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Chiral Perturbation Theory

II.  Lattice Applications



Lattice Applications of Chiral Perturbation Theory

• Study quark mass dependence of observables for chiral extrapolations 
(maybe even interpolations) of lattice QCD data.

• Use the lattice to expose the role chiral symmetry breaking plays in low-
energy QCD, hopefully confirm predictions of ChPT.

• Tailor ChPT to address sources of systematic error in lattice QCD 
computations of low-energy observables (in conjunction with above).

Finite volume, partial quenching, discretization



Finite Volume Field Theories

Z[η] =
�
Dφ exp

�
−

�

V
L(∂µφ, φ, η)

�

• Euclidean spacetime volume: hypercubic

• Boundary conditions: periodic

Single valued on hypertorus: no surface terms
Discrete translation symmetry: PBCs not renormalized

L

φ(x + L) = φ(x)

φ(x) =
�

k
eikxφk

φ(x + L) =
�

k
eikxφk eikL

k =
2πn

L

That’s it.



Finite Volume Field Theories

�φ(0)|Jµ|φ(0)� = Q δµ,4

�φ(�v)| �J |φ(�v)� �= Q�v

Boost Frame dependence

• Euclidean SO(4) invariance reduced to permutation symmetry

• Gauge invariance                                                                                                                                                                   

Ward-Takahashi identity

Ward identity



Finite Volume Field Theories

�φ(0)|Jµ|φ(0)� = Q δµ,4

�φ(�v)| �J |φ(�v)� �= Q�v

Boost Frame dependence

• Euclidean SO(4) invariance reduced to permutation symmetry

• Gauge invariance                                                                                                                                                                   

qµJµ = Q[G−1(q + p)−G−1(p)]

Jµ = Q
∂G−1

∂pµ

Ward-Takahashi identity

Ward identity

Gauge functions restricted



Long-Range Physics
• Observables: electromagnetic moments, for example

• No spontaneous symmetry breaking at finite volume

Charge and current distributions are 
not described by multipole expansion

F (q2)→ Fp(q, L)
qL = 2πn

Electric and magnetic fields are not 
the only gauge invariant quantities ei

R L
0 dxµ Aµ(x)

P ∼ e−V
R b

a dφ F (φ)

Long-range physics modified: Goldstone bosons

Quantum mechanics vs. field theory

k =
2πn

L
That’s it.



Spontaneous Chiral 
Symmetry Breaking

SU(2)L ⊗ SU(2)R

−→ SU(2)V

chiral condensate

Vacuum does not respect chiral symmetry

Chiral perturbation theory Σ ∼ ψLψR

Effective theory for low-energy QCD

p2/(4πf)2 ∼ m2
π/(4πf)2 � 1

Lχ =
f2

8
Tr

�
∂µΣ∂µΣ

†�−mqλTr
�
Σ+ Σ†�

ψD/ψ = ψLD/ψL + ψRD/ψR

Chiral symmetry of massless QCD

�ψiRψjL� = −λ δji
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Spontaneous Chiral 
Symmetry Breaking

Example: chiral condensate
LQCD = ψ(γµDµ + mq)ψ

�ψψ� = −∂ log ZQCD

∂mq

+ + m2
π=

Calculable infrared logarithm

Expansion of observables about chiral limit

Lχ =
f2

8
Tr

�
∂µΣ∂µΣ

†�−mqλTr
�
Σ+ Σ†�

�ψψ� = −4λ

�
1 +

3m2
π

(4πf)2

�
log

µ2

m2
π

+ 1

�
− m2

π

f2
L4(µ)

�

�ψψ� = −∂ logZχPT

∂mq

O(p2), O(p4)



Chiral Perturbation 
Theory in Finite Volume

Example: chiral condensate

Zeff =
�
DΣ e−

R
V L(∂µΣ,Σ) + chiral physics must fit in the box

L� 1/(4πf)

�

k

1
k2 + m2

π

∼ m2
π log

m2
π

µ2

Match finite volume QCD at low energies onto finite volume ChPT

+ + m2
π=�ψψ� = −∂ logZeff

∂mq

Infrared logarithm

� +∞

−∞

dk

2π
→ 1

L

+∞�

n=−∞

k =
2πn

L

1

L4

+∞�

nµ=−∞

1

(2π nµ/L)2 +m2
π



Chiral Perturbation 
Theory in Finite Volume

Example: chiral condensate

Zeff =
�
DΣ e−

R
V L(∂µΣ,Σ) + chiral physics must fit in the box

L� 1/(4πf)

�

k

1
k2 + m2

π

∼ m2
π log

m2
π

µ2

Match finite volume QCD at low energies onto finite volume ChPT

�ψψ� = −∂ logZeff

∂mq

Infrared logarithm

� +∞

−∞

dk

2π
→ 1

L

+∞�

n=−∞

k =
2πn

L 1 � (mπL)
2 � (mπ/Λχ)

2

1

(fL)2



 1

(mπL)2
+

�

nµ �=0

1

4π2n2
µ + (mπL)2





+ + m2
π=



Chiral Limit in Finite Volume
Power counting: epsilon regime 1

L
∼ ε, mπ ∼ ε2

General Feynman diagram 
(I internal, V vertices, L loops)

Zero mode ε−4 ε−2Non-zero modes

1

m2
π

+
�

nµ �=0

1
�

2πnµ

L

�2
+m2

π

Propagator

�

kµ

→ 1

L4

�

nµ

Loop factor ∼ ε4

Vertices λmq ∼ ε4∂µ∂µ ∼ ε2

Only zero mode L = I − V + 1

Only non-zero modes, derivative vertices

∼ ε4L+2V−2I = ε2L+2

∼ ε4L+4V−4I = ε4

Exercise:
Do the leading-order four-pion interactions 
allow mixing of zero and non-zero modes? 
Draw all one- and two-loop diagrams for the 
chiral condensate & count powers of epsilon.

Zero mode is strongly coupled

Σ(x) = Σ0e
2iφ̃(x)/f



Zero Pion Momentum



Chiral Limit in Finite Volume
Zero mode is strongly coupled

but can treat non-perturbatively (Matrix Model)Σ(x) = Σ0e
2iφ̃(x)/f

Z0 =

�
DΣ0e

−
�
V L(∂µΣ0=0,Σ0) =

�
DΣ0e

2mqλL
4Re[Tr(Σ0)]

Lχ =
f2

8
Tr

�
∂µΣ∂µΣ

†�−mqλTr
�
Σ+ Σ†�

SU(2) simple to evaluate Z0 = I1(2s)/s, s = 2mqλL
4 =

1

4
f2m2

πL
4

�ψψ� = −∂ log Zeff

∂mq
�ψψ� / �ψψ�∞ =

∂

∂s
log I1(2s)/s



Chiral Limit in Finite Volume

s =
1
4
V f2m2

π

�ψ
ψ
�/

�ψ
ψ
� ∞

�2 �1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

Log10�s�

k =
2πn

L
That’s it.

Scaling variable



Chiral Limit in Finite Volume

s =
1
4
V f2m2

π

�ψ
ψ
�/

�ψ
ψ
� ∞

�2 �1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

Log10�s�

k =
2πn

L
That’s it.

Scaling variable

PACS-CS

mπL ≥ 4

BMW

Epsilon regime in principle allows clean access to low-energy constants ...



Zero Pion Winding



Finite Volume ChPT
Power counting: p-regime

General Feynman diagram 
(I internal, V vertices, L loops)

All modes

1

m2
π

+
�

nµ �=0

1
�

2πnµ

L

�2
+m2

π

Propagator

�

kµ

→ 1

L4

�

nµ

Loop factor

Vertices

L = I − V + 1

1

L
∼ p mπ ∼ p

∂µ∂µ, λmq ∼ p2

∼ p4

∼ p−2 Mimics infinite volume power counting

∼ p4L−2I+2V = p2L+2

mπL → ∞Infinite volume limit

(mπL)
2 � 1 � m2

π/Λ
2
χ



Poisson Formula
Mode sums required in p-regime. . . 

Goal: trade in momentum sums for momentum integrals

1
L

∞�

n=−∞
e2πi(x−y)n/L = δ(x− y)

x, y ∈ (−L/2, L/2 )

Reminder: mode representation

1
L

∞�

n=−∞
δ

�
k − 2πn

L

�
=

� ∞

−∞
dx e−ixk 1

L

∞�

n=−∞
e2πixn/L

FV



Poisson Formula
Mode sums required in p-regime. . . 

Goal: trade in momentum sums for momentum integrals

1
L

∞�

n=−∞
e2πi(x−y)n/L = δ(x− y)

x, y ∈ (−L/2, L/2 )

Reminder: mode representation

1
L

∞�

n=−∞
δ

�
k − 2πn

L

�
=

∞�

ν=−∞

� νL+L/2

νL−L/2
dx e−ixk 1

L

∞�

n=−∞
e2πixn/L

FV



Poisson Formula
Mode sums required in p-regime. . . 

Goal: trade in momentum sums for momentum integrals

1
L

∞�

n=−∞
e2πi(x−y)n/L = δ(x− y)

x, y ∈ (−L/2, L/2 )

Reminder: mode representation

1
L

∞�

n=−∞
δ

�
k − 2πn

L

�
=

� L/2

−L/2
dx e−ixk

∞�

ν=−∞
eiνLk 1

L

∞�

n=−∞
e2πixn/L

FV



Mode sums required in p-regime. . . 
Goal: trade in momentum sums for momentum integrals

1
L

∞�

n=−∞
δ

�
k − 2πn

L

�
=

∞�

ν=−∞
eiνLk

Poisson Formula

1
L

∞�

n=−∞
e2πi(x−y)n/L = δ(x− y)

x, y ∈ (−L/2, L/2 )

Reminder: mode representation
FV



1
L

∞�

n=−∞
δ

�
k − 2πn

L

�
=

∞�

ν=−∞
eiνLk

Finite Volume Propagator

Poisson Formula

DFV(x, 0) =
1
L

∞�

n=−∞
e2πinx/L G(2πn/L )

Finite volume propagator

G(k) =
1

k2 +m2

k =
2πn

L

That’s it.



Finite Volume Propagator

Poisson Formula

Finite volume propagator

DFV(x, 0) =
� ∞

−∞
dk eikxG(k)

1
L

∞�

n=−∞
δ(k − 2πn/L )

1
L

∞�

n=−∞
δ

�
k − 2πn

L

�
=

∞�

ν=−∞
eiνLk



Finite Volume Propagator

Poisson Formula

Finite volume propagator

DFV(x, 0) =
∞�

ν=−∞

� ∞

−∞
dk eik(x+νL)G(k)

1
L

∞�

n=−∞
δ

�
k − 2πn

L

�
=

∞�

ν=−∞
eiνLk



Finite Volume Propagator

Poisson Formula

Finite volume propagator

DFV(x, 0) =
∞�

ν=−∞
D∞(x + νL, 0)

1
L

∞�

n=−∞
δ

�
k − 2πn

L

�
=

∞�

ν=−∞
eiνLk



Finite Volume Propagator

Poisson Formula

Finite volume propagator

DFV(x, 0) =
∞�

ν=−∞
D∞(x + νL, 0)

1
L

∞�

n=−∞
δ

�
k − 2πn

L

�
=

∞�

ν=−∞
eiνLk

Infinite volume limit: ν = 0

Volume corrections: ν �= 0



Finite Volume Propagator

Poisson Formula

Finite volume propagator

DFV(x, 0) =
∞�

ν=−∞
D∞(x + νL, 0)

1
L

∞�

n=−∞
δ

�
k − 2πn

L

�
=

∞�

ν=−∞
eiνLk

Infinite volume limit: ν = 0

Volume corrections: ν �= 0

pion wraps around the world



Chiral Perturbation 
Theory in Finite Volume

Example: chiral condensate

+ + m2
π=�ψψ� = −∂ logZeff

∂mq

One-loop contribution
∝ DFV(0, 0)

Winding number expansion

DFV(0, 0) = D∞(0, 0) + d [D∞(L, 0) + D∞(−L, 0)] + . . .

ν = 0 ν = 1 ν = −1

Asymptotically large volume

D∞(x, 0) =
m

4π2
√
x2

K1

�
m
√
x2

�
=

m2

2(2πm
√
x2)3/2

e−m
√
x2

+ . . .

Result with leading finite volume correction

�ψψ� = �ψψ�∞mq=0

�
1 +

3m2
π

(4πf)2

�
log

µ2

m2
π

+ 1− 8
√
2π

e−mπL

(mπL)3/2

�
− m2

π

f2
L4(µ)

�



Exercise:

In addressing finite volume corrections, one typically considers lattices with 
finite spatial volume and infinite temporal extent. 

Why is this done? How are the above results modified? How does the pion 
mass scale with volume for asymptotically large volumes?



Lattice Applications of Chiral Perturbation Theory

• Study quark mass dependence of observables for chiral extrapolations 
(maybe even interpolations) of lattice QCD data.

• Use the lattice to expose the role chiral symmetry breaking plays in low-
energy QCD, hopefully confirm predictions of ChPT.

• Tailor ChPT to address sources of systematic error in lattice QCD 
computations of low-energy observables (in conjunction with above).

Finite volume, partial quenching, discretization



Partial Quenching

Paradigm also useful for mixed actions, QCD + QQED, disconnected diagrams

D/ → D/sea



Quenching and Bosonic Quarks

Fermionic quarks couple 
to external sources

ψ

ψ̃

fermionic quarks (Grassmann anticommuting)

bosonic quarks (commuting)

�
DψDψe−S[ψ,ψ] = Det(D/+mq)

�
Dψ̃Dψ̃e−S[ψ̃,ψ̃] =

1

Det(D/+mq)

Ψ =

�
ψ
ψ̃

�
=





u
d
ũ
d̃





LQQCD = ψ (D/+mq) ψ + ψ̃ (D/+mq) ψ̃ = Ψ (D/+mq)Ψ graded vector



Partial Quenching and Bosonic Quarks

LPQQCD = ψ (D/+mval) ψ + ψ̃ (D/+mval) ψ̃ + ψ� (D/+msea)ψ
� = Ψ (D/+M)Ψ

Ψ =




ψ
ψ�

ψ̃





graded vector

ψ̃

fermionic quarks (Grassmann anticommuting)

bosonic quarks (commuting)

ψ, ψ�

�
Dψ̃Dψ̃e−S[ψ̃,ψ̃] =

1

Det(D/+mval)

�
DψDψe−S[ψ,ψ] = Det(D/+mval)

�
Dψ�Dψ�e−S[ψ

�
,ψ�] = Det(D/+msea)

Valence fermionic 
quarks couple to 
external sources



Graded Symmetries U(4|2)V

ΨA =

�
ψa

φα

�

UAB =

�
A4×4 B4×2

C2×4 D2×2

�

AB

A,D
B, C fermionic

bosonic

g(A) =

�
1, A = a

0, A = α
Grading

ΨA → UABΨB

U(4|2)V

Show that the graded trace is invariant under graded unitary transformations. 
Exercise:

MAB → [UMU†]AB

StrM =
�

A

(−)g(A)MAA =
�

a

Maa −
�

α

Mαα

LPQQCD(mval = msea = 0) = ΨD/Ψ



Partially Quenched Chiral Perturbation Theory

• Many details omitted! LPQQCD(mval = msea = 0) = ΨLD/ΨL +ΨRD/ΨR

S(4|2)L ⊗ SU(4|2)R −→ SU(4|2)V

Σ = e2iΦ/f

Spontaneous chiral symmetry breaking

Φ =




Φψψ Φψψ� Φψψ̃

Φψ�ψ Φψ�ψ� Φψ�ψ̃

Φ
ψ̃ψ

Φ
ψ̃ψ� Φ

ψ̃ψ̃



 Explicit symmetry breaking

ΨLMΨR +ΨRMΨL

• PQChPT L2 =
f2

8

�
Str

�
DµΣDµΣ

†�− λ Str
�
MΣ+ Σ†M

��
+

1

2
µ2
0 [Str(Φ)]

2

U(4|2)L ⊗ U(4|2)R −→ U(1)A ⊗ U(1)V ⊗ SU(4|2)V

StrΦ = η�val + η�sea − η̃�µ0 → ∞

Flavor neutral meson propagators have double poles

Can show that                
are the same as in ChPT

f,λ

Matching msea = mval



Exercise:

Find the tree-level masses of all charged mesons in PQChPT.



Lattice Applications of Chiral Perturbation Theory

• Study quark mass dependence of observables for chiral extrapolations 
(maybe even interpolations) of lattice QCD data.

• Use the lattice to expose the role chiral symmetry breaking plays in low-
energy QCD, hopefully confirm predictions of ChPT.

• Tailor ChPT to address sources of systematic error in lattice QCD 
computations of low-energy observables (in conjunction with above).

Finite volume, partial quenching, discretization



Discretization Effects in Chiral Perturbation Theory

• ChPT is a low-energy effective theory. Why should short range physics show up?

• Continuum limit of lattice data necessary to connect with reality 



Discretization Effects in Chiral Perturbation Theory

• ChPT is a low-energy effective theory. Why should short range physics show up?

• Continuum limit of lattice data necessary to connect with reality 

• Most solutions of fermion doubling problem 
break chiral symmetry at zero quark mass

propagation of infrared modes 
determined by nature of discretization



Symanzik’s Effective Field Theory

• Near continuum, lattice QCD can be described by an effective theory built 
from continuum operators respecting the underlying lattice theory (different 
for each lattice action)

a � Λ−1
QCD

Symanzik = S0 + aS1 + a2S2 + . . .

gauge invariance,  C, P, T,  hypercubic invariance, ...

S0 = ψ (D/+mq)ψ• Leading order is just QCD action (perhaps after fine tuning)

Euclidean invariance recovered as an accidental symmetry

O =
�

µ

ψDµDµDµγµψ

Si =
�

j

c(i)j O
(i)
j

c(i)j (g2)

*Logarithms buried in coefficients
log(1/a)



ChPT for the Wilson Action

• Wilson solves fermion doubling by breaking chiral symmetry...                     
Accordingly not imposed on the Symanzik theory for Wilson action. 

1

a
ψψ(Quark mass renormalization requires fine tuning to have light quarks)

S1 = cswψσµνGµνψ = csw
�
ψLσµνGµνψR + ψRσµνGµνψL

�

Lχ =
f2

8
Tr

�
∂µΣ∂µΣ

†�−mqλTr
�
Σ+ Σ†�

• Chiral symmetry breaking operator

• Incorporate into chiral perturbation theory

−a cswλaTr
�
Σ+ Σ†�

Action improvement will diminish size of coefficient

m2
π =

8

f2
(mqλ+ a cswλa) log[m2

π(mq, a)]Chiral logarithms

csw



ChPT for Mixed Lattice Actions

• For computational economy, can use different fermion actions for valence/sea

overlap valence / domain wall sea domain wall valence / staggered sea

• Symanzik action is expressed as a partially quenched theory

SU(4|2)L ⊗ SU(4|2)RContinuum limit symmetry

SU(2|2)L ⊗ SU(2|2)R ⊗ SU(2)L ⊗ SU(2)RFinite lattice spacing

• Explicit breaking, e.g.

Ψ =

�
ψ
ψ̃

�

Ψsea = ψ�

Omix =
�

µ

�
ΨγµΨ

� �
ΨseaγµΨsea

�

A consequence: mixed meson masses are not protected from additive 
renormalization at finite lattice spacing

∆(m2
π)val,sea = a2CmixΦψψ� ,Φψ�ψ



Exercise:

Write down all dimension-6 four-quark operators in the Symanzik action for a 
general mixed-action theory. Classify the operators according to symmetry. 
Which ones are absent in a theory describing Wilson valence quarks and 
overlap sea quarks?


