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Chiral Perturbation Theory

IV. Convergence



Reminder: Asymptotic Expansions

¢ Non-analytic quark mass dependence implies asymptotic expansion
(but obviously so: zero radius of convergence)

[ e * No series expansion
Toy Model F(z) = /O ds [ on l<rkl About X<0
F(x) = / dse ° Z(—s a:)j L Z(—x)J (/ ds s’ 6_8)
0 =0 =0 0

Large N ~V2rN(zN)Ve ™ ~ QWe_% Minimize
xr~1/N
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Reminder: Asymptotic Expansions

¢ Non-analytic quark mass dependence implies asymptotic expansion
(but obviously so: zero radius of convergence)
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Reminder: Asymptotic Expansions

¢ Non-analytic quark mass dependence implies asymptotic expansion
(but obviously so: zero radius of convergence)

Toy Model F(z) =

1+ sx U<z <1 about x=0
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Reminder: Asymptotic Expansions

¢ Non-analytic quark mass dependence implies asymptotic expansion
(but obviously so: zero radius of convergence)
Chiral expansion m2/ Ai ~ 0.02  (may even be OK for larger pion masses)
mi/mi ~ 0.03

m2 /m2 ~ 0.08

Heavy nucleon expansion M ~ 800MeV My /M ~ 0.2

Delta resonance contributions My /A ~ 0.5
A/A, ~0.3
e Higher orders introduce more parameters (low-energy
constants)

e Makes addressing convergence difficult without
knowing the chiral limit values of these parameters




Three-Flavor Chiral Limit

S mq/Aocp ~ 0.01
Ly =Y ; (D +mi) o
1=1

mS/AQCD ~ 0.3

Ignore the warning signs




Three-Flavor Chiral Limit

Symmetries and

their breaking L., = Zw Dy; + ... () = (Yror) + (W YR) # 0
U(l)y @ SU3)L @ SU3)r — U(1)y @ SU(3)v
Nij ~ (;piL) Yij(x) = dij + ... SU3)L ® SU3)r/SU(3)v

Goldstone modes (embedded similarly to before)

Y= S S IYXRT VIV 6= VeVl

EAC
6= m vt K
\ K K ~ 75"/



Three-Flavor Chiral Perturbbation Theory

Explicit breaking ¥ myr +Yrmiy m = Mg

Ul)y @ SUB) @ SUB)r — U(l)y @ SU3)y

2
O(p?) L, = %Tr (6M25’MZT) — ATr (mX + mZT)

Chiral perturbation theory (constructed similarly to before)

S =e2/f S S LYRT LS VIV 6o VeVl

O( 4) Seven Gasser-Leutwyler coefficients,
P a few more when external fields are included



—Xerclses

In the strong isospin limit, there are two different quark masses but three meson
masses of the pseudoscalar octet. Use the three-flavor chiral Lagrangian to derive

A — % 2 o2 oo 0 . .-
the constraint —GMO = g¥tk = Ty = Tx =L which was originally found by
Gell-Mann and Okubo. What happens away from the strong isospin limit?

Revisit electromagnetic mass corrections in three-flavor chiral perturbation theory.
Find all leading and next-to-leading order electromagnetic mass operators. Ignoring

the up and down quark masses, which octet masses are affected by leading and
next-to-leading order operators?

Accounting for strong and electromagnetic isospin breaking to leading order,
determine the mass spectrum of the meson octet, and devise a way to compute

the quark mass ratios, Mv/M4 Mq/Ms , using the experimentally measured
masses.



Three-Flavor Chiral Perturbbation Theory

- _% 2 2 _1 2
Gell-Mann Okubo mass relation Aagmo = 3mK m, 3m7T =0

Mo = 135.0 MeV

mxo = 497.6 MeV Acvo/m; ~ 15%
m,, = 547.9 MeV

Next-to-leading order corrections: O(p?) one-loop + local terms from O(p*)

4
Mg

mchx

0=0(p*)

1 most worrisome ~ 35% ﬁr

m?2 / A?c ~ 0.0 introduces free parameter

m%(/Ai ~ 0.23

S o Pending numerical factors, O(p®) contributions
m, /A ~ 0.27

(which include two-loop diagrams) should be ~10%



Heavy Baryon Chiral Perturbbation Theory

s=0. | owest lying spin-half baryons form an octet of SU(3)y

/ \ B —» VBV

)y

150, 1 +
\ / ¢ \/iz —|: \/EA 1 % 1 P
=0 =2 B = > —752 -+ TEA n
Q=0 ¢l —— —0 —lA
- B V6

Couple to the Goldstone modes via ¢ = VX = ¢!¢/f

£ — LEUT = UERT
Free to choose the chiral transformation of baryon octet of the form B — UBU!
A, — UAUT

V, = UV,U' +U8,U" D, B =08,B+ [V, B]

O(p) L£=Tr(Biv-DB)+2DTr (Fé‘. (A B}) +2F Tr (ES*. A B])

Phased away SU(3) chiral limit mass Mp(m, = ms = 0)



Heavy Baryon Chiral Perturbbation Theory

Y-S - N N Lowest lying spin three-half baryons form a decuplet
S=-1 r.\ 5+0) / ka N ‘/qji/‘/jj/ka,Ti,j,k,
5= =) A= Mpr— Mg =270MeV
5=3 \Q/ No question about inclusion for three flavors
K mi~ 500 MeV P T mg; ~ 140 MeV
7 7
N < Y Msx ~ 1200 MeV N P A Ma ~ 1230 MeV
D.F C

O(p) L=T,(iw-D+A)T,+2HT,S - AT, +2C (T,A,B+ BA,T,)



Quark Mass Dependence of the Octet Baryons

e Now turn on explicit chiral symmetry breaking due to the quark masses

AL=Tystr+Tpsivn  s— LsK R

1
e Dress the scalar source with pions M4 = 5 (fsT = ffsz) — UMLU!

O(p®) L =bpTr (B{My,B}) +bpTr (BM4,B]) + ¢ Tr (BB) Tr (M)

e Similar Gell-Mann Okubo constraint on octet baryon masses from tree-level

1 2 2 -
Meno = Ma + 5 My — 5 My — 5 Mz =0 Manio/Mp ~ 1%

e One-loop correction predicted in terms of axial couplings C, D, F

/ N\ A7 0 N s 1
M — D — 3 — — S D 1 t
D, F D.F GMO 3(47Tf)2( F*) <3mK my — My | +Decuple




Anatomy of Decuplet Contribution

. . 2
¢ Intermediate-state angular momentum pion p-wave p

2 —2 A
NC_/d4p | p p4:{ i E, = /7% + m2

2 ips + Al [(pa)? +p? + m2] +iE,
poles
e Contour integration puts pion on shell
C'? . D2 C?2 [° (B2 — m%)S/Z two-body phase space
~ 5 dp ~ Ty dby near threshold 9
f E7T (EW + A) f My E7T T A \/S mea

e Divergences

A 2 3 2
A A A 3m
2 . | = 2

/ dE E (1 =+ 7 3+...) (1 2E2+...>

A3 =+ AAZ——A2A =+ AS log A Renormalization condition
——m72rA — Am% log A + finite My s Az = Mp

mg=0



Gell-Mann Okubo Relation to One-Loop

iy
M. —
BRI

: [ﬂ(DQ —3F?)Acmo(mb) — %C%GMO (F(my, A’“))]

2 2

_ 2 _m2 14 1 Scale dependence?
F(m,5,,u):(m2—52) [ /52_m210g <5 \/5 m —|—Z€> 510g7712] _§5m210gm_

§+ 02 —m?2 + e I U2 Ghiral limit?
Mgpo/Mp Source D F C
0.79% ChPT 0.61 040 1.2 _ -
1.12% | Lattice QCD 072 045 1.6 Experiment Mawvo/Mp ~ 1%
1.29% SU(6) 34 1/2 32

e BUT: One-loop chiral corrections to the individual masses are LARGE

OMN (1= Ay) /My = —39% Heavy baryons

OMp(p = Ay) /My = —67%  Expansion stranger with ~ mx/Mp ~ 0.1
OMs(n=A,)/Ms = —89% increasing strangeness my /Mg ~ 0.5
SMz(p = A)/Mz = —98% my /Mg ~ 0.5



—Xercise:

Recall the relation between the nucleon sigma term and strangeness.

(”mt — 1) (1 —y)ony = m;]\}]:lq (N (k)|uu + dd — 25s|N (k))
Using the baryon chiral Lagrangian at tree level, calculate the matrix element

on the right-hand side and express in terms of the octet baryons masses.
Finally estimate the size of the sigma term.



Confronting SU(3): the strange quark mass

SU(3)., @ SU(3)r My, Mg ~ Mg < Aqcp

e Unless you’re exceptionally lucky, the strange quark mass is probably too large
for the success of SU(3) chiral expansion...

e One approach: integrate out the heavy strange quark mass to use an SU(2) theory
SU(2)r ® SU(2)g My, Mg < ms ~ Aqep

e For the nucleon (and pion) this is just SU(2) chiral perturbation theory. Done

e For the nucleon, we treated it as a heavy external flavor source.
Nothing stops us from having strangeness in such a source.

... SU(2) chiral perturbation theory for strange hadrons
Limited predictive power, but ideal for lattice applications



Integrating out the strange quark

e Use the kaon mass to exemplify

4\ 1 m2
ms. = F(mq+ms)+...: §mi+M§(+...:M§( (1+ 2M§<) + ..
Mg = mg Estimate using SU(3) and pion, kaon masses

My = 0.486(5)GeV  mpo = 0.497 GeV
e Consider the SU(3) expansion of the Sigma baryon mass, schematically
My, = Mp + am3. +bms + . ..
Expand out the strange quark contribution
1y

Ms, = Mg +ad' Mz +a"m2 + b My + b Mgm? + b’”M—mW + ...
K

Reorganize into SU(2) chiral limit expansion

My, = Mg) + orxm2 + Am2 4+ Bm (logm?T +C)+...



—.g. SU(2) Chiral Perturbation Theory for Hyperons

SU(3) SU(2)s=0 SU(2)s—1 SU(2)s—2 SU(2)s-3
Expansion | p myz mg my A p my Ay p My Asp Asss p My Az= P My
Multiplets 8B 10T 2N 4A 1A 32 32 =E2E* 1Q
Couplings DFCH = gag8AN 8AA  8As 8ss 8As® 853+ 8s°s*  8=E 8=z
SMy [GeV]

O(p’)

-005¢

SU(3) expansion at
physical pion mass

SMy(p=A)/My = —39% oo MGV |
SM (= Ay) /My = —67% I i | o \
SMs(p = Ay)/Ms = —89% o COMD) o ?
OMz(p = Ay)/Mz = —98% -

: My ([)GeV] 0 0 : my ([)GeV] : N
m?r m?2 m.

SU(2) chiral expansion A2 QM% Heavy baryon expansion @



Final Exercises:

Use SU(2) chiral perturbation theory to construct a low-energy theory of kaons
and the eta.

Find a process involving strange baryons for which a description in terms of
SU(2) chiral perturbation theory certainly must fail.



Final Topic: Not-so-heavy Heavy Baryons

e Heavy baryons necessary for power counting, but static limit is often severe

e Can treat recoil corrections in perturbation theory, but cannot exactly capture
analytic structure (poles & cuts will have approximately the correct locations)

e Heavy baryon approximation can create unphysical singularities

Scalar form factor of the Nucleon (N (p”) |mq(ﬂu +dd)|N(p)) =u(p’)o(t) u(p)

) N+ N ol N
o(t =2m2) — o(t = 0) 3T + O(m3) HBChPT result at
T 2(47 f)? "

Cheng-Dashen point



Final Topic: Not-so-heavy Heavy Baryons

e Heavy baryons necessary for power counting, but static limit is often severe

e Can treat recoil corrections in perturbation theory, but cannot exactly capture
analytic structure (poles & cuts will have approximately the correct locations)

e Heavy baryon approximation can create unphysical singularities

Scalar form factor of the Nucleon (N (p”) |mq(uu + dd)|N(p)) = u(p”)o(t) u(p)

+ / N\ + / N\ + 27 N\

o(t) —o(0) =

wiagys (02t [z ron 0 —tom (14 s )| a1 (14 555
t

2
4dm=

Fully relativistic calculation 7 = threshold parameter

Analytic properties allow for o(t) — o(0) = t /OO Ew Jmo(t)
dispersive representation T J4 t'(t' —t)

2
mz



Final Topic: Not-so-heavy Heavy Baryons

e Heavy baryons necessary for power counting, but static limit is often severe

e Can treat recoil corrections in perturbation theory, but cannot exactly capture
analytic structure (poles & cuts will have approximately the correct locations)

e Heavy baryon approximation can create unphysical singularities

= — —

+ / N\ + / N\ + 27 N\

= Tan [(t—mer) L\%Mgiﬁ— 0 ]+2mi[1— 0 ]]

t
T =
am? threshold parameter ?

Expand in m, /My to recover HBChPT result

Cheng-Dashen point



Final Topic: Not-so-heavy Heavy Baryons

e Heavy baryons necessary for power counting, but static limit is often severe

e Can treat recoil corrections in perturbation theory, but cannot exactly capture
analytic structure (poles & cuts will have approximately the correct locations)

e Heavy baryon approximation can create unphysical singularities

Scalar form factor of the Nucleon (N (p”) |mg(uu+ dd)|N(p')) = u(p")o(t) u(p)

) TN+ TN+ /N
/s 2 T
o(t) — o(0) = Z(Z;;;g [(t—mer) [#mgig— 0 ]+2m§ - 0
¢
Singular at two pion threshold 7 = 12




Final Topic: Not-so-heavy Heavy Baryons

e Heavy baryons necessary for power counting, but static limit is often severe

e Can treat recoil corrections in perturbation theory, but cannot exactly capture
analytic structure (poles & cuts will have approximately the correct locations)

e Heavy baryon approximation can create unphysical singularities

Scalar form factor of the Nucleon (N (p”) |mg(uu+ dd)|N(p')) = u(p")o(t) u(p)

+ / N\ + / N\ + 27 N\

o(t) — a(0) = 7O [(t —2m3) [% log LEVT 1o (1 $o )] +2m? [1 ~ log (1 + o )]

T 447 f)? N IMNVI—T 2My
t
Fully relativistic calculation 7 = 12 i ‘ No unphysical singularity
T
1 14 /7 1 M
%—ﬁlogl_ﬁ—)—ilog(l—ﬂ —log(2MN\/ﬁ>



Final Topic: Not-so-heavy Heavy Baryons

e Heavy baryons necessary for power counting, but static limit is often severe

e Can treat recoil corrections in perturbation theory, but cannot exactly capture
analytic structure (poles & cuts will have approximately the correct locations)

e Heavy baryon approximation can create unphysical singularities

Scalar form factor of the Nucleon (N (p”) |mg(uu+ dd)|N(p')) = u(p")o(t) u(p)

_ + / \ + Z .\ + L N\
o (1) — o(0) = ?ﬁ%;g [(t —om2) [Lf log g ~log (1 4 QMN%)] 1om? [1 ~log ( 27\%)]
Fully relativistic calculation 7 = 4;;7% ? Two pion branch appears
New small parameter near threshold My A=

Moy Mn



Concluding Remarks

e Chiral perturbation theory provides the tool to account for light quark mass
dependence of low-energy QCD observables.

e Perturbative expansion limited by size of physical quark masses: strange
quark, non-relativistic baryon approximation, etc.

e Prior to lattice QCD, chiral perturbation theory was the only way to do
precision low-energy QCD phenomenology.

¢ | attice methods are testing the rigor of the chiral expansion, and currently the
two in conjunction are essential.



