�ψψ� = �ψRψL�+ �ψLψR� �= 0
Symmetries and 
their breaking

SU(3)L ⊗ SU(3)R/SU(3)VΣij ∼ �ψjRψiL� Σij(x) = δij + . . .

Σ = e2iφ/f Σ → LΣR† Σ → V ΣV † φ → V φV †

Goldstone modes (embedded similarly to before)

φ =





1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K0 − 2√
6
η







Three-Flavor Chiral Perturbation Theory

U(1)V ⊗ SU(3)L ⊗ SU(3)R −→ U(1)V ⊗ SU(3)V

Σ = e2iφ/f Σ → LΣR† Σ → V ΣV † φ → V φV †

Chiral perturbation theory  (constructed similarly to before)

Lχ =
f2

8
Tr

�
∂µΣ∂µΣ

†�− λTr
�
mΣ+mΣ†�

Explicit breaking ψL mψR + ψR mψL m =




mq

mq

ms





O(p4)

O(p2)

Seven Gasser-Leutwyler coefficients,                  
a few more when external fields are included



Exercises

Revisit electromagnetic mass corrections in three-flavor chiral perturbation theory.  
Find all leading and next-to-leading order electromagnetic mass operators. Ignoring 
the up and down quark masses, which octet masses are affected by leading and 
next-to-leading order operators?

In the strong isospin limit, there are two different quark masses but three meson 
masses of the pseudoscalar octet. Use the three-flavor chiral Lagrangian to derive 

the constraint                                                          ,  which was originally found by 
Gell-Mann and Okubo.  What happens away from the strong isospin limit?

∆GMO =
4

3
m2

K −m2

η −
1

3
m2

π = 0

Accounting for strong and electromagnetic isospin breaking to leading order, 
determine the mass spectrum of the meson octet, and devise a way to compute 
the quark mass ratios,                               , using the experimentally measured 
masses. 

mu/md md/ms



Three-Flavor Chiral Perturbation Theory

Gell-Mann Okubo mass relation ∆GMO =
4

3
m2

K −m2

η −
1

3
m2

π = 0

∆GMO/m
2

φ ≈ 15%

Next-to-leading order corrections:             one-loop + local terms from O(p2) O(p4)

0 = O(p4) ∼
m4

φ

m2
φΛ

2
χ

mπ0 = 135.0 MeV

mK0 = 497.6 MeV

mη = 547.9 MeV

most worrisomeη ∼ 35%

introduces free parameter
m2

π/Λ
2
χ ∼ 0.02

m2
K/Λ2

χ ∼ 0.23

m2
η/Λ

2
χ ∼ 0.27

Pending numerical factors,            contributions 
(which include two-loop diagrams) should be ~10%

O(p6)



Heavy Baryon Chiral Perturbation Theory

Lowest lying spin-half baryons form an octet of SU(3)V

B → V BV †

B =





1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n
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6
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
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ξ =
√
Σ = eiφ/fCouple to the Goldstone modes via

ξ → LξU† = UξR†

Free to choose the chiral transformation of baryon octet of the form B → UBU†

Aµ → UAµU
†

DµB = ∂µB + [Vµ, B]

L = Tr
�
Biv ·DB

�
+ 2DTr

�
B�S · { �A,B}

�
+ 2F Tr

�
B�S · [ �A,B]

�
O(p)

MB(mq = ms = 0)Phased away SU(3) chiral limit mass



Heavy Baryon Chiral Perturbation Theory

Lowest lying spin three-half baryons form a decuplet 
of SU(3)V

O(p)

Tijk → Vi
i�Vj

j�Vk
k�
Ti�j�k�

No question about inclusion for three flavors

D,F
N Σ

K mK ∼ 500 MeV

MΣ ∼ 1200 MeV N ∆

π mπ ∼ 140 MeV

M∆ ∼ 1230 MeV
C

∆ ≡ MT −MB = 270 MeV

L = Tµ (iv ·D +∆) Tµ + 2H Tµ
�S · �ATµ + 2C

�
TµAµB +BAµTµ

�



Quark Mass Dependence of the Octet Baryons

• Now turn on explicit chiral symmetry breaking due to the quark masses

∆L = ψLsψR + ψRs
†ψL s → LsR† s = m+ . . .

• Dress the scalar source with pions M± =
1

2

�
ξs† ξ ± ξ†s ξ†

�
→ UM±U

†

Lm = bDTr
�
B{M+, B}

�
+ bFTr

�
B[M+, B]

�
+ σTr

�
BB

�
Tr (M+)O(p2)

• Similar Gell-Mann Okubo constraint on octet baryon masses from tree-level

MGMO = MΛ +
1

3
MΣ − 2

3
MN − 2

3
MΞ

!
= 0 MGMO/MB ∼ 1%

• One-loop correction predicted in terms of axial couplings C, D, F

D,F D,F
MGMO =

4π

3(4πf)2
(D2 − 3F 2)

�
4
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�
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Anatomy of Decuplet Contribution
C C

• Intermediate-state angular momentum pion p-wave p2�

∼ C2

f2

�
d4p

�p 2

[ip4 +∆] [(p4)2 + �p 2 +m2
π]

p4 =

�
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±iEπ
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�
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�
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π

two-body phase space 
near threshold

• Divergences

Λ3 +∆Λ2+∆2Λ+∆3 logΛ

+m2
πΛ+∆m2

π logΛ+ finite

� Λ

dE E2
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E
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��
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π
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+ . . .

�

Renormalization condition

MN,Σ,Λ,Ξ

��
mq=0

= MB



Gell-Mann Okubo Relation to One-Loop

• BUT: One-loop chiral corrections to the individual masses are LARGE

MGMO =
4π

3(4πf)2

�
π(D2 − 3F 2)∆GMO(m

3

φ)−
1

6
C2∆GMO

�
F(mφ,∆, µ)

��

MGMO/MB ∼ 1%Experiment

F(m, δ, µ) = (m2 − δ2)

�
�

δ2 −m2 log

�
δ −

√
δ2 −m2 + i�

δ +
√
δ2 −m2 + i�

�
− δ log

m2

µ2

�
− 1

2
δm2 log

m2

µ2

δMN (µ = Λχ)/MN = −39%

δMΛ(µ = Λχ)/MΛ = −67%

δMΣ(µ = Λχ)/MΣ = −89%

δMΞ(µ = Λχ)/MΞ = −98%

mπ/MB ∼ 0.1

mK/MB ∼ 0.5

mη/MB ∼ 0.5

Heavy baryons

Expansion stranger with 
increasing strangeness

Scale dependence? 
Chiral limit? 



Exercise:

�
ms

mq
− 1

�
(1− y)σN =

ms −mq

2MN
�N(�k)|uu+ dd− 2ss|N(�k)�

Using the baryon chiral Lagrangian at tree level, calculate the matrix element 
on the right-hand side and express in terms of the octet baryons masses. 
Finally estimate the size of the sigma term. 

Recall the relation between the nucleon sigma term and strangeness.



Confronting SU(3): the strange quark mass

• Unless you’re exceptionally lucky, the strange quark mass is probably too large 
for the success of SU(3) chiral expansion...

• One approach: integrate out the heavy strange quark mass to use an SU(2) theory

mu,md � ms ∼ ΛQCD

mu,md ∼ ms � ΛQCD

• For the nucleon (and pion) this is just SU(2) chiral perturbation theory. Done

• For the nucleon, we treated it as a heavy external flavor source.                    
Nothing stops us from having strangeness in such a source. 

SU(3)L ⊗ SU(3)R

SU(2)L ⊗ SU(2)R

... SU(2) chiral perturbation theory for strange hadrons 

Limited predictive power, but ideal for lattice applications



Integrating out the strange quark

• Use the kaon mass to exemplify

Estimate using SU(3) and pion, kaon masses

• Consider the SU(3) expansion of the Sigma baryon mass, schematically

MΣ = MB + am2
K + bm3

K + . . .

Expand out the strange quark contribution

m2
K =

4λ

f2
(mq +ms) + . . . =

1

2
m2

π +M2
K + . . . = M2

K

�
1 +

m2
π

2M2
K

�
+ . . .

MK = 0.486(5) GeV mK0 = 0.497 GeV

MK ≡ mK

���
mq=0

MΣ = MB + a�M2
K + a��m2

π + b�M3
K + b��MKm2

π + b���
1

MK
m4

π + . . .

Reorganize into SU(2) chiral limit expansion

MΣ = M (2)
Σ + σπΣ m2

π +Am3
π +Bm4

π

�
logm2

π + C
�
+ . . .



E.g. SU(2) Chiral Perturbation Theory for Hyperons

m2
π

Λ2
χ

,
m2

π

2M2
K

SU(2) chiral expansion Heavy baryon expansion
mπ

M (2)

δMN (µ = Λχ)/MN = −39%

δMΛ(µ = Λχ)/MΛ = −67%

δMΣ(µ = Λχ)/MΣ = −89%

δMΞ(µ = Λχ)/MΞ = −98%

SU(3) expansion at 
physical pion mass

O(p3)



Final Exercises:

Use SU(2) chiral perturbation theory to construct a low-energy theory of kaons   
and the eta. 

Find a process involving strange baryons for which a description in terms of  
SU(2) chiral perturbation theory certainly must fail. 



Final Topic: Not-so-heavy Heavy Baryons

• Heavy baryons necessary for power counting, but static limit is often severe

• Can treat recoil corrections in perturbation theory, but cannot exactly capture 
analytic structure (poles & cuts will have approximately the correct locations)

Scalar form factor of the Nucleon
�
N(�p �)

��mq(uu+ dd)|N(�p
��

= u(�p �)σ(t)u(�p )

+ + +

• Heavy baryon approximation can create unphysical singularities

σ(t = 2m2
π)− σ(t = 0) =

3πg2Am
3
π

2(4πf)2
+O(m4

π) HBChPT result at 
Cheng-Dashen point



Final Topic: Not-so-heavy Heavy Baryons

• Heavy baryons necessary for power counting, but static limit is often severe

• Can treat recoil corrections in perturbation theory, but cannot exactly capture 
analytic structure (poles & cuts will have approximately the correct locations)

Scalar form factor of the Nucleon
�
N(�p �)

��mq(uu+ dd)|N(�p
��

= u(�p �)σ(t)u(�p )

+ + +

• Heavy baryon approximation can create unphysical singularities

Fully relativistic calculation τ =
t

4m2
π

σ(t)− σ(0) =
3πg2Amπ

4(4πf)2

�
(t− 2m2

π)

�
1

2
√
τ
log

1 +
√
τ

1−
√
τ
− log

�
1 +

mπ

2MN

√
1− τ
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+2m2

π

�
1− log

�
1 +

mπ

2MN

���

σ(t)− σ(0) =
t

π

� ∞

4m2
π

dt�
Imσ(t�)

t�(t� − t)
Analytic properties allow for 
dispersive representation

threshold parameter



Final Topic: Not-so-heavy Heavy Baryons

• Heavy baryons necessary for power counting, but static limit is often severe

• Can treat recoil corrections in perturbation theory, but cannot exactly capture 
analytic structure (poles & cuts will have approximately the correct locations)

Scalar form factor of the Nucleon
�
N(�p �)

��mq(uu+ dd)|N(�p
��

= u(�p �)σ(t)u(�p )

+ + +

• Heavy baryon approximation can create unphysical singularities

τ =
t

4m2
π

threshold parameter

Expand in                to recover HBChPT resultmπ/MN

σ(t)− σ(0) =
3πg2Amπ

4(4πf)2

�
(t− 2m2

π)

�
1

2
√
τ
log

1 +
√
τ

1−
√
τ
− 0

�
+ 2m2

π [1− 0 ]

�

Cheng-Dashen point



Final Topic: Not-so-heavy Heavy Baryons

• Heavy baryons necessary for power counting, but static limit is often severe

• Can treat recoil corrections in perturbation theory, but cannot exactly capture 
analytic structure (poles & cuts will have approximately the correct locations)

Scalar form factor of the Nucleon
�
N(�p �)

��mq(uu+ dd)|N(�p
��

= u(�p �)σ(t)u(�p )

+ + +

• Heavy baryon approximation can create unphysical singularities

τ =
t

4m2
π

σ(t)− σ(0) =
3πg2Amπ

4(4πf)2

�
(t− 2m2

π)

�
1

2
√
τ
log

1 +
√
τ

1−
√
τ
− 0

�
+ 2m2

π [1− 0 ]
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Singular at two pion threshold
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√
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Final Topic: Not-so-heavy Heavy Baryons

• Heavy baryons necessary for power counting, but static limit is often severe

• Can treat recoil corrections in perturbation theory, but cannot exactly capture 
analytic structure (poles & cuts will have approximately the correct locations)

Scalar form factor of the Nucleon
�
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+ + +

• Heavy baryon approximation can create unphysical singularities

Fully relativistic calculation τ =
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π
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4(4πf)2
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√
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√
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No unphysical singularity



Final Topic: Not-so-heavy Heavy Baryons

• Heavy baryons necessary for power counting, but static limit is often severe

• Can treat recoil corrections in perturbation theory, but cannot exactly capture 
analytic structure (poles & cuts will have approximately the correct locations)
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= u(�p �)σ(t)u(�p )
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• Heavy baryon approximation can create unphysical singularities

Fully relativistic calculation τ =
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π
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√
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√
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New small parameter near threshold                   necessitates summation of
mπ

MN

MN

mπ

√
1− τ

Two pion branch appears



Concluding Remarks

• Chiral perturbation theory provides the tool to account for light quark mass 
dependence of low-energy QCD observables.

• Perturbative expansion limited by size of physical quark masses: strange 
quark, non-relativistic baryon approximation, etc. 

• Prior to lattice QCD, chiral perturbation theory was the only way to do 
precision low-energy QCD phenomenology. 

• Lattice methods are testing the rigor of the chiral expansion, and currently the 
two in conjunction are essential. 


