

Lectures on Chiral Perturbation Theory

- I. Foundations
- II. Lattice Applications
- III. Baryons
- IV. Convergence

Chiral Perturbation Theory

IV. Convergence

• Non-analytic quark mass dependence implies asymptotic expansion (but obviously so: zero radius of convergence)

Toy Model $F(x) = \int^{\infty}$ 0 $ds \frac{e^{-s}}{1}$ 1 + *sx* $0 < x \ll 1$

No series expansion about $x=0$

$$
F(x) = \int_0^\infty ds \, e^{-s} \left(\sum_{j=0}^\infty (-s \, x)^j \right) \stackrel{\perp}{=} \sum_{j=0}^\infty (-x)^j \left(\int_0^\infty ds \, s^j \, e^{-s} \right)
$$

Suggests approximation $F_N(x) = \sum$ *N* $i=0$ $(-)^j j! x^j$

$$
|F(x) - F_N(x)| = x^{N+1} \int \frac{s^{N+1}e^{-s} ds}{1 + s x} \le x^{N+1}(N+1)!
$$

Large N $\approx \sqrt{2\pi N} (xN)^N e^{-N} \sim$ $\sqrt{2\pi}$ *x* $e^{-\frac{1}{x}}$ Minimize *x* ∼ 1*/N*

Falling Rocks! If you proceed, be alert! Rocks may fall without warnin IF IN DOUBL STAY AWAY

• Non-analytic quark mass dependence implies asymptotic expansion (but obviously so: zero radius of convergence)

 $0 < x \ll 1$ No series expansion
about $x=0$ about $x=0$

• Non-analytic quark mass dependence implies asymptotic expansion (but obviously so: zero radius of convergence)

• Non-analytic quark mass dependence implies asymptotic expansion (but obviously so: zero radius of convergence)

AWAPNING

Falling Rocks!

If you proceed, be alert!

Rocks may fall without warning

causing serious injury or death

IF IN DOUBL STAY AWAY

Stay back from the edge

• Non-analytic quark mass dependence implies asymptotic expansion (but obviously so: zero radius of convergence)

Stav back from the edg

• Non-analytic quark mass dependence implies asymptotic expansion (but obviously so: zero radius of convergence)

Chiral expansion

$$
m_{\pi}^{2}/\Lambda_{\chi}^{2} \sim 0.02
$$
 (may even be OK for larger pion masses)

$$
m_{\pi}^{2}/m_{\rho}^{2} \sim 0.03
$$

$$
m_{\pi}^{2}/m_{\sigma}^{2} \sim 0.08
$$

Heavy nucleon expansion *M* ∼ 800 MeV *m*_π/*M* ∼ 0.2

Delta resonance contributions $m_\pi/\Delta \sim 0.5$

 $\Delta/\Lambda_\chi \sim 0.3$

- **AWARNING**
	- **Hazardous Cliff** The ground may break off ut warning and you be seriously injured
	- Stav back from the edge
- Higher orders introduce more parameters (low-energy constants)
- Makes addressing convergence difficult without knowing the chiral limit values of these parameters

Three-Flavor Chiral Limit

$$
\mathcal{L}_{\psi}=\sum_{i=1}^{3}\overline{\psi}_{i}\left(\rlap{\,/}\psi+m_{i}\right)\psi_{i}
$$

 $m_q/\Lambda_{\rm QCD} \sim 0.01$ $m_s/\Lambda_{\rm QCD} \sim 0.3$

Ignore the warning signs

Stay back from the edge.

Three-Flavor Chiral Limit

Symmetries and
\ntheir breaking
$$
\mathcal{L}_{\psi} = \sum_{i=1}^{3} \overline{\psi}_{i} \not{D} \psi_{i} + ... \qquad \langle \overline{\psi} \psi \rangle = \langle \overline{\psi}_{R} \psi_{L} \rangle + \langle \overline{\psi}_{L} \psi_{R} \rangle \neq 0
$$

\n
$$
U(1)_{V} \otimes SU(3)_{L} \otimes SU(3)_{R} \longrightarrow U(1)_{V} \otimes SU(3)_{V}
$$
\n
$$
\Sigma_{ij} \sim \langle \overline{\psi}_{jR} \psi_{iL} \rangle \qquad \Sigma_{ij}(x) = \delta_{ij} + ... \qquad SU(3)_{L} \otimes SU(3)_{R}/SU(3)_{V}
$$
\nGoldstone modes (embedded similarly to before)
\n
$$
\Sigma = e^{2i\phi/f} \qquad \Sigma \to L\Sigma R^{\dagger} \qquad \Sigma \to V\Sigma V^{\dagger} \qquad \phi \to V \phi V^{\dagger}
$$

$$
\phi = \begin{pmatrix} \frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{6}} \eta & \pi^+ & K^+ \\ \pi^- & -\frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{6}} \eta & K^0 \\ K^- & \bar{K}^0 & -\frac{2}{\sqrt{6}} \eta \end{pmatrix}
$$

Three-Flavor Chiral Perturbation Theory

 \mathbf{a}

Explicit breaking

\n
$$
\overline{\psi}_L \, m \, \psi_R + \overline{\psi}_R \, m \, \psi_L \qquad m = \begin{pmatrix} m_q & & \\ & m_q & \\ & & m_s \end{pmatrix}
$$

 $U(1)_V \otimes SU(3)_L \otimes SU(3)_R \longrightarrow U(1)_V \otimes SU(3)_V$

$$
\mathcal{O}(p^2)
$$

$$
\mathcal{L}_{\chi} = \frac{f^2}{8} \text{Tr} \left(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger} \right) - \lambda \, \text{Tr} \left(m \Sigma + m \Sigma^{\dagger} \right)
$$

 $\Sigma = e^{2i\phi/f}$ $\Sigma \to L\Sigma R^{\dagger}$ $\Sigma \to V\Sigma V^{\dagger}$ $\phi \to V\phi V^{\dagger}$ Chiral perturbation theory (constructed similarly to before)

Seven Gasser-Leutwyler coefficients, a few more when external fields are included

Exercises

In the strong isospin limit, there are two different quark masses but three meson masses of the pseudoscalar octet. Use the three-flavor chiral Lagrangian to derive

the constraint $\Delta_{\rm GMO} = \frac{1}{3} m_K^2 - m_\eta^2 - \frac{1}{3} m_\pi^2 = 0$, which was originally found by Gell-Mann and Okubo. What happens away from the strong isospin limit? 4 3 $m_K^2 - m_\eta^2 - \frac{1}{3}$ 3 $m_\pi^2=0$

Revisit electromagnetic mass corrections in three-flavor chiral perturbation theory. Find all leading and next-to-leading order electromagnetic mass operators. Ignoring the up and down quark masses, which octet masses are affected by leading and next-to-leading order operators?

Accounting for strong and electromagnetic isospin breaking to leading order, determine the mass spectrum of the meson octet, and devise a way to compute the quark mass ratios, $\,m_u/m_d\quadm_d/m_s$, using the experimentally measured masses.

Three-Flavor Chiral Perturbation Theory

 $m_K^2/\Lambda_\chi^2 \sim 0.23$ m_η^2/Λ_χ^2

 $~\sim 0.27$ Pending numerical factors, ${\cal O}(p^{\rm o})$ contributions (which include two-loop diagrams) should be ∼10% Pending numerical factors, $\mathcal{O}(p^6)$ contributions

Heavy Baryon Chiral Perturbation Theory

Lowest lying spin-half baryons form an octet of *SU*(3)*^V*

 $B \to V B V^{\dagger}$ $B =$ $\sqrt{ }$ $\overline{}$ √ $\frac{1}{\sqrt{2}}\Sigma^0 + \frac{1}{\sqrt{6}}\Lambda$ Σ^+ *p* $\Sigma^ -\frac{1}{\sqrt{2}}\Sigma^0 + \frac{1}{\sqrt{6}}\Lambda$ *n* $\Xi^ \Xi^0$ $-\frac{2}{\sqrt{6}}\Lambda$ \setminus $\begin{array}{c} \hline \end{array}$

Couple to the Goldstone modes via $\xi = \sqrt{\Sigma} = e^{i\phi/f}$

$$
\xi \to L\xi U^{\dagger} = U\xi R^{\dagger}
$$

Free to choose the chiral transformation of baryon octet of the form $B \to UBU^{\dagger}$ $\mathcal{A}_{\mu} \to U \mathcal{A}_{\mu} U^{\dagger}$ $D_{\mu}B = \partial_{\mu}B + [\mathcal{V}_{\mu}, B]$ $\mathcal{V}_{\mu} \rightarrow U \mathcal{V}_{\mu} U^{\dagger} + U \partial_{\mu} U^{\dagger}$

 $\mathcal{L} = \text{Tr} \left(\overline{B} i v \cdot D B \right)$ $+ \ 2D \ {\rm Tr} \left(\overrightarrow{B} \vec{S} \cdot \{ \vec{A}, B \right)$ *}* $\Big) + 2F\,\text{Tr}\left(\overrightarrow{B}\vec{S}\cdot[\vec{A},B]\right)$ $\overline{ }$ *O*(*p*) Phased away SU(3) chiral limit mass $M_B(m_q = m_s = 0)$

Heavy Baryon Chiral Perturbation Theory

Lowest lying spin three-half baryons form a decuplet of $SU(3)_V$

$$
T_{ijk}\to {V_i{}^{i'}}{V_j{}^{j'}}{V_k}^{k'}T_{i'j'k'}
$$

 $\Delta \equiv M_T - M_B = 270$ MeV

No question about inclusion for three flavors

 $\mathcal{O}(p) \qquad \mathcal{L} = \overline{T}_{\mu} (iv \cdot D + \Delta) T_{\mu} + 2H \overline{T}_{\mu} \vec{S} \cdot \vec{\mathcal{A}} T_{\mu} + 2C (\overline{T}_{\mu} A_{\mu} B + \overline{B} A_{\mu} T_{\mu})$

Quark Mass Dependence of the Octet Baryons

• Now turn on explicit chiral symmetry breaking due to the quark masses

$$
\Delta \mathcal{L} = \overline{\psi}_L s \psi_R + \overline{\psi}_R s^{\dagger} \psi_L \qquad s \to L s R^{\dagger} \qquad s = m + \dots
$$

• Dress the scalar source with pions $\mathcal{M}_{\pm} =$ 1 2 $\left(\xi s^{\dagger} \, \xi \pm \xi^{\dagger} s \, \xi^{\dagger}\right) \rightarrow U \mathcal{M}_{\pm} U^{\dagger}$

$$
\mathcal{O}(p^2) \qquad \mathcal{L}_m = b_D \text{Tr} \left(\overline{B} \{ \mathcal{M}_+, B \} \right) + b_F \text{Tr} \left(\overline{B} [\mathcal{M}_+, B] \right) + \sigma \text{Tr} \left(\overline{B} B \right) \text{Tr} \left(\mathcal{M}_+ \right)
$$

• Similar Gell-Mann Okubo constraint on octet baryon masses from tree-level

$$
M_{\rm{GMO}} = M_{\Lambda} + \frac{1}{3}M_{\Sigma} - \frac{2}{3}M_{N} - \frac{2}{3}M_{\Xi} = 0
$$

$$
M_{\rm{GMO}}/\overline{M}_{B} \sim 1\%
$$

• One-loop correction predicted in terms of axial couplings C, D, F

$$
\frac{1}{D,F} \sum_{D,F} M_{\text{GMO}} = \frac{4\pi}{3(4\pi f)^2} (D^2 - 3F^2) \left(\frac{4}{3}m_K^3 - m_\eta^3 - \frac{1}{3}m_\pi^3\right) + \text{Decuplet}
$$

Anatomy of Decuplet Contribution \overline{C}

poles

• Intermediate-state angular momentum pion p-wave $p^{2\ell}$

$$
\sim \frac{C^2}{f^2} \int d^4 p \, \frac{\vec{p}^2}{[ip_4 + \Delta] \left[(p_4)^2 + \vec{p}^2 + m_\pi^2 \right]} \qquad p_4 = \begin{cases} i\Delta \\ \pm iE_\pi \end{cases}
$$

• Contour integration puts pion on shell

$$
\sim \frac{C^2}{f^2} \int d\vec{p} \frac{\vec{p}^2}{E_{\pi}(E_{\pi} + \Delta)} \sim \frac{C^2}{f^2} \int_{m_{\pi}}^{\infty} dE_{\pi} \frac{(E_{\pi}^2 - m_{\pi}^2)^{3/2}}{E_{\pi} + \Delta}
$$

 $E_{\pi} + \Delta$ *near threshold* $\sqrt{s - m_{\pi}^2}$ two-body phase space near threshold

 $E_\pi = \sqrt{\vec{p}^{\,2} + m_\pi^2}$

• Divergences

$$
\int^{\Lambda} dE E^2 \left(1 - \frac{\Delta}{E} + \frac{\Delta^2}{E^2} - \frac{\Delta^3}{E^3} + \cdots \right) \left(1 - \frac{3}{2} \frac{m_{\pi}^2}{E^2} + \cdots \right)
$$

 $\Lambda^3 + \Delta \Lambda^2 + \Delta^2 \Lambda + \Delta^3 \log \Lambda$ $+m_{\pi}^{2}\Lambda + \Delta m_{\pi}^{2}\log \Lambda + \text{finite}$

Renormalization condition $M_{N,\Sigma,\Lambda,\Xi}$ $\big|_{m_q=0} = M_B$

Gell-Mann Okubo Relation to One-Loop

$$
M_{\rm{GMO}} = \frac{4\pi}{3(4\pi f)^2} \left[\pi (D^2 - 3F^2) \Delta_{\rm{GMO}}(m_\phi^3) - \frac{1}{6} C^2 \Delta_{\rm{GMO}} \left(\mathcal{F}(m_\phi, \Delta, \mu) \right) \right]
$$

$$
\mathcal{F}(m,\delta,\mu) = (m^2 - \delta^2) \left[\sqrt{\delta^2 - m^2} \log \left(\frac{\delta - \sqrt{\delta^2 - m^2 + i\epsilon}}{\delta + \sqrt{\delta^2 - m^2 + i\epsilon}} \right) - \delta \log \frac{m^2}{\mu^2} \right] - \frac{1}{2} \delta m^2 \log \frac{m^2}{\mu^2}
$$
 Scale dependence?

• BUT: One-loop chiral corrections to the individual masses are LARGE

 $\delta M_N(\mu = \Lambda_\chi)/M_N = -39\%$ δM _Λ($\mu = \Lambda_{\chi}$)/ $M_{\Lambda} = -67\%$ $\delta M_{\Sigma}(\mu = \Lambda_{\chi})/M_{\Sigma} = -89\%$ $\delta M_{\Xi}(\mu = \Lambda_{\chi})/M_{\Xi} = -98\%$ $m_\pi/M_B \sim 0.1$ m_K/M_B ∼ 0*.*5 $m_n/M_B \sim 0.5$ Heavy baryons Expansion stranger with increasing strangeness

Exercise:

Recall the relation between the nucleon sigma term and strangeness.

$$
\left(\frac{m_s}{m_q}-1\right)(1-y)\sigma_N=\frac{m_s-m_q}{2M_N}\langle N(\vec{k})|\overline{u}u+\overline{d}d-2\overline{s}s|N(\vec{k})\rangle
$$

Using the baryon chiral Lagrangian at tree level, calculate the matrix element on the right-hand side and express in terms of the octet baryons masses. Finally estimate the size of the sigma term.

Confronting SU(3): the strange quark mass

 $SU(3)_L \otimes SU(3)_R$ *m_u*, *m_d* ~ *m_s* $\ll \Lambda$ _{QCD}

- Unless you're exceptionally lucky, the strange quark mass is probably too large for the success of SU(3) chiral expansion...
- One approach: integrate out the heavy strange quark mass to use an SU(2) theory $m_u, m_d \ll m_s \sim \Lambda_{\rm QCD}$ $SU(2)_L \otimes SU(2)_R$
- For the nucleon (and pion) this is just SU(2) chiral perturbation theory. **Done**

• For the nucleon, we treated it as a heavy external flavor source. Nothing stops us from having strangeness in such a source.

... SU(2) chiral perturbation theory for strange hadrons

Limited predictive power, but ideal for lattice applications

Integrating out the strange quark

• Use the kaon mass to exemplify

$$
m_K^2 = \frac{4\lambda}{f^2} (m_q + m_s) + \ldots = \frac{1}{2} m_\pi^2 + M_K^2 + \ldots = M_K^2 \left(1 + \frac{m_\pi^2}{2M_K^2} \right) + \ldots
$$

 $\left.M_K \equiv m_K \right|_{m=-0}$ Estimate using SU(3) and pion, kaon masses $M_K = 0.486(5)$ GeV $m_{K^0} = 0.497$ GeV ! ! $\mid m_q=0$

• Consider the SU(3) expansion of the Sigma baryon mass, schematically

$$
M_{\Sigma}=M_B+am_K^2+bm_K^3+\ldots
$$

Expand out the strange quark contribution

$$
M_{\Sigma} = M_B + a'M_K^2 + a''m_{\pi}^2 + b'M_K^3 + b''M_Km_{\pi}^2 + b''' \frac{1}{M_K}m_{\pi}^4 + \dots
$$

Reorganize into SU(2) chiral limit expansion

$$
M_{\Sigma} = M_{\Sigma}^{(2)} + \sigma_{\pi\Sigma} m_{\pi}^2 + A m_{\pi}^3 + B m_{\pi}^4 (\log m_{\pi}^2 + C) + \dots
$$

E.g. SU(2) Chiral Perturbation Theory for Hyperons

 $O(p^3)$

SU(3) expansion at physical pion mass

 $\delta M_N(\mu = \Lambda_\chi)/M_N = -39\%$ δM _Λ($\mu =$ Λ_χ)/ M _Λ = -67% $\delta M_{\Sigma}(\mu = \Lambda_{\chi})/M_{\Sigma} = -89\%$ $\delta M_{\Xi}(\mu = \Lambda_{\chi})/M_{\Xi} = -98\%$

Final Exercises:

Use SU(2) chiral perturbation theory to construct a low-energy theory of kaons and the eta.

Find a process involving strange baryons for which a description in terms of SU(2) chiral perturbation theory certainly must fail.

- Heavy baryons necessary for power counting, but static limit is often severe
- Can treat recoil corrections in perturbation theory, but cannot exactly capture analytic structure (poles & cuts will have approximately the correct locations)
- Heavy baryon approximation can create *unphysical* singularities

 \mathbf{Scalar} form factor of the Nucleon $\left\langle N(\vec{p}')\left|m_q(\overline{u}u+\overline{d}d)\right|N(\vec{p}\right)\right\rangle=\overline{u}(\vec{p}')\sigma(t)\,u(\vec{p}\,)$ + + + $\sigma(t=2m_{\pi}^2)-\sigma(t=0)=\frac{3\pi g_A^2m_{\pi}^3}{2(4\pi f)^2}+\mathcal{O}(m_{\pi}^4)$ HBChPT result at Cheng-Dashen point

- Heavy baryons necessary for power counting, but static limit is often severe
- Can treat recoil corrections in perturbation theory, but cannot exactly capture analytic structure (poles & cuts will have approximately the correct locations)
- Heavy baryon approximation can create *unphysical* singularities

 \mathbf{Scalar} form factor of the Nucleon $\left\langle N(\vec{p}')\left|m_q(\overline{u}u+\overline{d}d)\right|N(\vec{p}\right)\right\rangle=\overline{u}(\vec{p}')\sigma(t)\,u(\vec{p}\,)$

$$
\sigma(t) - \sigma(0) = \frac{3\pi g_A^2 m_\pi}{4(4\pi f)^2} \left[(t - 2m_\pi^2) \left[\frac{1}{2\sqrt{\tau}} \log \frac{1 + \sqrt{\tau}}{1 - \sqrt{\tau}} - \log \left(1 + \frac{m_\pi}{2M_N\sqrt{1 - \tau}} \right) \right] + 2m_\pi^2 \left[1 - \log \left(1 + \frac{m_\pi}{2M_N} \right) \right]
$$

\nFully relativistic calculation $\tau = \frac{t}{4m_\pi^2}$ threshold parameter
\nAnalytic properties allow for $\sigma(t) - \sigma(0) = \frac{t}{\pi} \int_{4m_\pi^2}^{\infty} dt' \frac{3\mathfrak{m} \sigma(t')}{t'(t'-t)}$
\ndispersive representation

- Heavy baryons necessary for power counting, but static limit is often severe
- Can treat recoil corrections in perturbation theory, but cannot exactly capture analytic structure (poles & cuts will have approximately the correct locations)
- Heavy baryon approximation can create *unphysical* singularities

Scalar form factor of the Nucleon
$$
\langle N(\vec{p}') | m_q(\overline{u}u + \overline{d}d) | N(\vec{p}) \rangle = \overline{u}(\vec{p}')\sigma(t) u(\vec{p})
$$

\n
$$
+ \frac{1}{\sqrt{2\pi}} + \frac{1}{\sqrt{
$$

Cheng-Dashen point

- Heavy baryons necessary for power counting, but static limit is often severe
- Can treat recoil corrections in perturbation theory, but cannot exactly capture analytic structure (poles & cuts will have approximately the correct locations)
- Heavy baryon approximation can create *unphysical* singularities

Scalar form factor of the Nucleon
$$
\langle N(\vec{p}') | m_q(\overline{u}u + \overline{d}d) | N(\vec{p}) \rangle = \overline{u}(\vec{p}')\sigma(t) u(\vec{p})
$$

\n
$$
+ \sum_{\sigma(t) - \sigma(0)} + \sum_{\substack{4(4\pi f)^2}} + \sum_{\substack{4(4\pi f)^2}} + \sum_{\substack{5 \text{arg}(\pi \to 0) \\ 2\sqrt{\tau}}} + \sum_{\substack{5 \text{arg}(\pi \to 0) \\ 10 \text{arg}(\pi \to 0)}} + \sum_{\substack{4(4\pi f)^2 \\ 2\sqrt{\tau}}} + \sum_{\substack{5 \text{arg}(\pi \to 0) \\ 2\sqrt{\tau}}} + \sum_{\substack{5 \text{arg}(\pi \to 0) \\ 2\sqrt{\tau}}} + \sum_{\substack{5 \text{arg}(\pi \to 0) \\ 10 \text{arg}(\pi \to 0)}} + \sum_{\substack{5 \text{arg}(\pi \to 0) \\ 2\sqrt{\tau}}} + \sum_{\substack{5 \text{arg}(\pi \to 0) \\ 2\sqrt{\tau}}} + \sum_{\substack{5 \text{arg}(\pi \to 0) \\ 2\sqrt{\tau}}} + \sum_{\substack{5 \text{arg}(\pi \to 0) \\ 10 \text{arg}(\pi \to 0)}} + \sum_{\substack{5 \text{arg}(\pi \to 0) \\ 2\sqrt{\tau}}} + \sum_{\substack{5 \text{arg}(\pi \to 0) \\ 10 \text{arg}(\pi \to 0)}} + \sum_{\substack{5 \text{arg}(\pi \to 0) \\ 2\sqrt{\tau}}} + \sum_{\substack{5 \text{arg}(\pi \to 0) \\ 10 \text{arg}(\pi \to 0)}} + \sum_{\substack{5 \text{arg}(\pi \to 0) \\ 10 \text{arg}(\pi \to 0)}} + \sum_{\substack{5 \text{arg}(\pi \to 0) \\ 10 \text{arg}(\pi \to 0)}} + \sum_{\substack{5 \text{arg}(\pi \to 0) \\ 10 \text{arg}(\pi \to 0)}} + \sum_{\substack{5 \text{arg}(\pi \to 0) \\ 2\sqrt{\tau}}} + \sum_{\substack{5 \text{arg}(\pi \to 0) \\ 10 \text{arg}(\pi \to 0)}} + \sum_{\substack{5 \text{arg}(\pi \to
$$

- Heavy baryons necessary for power counting, but static limit is often severe
- Can treat recoil corrections in perturbation theory, but cannot exactly capture analytic structure (poles & cuts will have approximately the correct locations)
- Heavy baryon approximation can create *unphysical* singularities

Scalar form factor of the Nucleon
$$
\langle N(\vec{p}') | m_q(\overline{u}u + \overline{d}d) | N(\vec{p}) \rangle = \overline{u}(\vec{p}')\sigma(t) u(\vec{p})
$$

\n
$$
+ \sum_{\sigma(t) - \sigma(0)} + \sum_{\substack{3\pi g_A^2 m_\pi \\ 4(4\pi f)^2}} + \sum_{\substack{2\pi \\ 2\sqrt{\tau}}} + \sum_{\substack{1 \\ 2\sqrt{\tau}}} + \sum_{\substack{2\pi \\ 2\pi \\ 2\pi}} + \sum_{\substack{m_\pi \\ 2\pi \\ m_\pi}} + \sum_{\substack{m_\pi \\ 2\pi \\ 2\pi \\ 2\pi}} + \sum_{\substack{m_\pi \\ 2\pi \\ 2\pi \\ 2
$$

- Heavy baryons necessary for power counting, but static limit is often severe
- Can treat recoil corrections in perturbation theory, but cannot exactly capture analytic structure (poles & cuts will have approximately the correct locations)
- Heavy baryon approximation can create *unphysical* singularities

Scalar form factor of the Nucleon
$$
\langle N(\vec{p}') | m_q(\overline{u}u + \overline{d}d) | N(\vec{p}) \rangle = \overline{u}(\vec{p}')\sigma(t) u(\vec{p})
$$

\n
$$
+ \sum_{\sigma(t) - \sigma(0)} + \sum_{\substack{3\pi g_A^2 m_\pi \\ 4(4\pi f)^2}} + \sum_{\substack{2\pi \\ 2\pi \sigma(1-\sigma(0)) = \frac{3\pi g_A^2 m_\pi \\ 4(4\pi f)^2}} \left[(t - 2m_\pi^2) \left[\frac{1}{2\sqrt{\tau}} \log \frac{1 + \sqrt{\tau}}{1 - \sqrt{\tau}} - \log \left(1 + \frac{m_\pi}{2M_N \sqrt{1 - \tau}} \right) \right] + 2m_\pi^2 \left[1 - \log \left(1 + \frac{m_\pi}{2M_N} \right) \right]
$$
\nFully relativistic calculation

\n
$$
\tau = \frac{t}{4m_\pi^2}
$$
\nTwo pion branch appears

\nNew small parameter near threshold

\n
$$
\frac{M_N}{m} \sqrt{1 - \tau}
$$
\nnecessitates summation of

\n
$$
\frac{m_\pi}{M_N}
$$

 m_{π}

 M_N

Concluding Remarks

- Chiral perturbation theory provides the tool to account for light quark mass dependence of low-energy QCD observables.
- Perturbative expansion limited by size of physical quark masses: strange quark, non-relativistic baryon approximation, *etc*.
- Prior to lattice QCD, chiral perturbation theory was the only way to do precision low-energy QCD phenomenology.
- Lattice methods are testing the rigor of the chiral expansion, and currently the two in conjunction are essential.