

Lectures on Chiral Perturbation Theory

- I. Foundations
- II. Lattice Applications
- III. Baryons
- IV. Convergence

Chiral Perturbation Theory

IV. Convergence

 Non-analytic quark mass dependence implies asymptotic expansion (but obviously so: zero radius of convergence)

 $F(x) = \int_{0}^{\infty} ds \frac{e^{-s}}{1+sx} \qquad 0 < x \ll 1$ Toy Model

No series expansion about x=0

$$F(x) = \int_0^\infty ds \, e^{-s} \left(\sum_{j=0}^\infty (-s \, x)^j \right) \stackrel{!}{=} \sum_{j=0}^\infty (-x)^j \left(\int_0^\infty ds \, s^j \, e^{-s} \right)$$

Suggests approximation $F_N(x) = \sum_{j=1}^{N} (-)^j j! x^j$

$$|F(x) - F_N(x)| = x^{N+1} \int \frac{s^{N+1}e^{-s} \, ds}{1+s \, x} \le x^{N+1} (N+1)!$$

 $\approx \sqrt{2\pi N} (xN)^N e^{-N} \sim \sqrt{\frac{2\pi}{r}} e^{-\frac{1}{x}}$ Minimize Large N $x \sim 1/N$

Falling Rocks! If you proceed, be alert! Rocks may fall without warning IF IN DOUBT STAY AWAY

 Non-analytic quark mass dependence implies asymptotic expansion (but obviously so: zero radius of convergence)

Toy Model

No series expansion about x=0

 Non-analytic quark mass dependence implies asymptotic expansion (but obviously so: zero radius of convergence)

Toy Model

AWARNING

Hazardous Cliff

The ground may break off

Stay back from the edge

ut warning and you

be seriously injured

 Non-analytic quark mass dependence implies asymptotic expansion (but obviously so: zero radius of convergence)

Toy Model

WARNING

Falling Rocks!

Rocks may fall without warning

causing serious injury or death

IF IN DOUBT STAY AWAY

If you proceed, be alert!

Stay back from the edge

 Non-analytic quark mass dependence implies asymptotic expansion (but obviously so: zero radius of convergence)

Stay back from the edge.

• Non-analytic quark mass dependence implies asymptotic expansion (but obviously so: zero radius of convergence)

Chiral expansion

$$m_{\pi}^2/m_{\rho}^2 \sim 0.03$$
$$m_{\pi}^2/m_{\sigma}^2 \sim 0.08$$

 $m^2/\Lambda_{\odot}^2 \sim 0.02$

Heavy nucleon expansion

 $M\sim 800\,{\rm MeV}$

$$m_{\pi}/M \sim 0.2$$

(may even be OK for larger pion masses)

Delta resonance contributions

 $m_{\pi}/\Delta \sim 0.5$ $\Delta/\Lambda_{\chi} \sim 0.3$

- Hazardous Cliff! The ground may break off without warning and you could be seriously injured or killed.
- Stay back from the edge.

- Higher orders introduce more parameters (low-energy constants)
- Makes addressing convergence difficult without knowing the chiral limit values of these parameters

Three-Flavor Chiral Limit

$$\mathcal{L}_{\psi} = \sum_{i=1}^{3} \overline{\psi}_{i} \left(D + m_{i} \right) \psi_{i}$$

 $m_q / \Lambda_{\rm QCD} \sim 0.01$ $m_s / \Lambda_{\rm QCD} \sim 0.3$

Ignore the warning signs

Stay back from the edge.

Three-Flavor Chiral Limit

Symmetries and
their breaking
$$\mathcal{L}_{\psi} = \sum_{i=1}^{3} \overline{\psi}_{i} \not D \psi_{i} + \dots$$
 $\langle \overline{\psi} \psi \rangle = \langle \overline{\psi}_{R} \psi_{L} \rangle + \langle \overline{\psi}_{L} \psi_{R} \rangle \neq 0$
 $U(1)_{V} \otimes SU(3)_{L} \otimes SU(3)_{R} \longrightarrow U(1)_{V} \otimes SU(3)_{V}$
 $\Sigma_{ij} \sim \langle \overline{\psi}_{jR} \psi_{iL} \rangle$ $\Sigma_{ij}(x) = \delta_{ij} + \dots$ $SU(3)_{L} \otimes SU(3)_{R}/SU(3)_{V}$
Goldstone modes (embedded similarly to before)
 $\Sigma = e^{2i\phi/f}$ $\Sigma \rightarrow L\Sigma R^{\dagger}$ $\Sigma \rightarrow V\Sigma V^{\dagger}$ $\phi \rightarrow V \phi V^{\dagger}$

$$\phi = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & \pi^+ & K^+ \\ \pi^- & -\frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & K^0 \\ K^- & \overline{K}^0 & -\frac{2}{\sqrt{6}}\eta \end{pmatrix}$$

Three-Flavor Chiral Perturbation Theory

Explicit breaking
$$\overline{\psi}_L m \psi_R + \overline{\psi}_R m \psi_L$$
 $m = \begin{pmatrix} m_q & & \\ & m_q & \\ & & m_s \end{pmatrix}$

 $U(1)_V \otimes SU(3)_L \otimes SU(3)_R \longrightarrow U(1)_V \otimes SU(3)_V$

$$\mathcal{O}(p^2)$$

$$\mathcal{L}_{\chi} = \frac{f^2}{8} \operatorname{Tr} \left(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger} \right) - \lambda \operatorname{Tr} \left(m \Sigma + m \Sigma^{\dagger} \right)$$

Chiral perturbation theory (constructed similarly to before)

 $\Sigma = e^{2i\phi/f} \qquad \Sigma \to L\Sigma R^{\dagger} \qquad \Sigma \to V\Sigma V^{\dagger} \qquad \phi \to V\phi V^{\dagger}$

Seven Gasser-Leutwyler coefficients, a few more when external fields are included

Exercises

In the strong isospin limit, there are two different quark masses but three meson masses of the pseudoscalar octet. Use the three-flavor chiral Lagrangian to derive

the constraint $\Delta_{\text{GMO}} = \frac{4}{3}m_K^2 - m_\eta^2 - \frac{1}{3}m_\pi^2 = 0$, which was originally found by Gell-Mann and Okubo. What happens away from the strong isospin limit?

Revisit electromagnetic mass corrections in three-flavor chiral perturbation theory. Find all leading and next-to-leading order electromagnetic mass operators. Ignoring the up and down quark masses, which octet masses are affected by leading and next-to-leading order operators?

Accounting for strong and electromagnetic isospin breaking to leading order, determine the mass spectrum of the meson octet, and devise a way to compute the quark mass ratios, m_u/m_d m_d/m_s , using the experimentally measured masses.

Three-Flavor Chiral Perturbation Theory

 η most worrisome $\sim 35\%$

introduces free parameter

 $m_\pi^2/\Lambda_\chi^2 \sim 0.02$ $m_K^2/\Lambda_\chi^2 \sim 0.23$ $m_\eta^2/\Lambda_\chi^2 \sim 0.27$

Pending numerical factors, $\mathcal{O}(p^6)$ contributions (which include two-loop diagrams) should be ~10%

Heavy Baryon Chiral Perturbation Theory

Lowest lying spin-half baryons form an octet of $\,SU(3)_V$

 $B \rightarrow VBV^{\dagger}$ S = -2 $B = \begin{pmatrix} \frac{1}{\sqrt{2}}\Sigma^{0} + \frac{1}{\sqrt{6}}\Lambda & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{1}{\sqrt{2}}\Sigma^{0} + \frac{1}{\sqrt{6}}\Lambda & n \\ \Xi^{-} & \Xi^{0} & -\frac{2}{\sqrt{6}}\Lambda \end{pmatrix}$

Couple to the Goldstone modes via $\xi = \sqrt{\Sigma} = e^{i\phi/f}$

$$\xi \to L \xi U^{\dagger} = U \xi R^{\dagger}$$

Free to choose the chiral transformation of baryon octet of the form $B \to UBU^{\dagger}$ $\mathcal{A}_{\mu} \to U\mathcal{A}_{\mu}U^{\dagger}$ $\mathcal{V}_{\mu} \to U\mathcal{V}_{\mu}U^{\dagger} + U\partial_{\mu}U^{\dagger}$ $D_{\mu}B = \partial_{\mu}B + [\mathcal{V}_{\mu}, B]$

 $\mathcal{O}(p) \qquad \mathcal{L} = \operatorname{Tr}\left(\overline{B}iv \cdot DB\right) + 2D\operatorname{Tr}\left(\overline{B}\vec{S} \cdot \{\vec{A}, B\}\right) + 2F\operatorname{Tr}\left(\overline{B}\vec{S} \cdot [\vec{A}, B]\right)$ Phased away SU(3) chiral limit mass $M_B(m_q = m_s = 0)$

Heavy Baryon Chiral Perturbation Theory

Lowest lying spin three-half baryons form a decuplet of $SU(3)_V$

$$T_{ijk} \to V_i^{i'} V_j^{j'} V_k^{k'} T_{i'j'k'}$$

 $\Delta \equiv M_T - M_B = 270\,{\rm MeV}$

No question about inclusion for three flavors

 $\mathcal{O}(p) \qquad \mathcal{L} = \overline{T}_{\mu} \left(iv \cdot D + \Delta \right) T_{\mu} + 2H \overline{T}_{\mu} \vec{S} \cdot \vec{\mathcal{A}} T_{\mu} + 2C \left(\overline{T}_{\mu} A_{\mu} B + \overline{B} A_{\mu} T_{\mu} \right)$

Quark Mass Dependence of the Octet Baryons

Now turn on explicit chiral symmetry breaking due to the quark masses

$$\Delta \mathcal{L} = \overline{\psi}_L s \,\psi_R + \overline{\psi}_R s^\dagger \psi_L \qquad s \to L \, s \, R^\dagger \qquad s = m + \dots$$

• Dress the scalar source with pions $\mathcal{M}_{\pm} = \frac{1}{2} \left(\xi s^{\dagger} \xi \pm \xi^{\dagger} s \xi^{\dagger} \right) \rightarrow U \mathcal{M}_{\pm} U^{\dagger}$

$$\mathcal{O}(p^2) \qquad \mathcal{L}_m = b_D \operatorname{Tr}\left(\overline{B}\{\mathcal{M}_+, B\}\right) + b_F \operatorname{Tr}\left(\overline{B}[\mathcal{M}_+, B]\right) + \sigma \operatorname{Tr}\left(\overline{B}B\right) \operatorname{Tr}\left(\mathcal{M}_+\right)$$

• Similar Gell-Mann Okubo constraint on octet baryon masses from tree-level

$$M_{\rm GMO} = M_{\Lambda} + \frac{1}{3}M_{\Sigma} - \frac{2}{3}M_N - \frac{2}{3}M_{\Xi} \stackrel{!}{=} 0$$
 $M_{\rm GMO}/\overline{M}_B \sim 1\%$

One-loop correction predicted in terms of axial couplings C, D, F

$$\underbrace{-}_{D,F} \underline{N}_{GMO} = \frac{4\pi}{3(4\pi f)^2} (D^2 - 3F^2) \left(\frac{4}{3}m_K^3 - m_\eta^3 - \frac{1}{3}m_\pi^3\right) + \text{Decuplet}$$

Anatomy of Decuplet Contribution

C C

 $p^{2\ell}$

poles

Intermediate-state angular momentum pion p-wave

$$\sim \frac{C^2}{f^2} \int d^4 p \, \frac{\vec{p}^2}{[ip_4 + \Delta] \left[(p_4)^2 + \vec{p}^2 + m_\pi^2 \right]} \qquad p_4 = \begin{cases} i\Delta \\ \pm iE_\pi \end{cases}$$

• Contour integration puts pion on shell

$$\sim \frac{C^2}{f^2} \int d\vec{p} \, \frac{\vec{p}^2}{E_\pi (E_\pi + \Delta)} \sim \frac{C^2}{f^2} \int_{m_\pi}^{\infty} dE_\pi \frac{(E_\pi^2 - m_\pi^2)^{3/2}}{E_\pi + \Delta}$$

two-body phase space near threshold
$$\sqrt{s-m_\pi^2}$$

 $E_{\pi} = \sqrt{\vec{p}^2 + m_{\pi}^2}$

• Divergences

$$\int^{\Lambda} dE \, E^2 \left(1 - \frac{\Delta}{E} + \frac{\Delta^2}{E^2} - \frac{\Delta^3}{E^3} + \dots \right) \left(1 - \frac{3}{2} \frac{m_{\pi}^2}{E^2} + \dots \right)$$

$$\begin{split} \Lambda^3 + \Delta \Lambda^2 + \Delta^2 \Lambda + \Delta^3 \log \Lambda \\ + m_\pi^2 \Lambda + \Delta m_\pi^2 \log \Lambda + \text{finite} \end{split}$$

Renormalization condition $M_{N,\Sigma,\Lambda,\Xi}\big|_{m_a=0}=M_B$

Gell-Mann Okubo Relation to One-Loop

$$M_{\rm GMO} = \frac{4\pi}{3(4\pi f)^2} \left[\pi (D^2 - 3F^2) \Delta_{\rm GMO}(m_\phi^3) - \frac{1}{6} C^2 \Delta_{\rm GMO} \left(\mathcal{F}(m_\phi, \Delta, \mu) \right) \right]$$

$$\mathcal{F}(m,\delta,\mu) = (m^2 - \delta^2) \left[\sqrt{\delta^2 - m^2} \log \left(\frac{\delta - \sqrt{\delta^2 - m^2 + i\epsilon}}{\delta + \sqrt{\delta^2 - m^2 + i\epsilon}} \right) - \delta \log \frac{m^2}{\mu^2} \right] - \frac{1}{2} \delta m^2 \log \frac{m^2}{\mu^2} \qquad \text{Scale dependence?}$$
 Chiral limit?

M_{GMO}/M_B	Source	D	F	С		
0.79%	ChPT	0.61	0.40	1.2		
1.12%	Lattice QCD	0.72	0.45	1.6	Experiment	$M_{\rm GMO}/M_B \sim 1\%$
1.29%	SU(6)	3/4	1/2	3/2		

• BUT: One-loop chiral corrections to the individual masses are LARGE

$$\begin{split} &\delta M_N(\mu=\Lambda_\chi)/M_N=-39\% & \text{Heavy baryons} \\ &\delta M_\Lambda(\mu=\Lambda_\chi)/M_\Lambda=-67\% & \text{Expansion stranger with} & m_\pi/M_B\sim 0.1 \\ &\delta M_\Sigma(\mu=\Lambda_\chi)/M_\Sigma=-89\% & \text{increasing strangeness} & m_K/M_B\sim 0.5 \\ &\delta M_\Xi(\mu=\Lambda_\chi)/M_\Xi=-98\% & m_\eta/M_B\sim 0.5 \end{split}$$

Exercise:

Recall the relation between the nucleon sigma term and strangeness.

$$\left(\frac{m_s}{m_q} - 1\right)(1 - y)\sigma_N = \frac{m_s - m_q}{2M_N} \langle N(\vec{k})|\overline{u}u + \overline{d}d - 2\overline{s}s|N(\vec{k})\rangle$$

Using the baryon chiral Lagrangian at tree level, calculate the matrix element on the right-hand side and express in terms of the octet baryons masses. Finally estimate the size of the sigma term.

Confronting SU(3): the strange quark mass

 $SU(3)_L \otimes SU(3)_R$ $m_u, m_d \sim m_s \ll \Lambda_{\rm QCD}$

- Unless you're exceptionally lucky, the strange quark mass is probably too large for the success of SU(3) chiral expansion...
- One approach: integrate out the heavy strange quark mass to use an SU(2) theory $SU(2)_L\otimes SU(2)_R$ $m_u,m_d\ll m_s\sim\Lambda_{
 m QCD}$
- For the nucleon (and pion) this is just SU(2) chiral perturbation theory. Done

• For the nucleon, we treated it as a heavy external flavor source. Nothing stops us from having strangeness in such a source.

... SU(2) chiral perturbation theory for strange hadrons

Limited predictive power, but ideal for lattice applications

Integrating out the strange quark

• Use the kaon mass to exemplify

$$m_K^2 = \frac{4\lambda}{f^2} \left(m_q + m_s \right) + \ldots = \frac{1}{2} m_\pi^2 + M_K^2 + \ldots = M_K^2 \left(1 + \frac{m_\pi^2}{2M_K^2} \right) + \ldots$$

 $M_K\equiv m_K\Big|_{m_q=0}$ Estimate using SU(3) and pion, kaon masses $M_K=0.486(5)\,{
m GeV}$ $m_{K^0}=0.497\,{
m GeV}$

• Consider the SU(3) expansion of the Sigma baryon mass, schematically

$$M_{\Sigma} = M_B + am_K^2 + bm_K^3 + \dots$$

Expand out the strange quark contribution

$$M_{\Sigma} = M_B + a' M_K^2 + a'' m_{\pi}^2 + b' M_K^3 + b'' M_K m_{\pi}^2 + b''' \frac{1}{M_K} m_{\pi}^4 + \dots$$

Reorganize into SU(2) chiral limit expansion

$$M_{\Sigma} = M_{\Sigma}^{(2)} + \sigma_{\pi\Sigma} m_{\pi}^2 + Am_{\pi}^3 + Bm_{\pi}^4 \left(\log m_{\pi}^2 + C\right) + \dots$$

E.g. SU(2) Chiral Perturbation Theory for Hyperons

	<i>SU</i> (3)	$SU(2)_{S=0}$	$SU(2)_{S=1}$	$SU(2)_{S=2}$	$SU(2)_{S=3}$
Expansion	$p m_{\pi} m_K m_{\eta} \Delta$	$p \ m_{\pi} \ \Delta_{\Delta N}$	$p m_{\pi} \Delta_{\Sigma\Lambda} \Delta_{\Sigma^*\Sigma}$	$p m_{\pi} \Delta_{\Xi^*\Xi}$	$p m_{\pi}$
Multiplets	8B 10T	$2N 4\Delta$	1Λ 3Σ 3Σ *	2E 2E*	1Ω
Couplings	DFCH	βα βων βωδ	<i>8 Δ</i> ΣΣ <i>8 Δ</i> Σ [*] <i>8 Σ</i> Σ [*] <i>8</i> Σ [*] <i>Σ</i> [*]	<i>8</i> == <i>8</i> ==*	

 $\mathcal{O}(p^3)$

SU(3) expansion at physical pion mass

 $\delta M_N(\mu = \Lambda_{\chi})/M_N = -39\%$ $\delta M_{\Lambda}(\mu = \Lambda_{\chi})/M_{\Lambda} = -67\%$ $\delta M_{\Sigma}(\mu = \Lambda_{\chi})/M_{\Sigma} = -89\%$ $\delta M_{\Xi}(\mu = \Lambda_{\chi})/M_{\Xi} = -98\%$

SU(2) chiral expansion

Final Exercises:

Use SU(2) chiral perturbation theory to construct a low-energy theory of kaons and the eta.

Find a process involving strange baryons for which a description in terms of SU(2) chiral perturbation theory certainly must fail.

- Heavy baryons necessary for power counting, but static limit is often severe
- Can treat recoil corrections in perturbation theory, but cannot exactly capture analytic structure (poles & cuts will have approximately the correct locations)
- Heavy baryon approximation can create *unphysical* singularities

- Heavy baryons necessary for power counting, but static limit is often severe
- Can treat recoil corrections in perturbation theory, but cannot exactly capture analytic structure (poles & cuts will have approximately the correct locations)
- Heavy baryon approximation can create *unphysical* singularities

Scalar form factor of the Nucleon
$$\langle N(\vec{p}') | m_q(\overline{u}u + \overline{d}d) | N(\vec{p}) \rangle = \overline{u}(\vec{p}')\sigma(t) u(\vec{p})$$

$$\sigma(t) - \sigma(0) = \frac{3\pi g_A^2 m_\pi}{4(4\pi f)^2} \left[(t - 2m_\pi^2) \left[\frac{1}{2\sqrt{\tau}} \log \frac{1 + \sqrt{\tau}}{1 - \sqrt{\tau}} - \log \left(1 + \frac{m_\pi}{2M_N\sqrt{1 - \tau}} \right) \right] + 2m_\pi^2 \left[1 - \log \left(1 + \frac{m_\pi}{2M_N} \right) \right]$$
Fully relativistic calculation $\tau = \frac{t}{4m_\pi^2}$ threshold parameter
Analytic properties allow for dispersive representation $\sigma(t) - \sigma(0) = \frac{t}{\pi} \int_{4m_\pi^2}^{\infty} dt' \frac{\Im \mathfrak{m} \sigma(t')}{t'(t' - t)}$

- Heavy baryons necessary for power counting, but static limit is often severe
- Can treat recoil corrections in perturbation theory, but cannot exactly capture analytic structure (poles & cuts will have approximately the correct locations)
- Heavy baryon approximation can create *unphysical* singularities

- Heavy baryons necessary for power counting, but static limit is often severe
- Can treat recoil corrections in perturbation theory, but cannot exactly capture analytic structure (poles & cuts will have approximately the correct locations)
- Heavy baryon approximation can create *unphysical* singularities

- Heavy baryons necessary for power counting, but static limit is often severe
- Can treat recoil corrections in perturbation theory, but cannot exactly capture analytic structure (poles & cuts will have approximately the correct locations)
- Heavy baryon approximation can create *unphysical* singularities

- Heavy baryons necessary for power counting, but static limit is often severe
- Can treat recoil corrections in perturbation theory, but cannot exactly capture analytic structure (poles & cuts will have approximately the correct locations)
- Heavy baryon approximation can create unphysical singularities

 m_{π}

Concluding Remarks

- Chiral perturbation theory provides the tool to account for light quark mass dependence of low-energy QCD observables.
- Perturbative expansion limited by size of physical quark masses: strange quark, non-relativistic baryon approximation, *etc*.
- Prior to lattice QCD, chiral perturbation theory was the only way to do precision low-energy QCD phenomenology.
- Lattice methods are testing the rigor of the chiral expansion, and currently the two in conjunction are essential.