
Lectures on Chiral Perturbation Theory

I.   Foundations
II.  Lattice Applications
III. Baryons
IV. Convergence

Brian Tiburzi RIKEN BNL
Research Center



Chiral Perturbation Theory

I. Foundations



Low-energy QCD

Solutions of QCD (courtesy of nature)Mesons
pseudo-scalar

Baryons
positive parity spin-half

Hyperons

Nucleons

Kaons

Pions

Ground state: vacuum

• Spectrum (and properties) of low-lying hadrons indicative of symmetries 
... and symmetry breaking

• ChPT is the tool to study such manifestations in low-energy QCD



Massless QCD LQCD = Lψ + LYM Lψ =

Nf�

i=1

ψiD/ψi

• Take two flavors. These will correspond to up and down quarks.

• Massless QCD Lagrange density obviously has global U(2) flavor symmetry 
but...

Chiral symmetry

PL,R =
1

2
(1∓ γ5) ψL,R = PL,R ψprojectors

ψD/ψ = ψLD/ψL + ψRD/ψR

• Left- and right-handed fields do not mix: no chirality changing interaction

U(2)L ⊗ U(2)R

L R

ψL → LψL

ψR → RψR
ψ → (LPL +RPR)ψ



Massless QCD LQCD = Lψ + LYM Lψ =

Nf�

i=1

ψiD/ψi

• Take two flavors. These will correspond to up and down quarks.

• Massless QCD Lagrange density obviously has global U(2) flavor symmetry 
but...

Chiral symmetry

PL,R =
1

2
(1∓ γ5) ψL,R = PL,R ψprojectors

ψD/ψ = ψLD/ψL + ψRD/ψR

• Left- and right-handed fields do not mix: no chirality changing interaction

U(2)L ⊗ U(2)R

Vector subgroup

L = R = V

U(2)V ψL → V ψL

ψR → V ψR
ψ → V (PL + PR)ψ = V ψ



Chiral Symmetry of Massless QCD

U(2)L ⊗ U(2)R = U(1)L ⊗ U(1)R ⊗ SU(2)L ⊗ SU(2)RAction invariant under

U(1)L : ψL → eiθLψL

U(1)R : ψR → eiθRψR

ψ →
�
1

2
(eiθR + eiθL) +

1

2
(eiθR − eiθL)γ5

�
ψ

Vector subgroup θL = θR = θ ψ → eiθψ U(1)V

Axial transformation −θL = θR = θ5 ψ → [cos θ5 + iγ5 sin θ5]ψ = eiθ5γ5ψ

U(1)A

Consider a non-singlet axial transformation 

Exercise:

Is there a corresponding symmetry group of the massless QCD action?

ψi → [exp(i�φ · �τ γ5)]ijψj



Chiral Symmetry of Massless QCD

Action invariant under U(2)L ⊗ U(2)R = U(1)A ⊗ U(1)V ⊗ SU(2)L ⊗ SU(2)R

J5µ = ψγµγ5ψ Jµ = ψγµψ Ja
Lµ = ψLγµτ

aψL Ja
Rµ = ψRγµτ

aψR

• Global symmetries lead to classically conserved currents

(Regulated) Theory not invariant under flavor-singlet axial transformation

Chiral Anomaly

∂µJ5µ(x) = ∂µJRµ(x)− ∂µJLµ(x) =

�
− e

2πNf �µνFµν(x) d = 2

−αs
4πNf �µνρσGA

µν(x)G
A
ρσ(x) d = 4

The chiral anomaly obstructs chirally invariant lattice regularization of 
fermions (see Kaplan’s lectures)

U(1)V ⊗ SU(2)L ⊗ SU(2)R



Fate of Symmetries in Low-Energy QCD

U(1)V ⊗ SU(2)L ⊗ SU(2)R

• Chiral pairing preferred by vacuum (non-perturbative ground state)

�ψψ� = �ψRψL�+ �ψLψR� �= 0Chiral condensate

• Massless quarks can change their chirality by scattering off vacuum condensate

Nambu-Goldstone Mechanism

• Spontaneously broken symmetries lead to massless bosonic excitations 

SU(2)L ⊗ SU(2)R/SU(2)VBroken generators in coset

Number of massless particles?

U(1)V ⊗ SU(2)L ⊗ SU(2)R −→ U(1)V ⊗ SU(2)V



Chiral Condensate

• Choice for vacuum orientation               from Vafa-Witten (P) λ ∈ R

• After a chiral transformation

SU(2)L ⊗ SU(2)R −→ SU(2)V

• Describe Goldstone fluctuations of vacuum state with fields

Σ ∈ SU(2)L ⊗ SU(2)R/SU(2)Vδji → Σji(x) = δji + . . .

Transformation properties
Σ → LΣR† Σ → V ΣV † φ → V φV †

Exercise:
Determine the discrete symmetry properties of the Goldstone modes from the 
coset’s transformation.

Σ = e2iφ/f = 1 +
2iφ

f
+ . . .

[L(x)R†(x)]ji =[ei
�θL(x)·�τe−i�θR(x)·�τ ]ji �θL = −�θR

�ψiRψjL� = −λ δji

�ψiRψjL� → Ljj�R
†
i�i�ψi�Rψj�L� = −λ(LR†)ji



Dynamics of Goldstone Bosons: Chiral Lagrangian

L =
f2

8
Tr

�
∂µΣ∂µΣ

†�Σ → LΣR†
Σ†Σ = 1

Σ† → RΣ†L

φ =

�
1√
2
π0 π+

π− − 1√
2
π0

�

The Pions
Trφ = 0

φ† = φ

• Build chirally invariant theory of coset field

Σ = e2iφ/f = 1 +
2iφ

f
+ . . .

• Expand about v.e.v. to uncover Gaußian fluctuations

L =
1

2
Tr (∂µφ∂µφ) +O(1/f2) =

1

2
∂µπ

0∂µπ
0 + ∂µπ

−∂µπ
+ +O(1/f2)

3 massless modes

• Non-linear theory: interactions between multiple pions 
at “higher orders”

Can treat systematically...



Including Quark Masses

• We began with massless QCD. Quarks have mass, Higgs makes two very light

• Chiral symmetry of action is only approximate: explicit symmetry breaking

∆Lψ = mq

�

i

ψiψi = mq

�

i

�
ψiRψiL + ψiLψiR

�

SU(2)L ⊗ SU(2)R −→ SU(2)V mq/ΛQCD � 1

• Need to map           onto ChPT operators breaking symmetry in same way∆Lψ

Comments: not chirally invariant

new dimensionful parameter

included only linear quark mass term 

Σ → LΣR†

λ

m2
q

∆Leff = −mqλTr
�
Σ+ Σ†�

Perturbing about chiral limit

Σ† → RΣ†L†



Chiral Lagrangian Lχ =
f2

8
Tr

�
∂µΣ∂µΣ

†�−mqλTr
�
Σ+ Σ†�

• Expand up to quadratic order Lχ = −4mqλ+
1

2
Tr (∂µφ∂µφ) +

8mqλ

f2

1

2
Tr (φφ)

m2
π = 8mqλ/f

2Pion mass

• Vacuum energy must be due to chiral condensate (ingredient in our construction)

ZQCD[mq, . . .] =

�
D · · · e−

�
x(···+mqψψ)

ZQCD[mq, . . .] ≡ ZχPT[mq, . . .]

QCD degrees of freedom

Low-energy degrees of freedom

ZχPT[mq, . . .] =

�
DΣ e−

�
x Lχ(Σ;mq)

Effective field theory

Matching 
From before:

λ = λ

−∂ logZQCD

∂mq
= �ψψ�

�ψψ� = −∂ logZχPT

∂mq
= −λ�Tr

�
Σ+ Σ†�� = −2Nfλ �ψiRψjL� = −λ δji



Chiral Lagrangian Lχ =
f2

8
Tr

�
∂µΣ∂µΣ

†�−mqλTr
�
Σ+ Σ†�

• Expand up to quadratic order Lχ = −4mqλ+
1

2
Tr (∂µφ∂µφ) +

8mqλ

f2

1

2
Tr (φφ)

m2
π = 8mqλ/f

2Pion mass

• Vacuum energy must be due to chiral condensate (ingredient in our construction)

ZQCD[mq, . . .] =

�
D · · · e−

�
x(···+mqψψ)

ZQCD[mq, . . .] ≡ ZχPT[mq, . . .]

QCD degrees of freedom

Low-energy degrees of freedom

ZχPT[mq, . . .] =

�
DΣ e−

�
x Lχ(Σ;mq)

Effective field theory

Matching 
From before:

f2m2
π = 2mq|�ψψ�| (Gell-Mann Oakes Renner)

λ = λ

−∂ logZQCD

∂mq
= �ψψ�

�ψψ� = −∂ logZχPT

∂mq
= −λ�Tr

�
Σ+ Σ†�� = −2Nfλ �ψiRψjL� = −λ δji



ChPT

• Quartic terms describe interactions

• Quadratic fluctuations are the approximate Goldstone bosons of SChSB

• Higher-order interactions renormalize lower-order terms

∼ 1

f2
(φ∂µφ)

2

power-law divergence
Absorb in renormalized mass,                       
or just use dimensional regularization

logarithmic divergence
Renormalization requires new           
operator in chiral Lagrangian

Lχ =
f2

8
Tr

�
∂µΣ∂µΣ

†�−mqλTr
�
Σ+ Σ†�

∼ mqλ

f4
φ4

∆m2
π ∼ mqλ

f4

�

k

1

k2 +m2
π

∼ mqλ

f2

�
Λ2 +

mqλ

f2

�
logΛ2 + finite

��

• ChPT is non-renormalizable (needing infinite local terms to renormalize)

1). low-energy theory, so who cares?

2). must be able to order terms in terms of relevance “power counting”



Power Counting Lχ =
f2

8
Tr

�
∂µΣ∂µΣ

†�−mqλTr
�
Σ+ Σ†�

• Leading-order Lagrangian in expansion in derivatives and quark mass

O(p2) ∂µ ∼ p mq ∼ p2 Low-energy dynamics of pions

Propagator
1

k2 +m2
π

∼ p−2
Vertices ∂µ∂µ, mq ∼ p2 Loop integral

�

k
∼ p4

General Feynman diagram: L loops, I internal lines, V vertices ∼ p4L−2I+2V

Euler formula L = I − V + 1 ∼ p2L+2

• Loop expansion: one loop graphs require only             countertermsO(p4)

Two loop graphs?

Exercise:
What happens to the power-counting argument in d = 2, 6 dimensions?         
Do the results surprise you? Why didn’t I ask about d = 3, 5?



             Chiral Lagrangian

• Construct chirally invariant terms out of coset

O(p4)

Σ → LΣR†

Σ† → RΣ†L†

• Construct terms that break chiral symmetry in the same way as mass term 

Simplification: add external scalar field to QCD action ∆L = ψLsψR + ψRs
†ψL

Make the scalar transform to preserve chiral symmetry

s = mq + · · ·Giving the scalar a v.e.v. breaks chiral symmetry just as a mass

E.g.              LagrangianO(p2)

s → LsR†

Σs† + sΣ†

E.g.              LagrangianO(p2) ∂µΣ ∂µΣ
†



             Chiral LagrangianO(p4)
Σ → LΣR†

Σ† → RΣ†L† s† → Rs†L†
s → LsR†

Also impose Euclidean invariance, C, P, T

Easy to generate terms. Care needed to find minimal set. 

E.g. [Tr
�
Σs† − sΣ†�]2 → m2

q[Tr
�
Σ− Σ†�]2 = 0

{Lj} low-energy constants = Gasser-Leutwyler coefficients, dimensionless
N.B. these are not Gasser-Leutwyler’s coefficients

Complete set of counterterms needed to renormalize one-loop ChPT

Additional terms necessary when coupling external fields...

Exercise:
Determine the effects of strong isospin breaking                    on the chiral 
Lagrangian. At what order does the pion isospin multiplet split?

mu �= md

L4 = L1[Tr
�
∂µΣ∂µΣ

†�]2 + L2Tr
�
∂µΣ∂νΣ

†�Tr
�
∂µΣ∂νΣ

†�

+ L3
mqλ

f2
Tr

�
∂µΣ∂µΣ

†�Tr
�
Σ+ Σ†�+ L4

(mqλ)2

f4
[Tr

�
Σ+ Σ†�]2



Simplest one-loop computation: Chiral Condensate

“Tree-Level”

One LoopΣ+ Σ† = 2− 4

f2
φ2 + · · ·

∆�ψψ� = +
4λ

f2
× 3Gπ(0) =

12λ

f2

�

k

1

k2 +m2
π

O(p4)

“Tree-Level”

L3
λ

f2
Tr

�
∂µΣ∂µΣ

†�Tr
�
Σ+ Σ†�+ 2L4

mqλ2

f4
[Tr

�
Σ+ Σ†�]2

= 32L4
mqλ2

f4
= 4

m2
π

f2
L4 λ

Final result:

Dimensionally regulated integral − m2
π

(4π)2

�
1

�
− γE + log 4π + log

µ2

m2
π

+ 1

�

�ψψ� = −4λ

�
1 +

3m2
π

(4πf)2

�
log

µ2

m2
π

+ 1

�
− m2

π

f2
L4(µ)

�
Chiral Logarithm

µ2 d

dµ2
L4 =

3

16π2

�ψψ� = −∂ logZχPT

∂mq
= −λ�Tr

�
Σ+ Σ†�� = −2Nfλ



Two-Flavor ChPT

L4 = L1[Tr
�
∂µΣ∂µΣ

†�]2 + L2Tr
�
∂µΣ∂νΣ

†�Tr
�
∂µΣ∂νΣ

†�

+ L3
mqλ

f2
Tr

�
∂µΣ∂µΣ

†�Tr
�
Σ+ Σ†�+ L4

(mqλ)2

f4
[Tr

�
Σ+ Σ†�]2

L2 =
f2

8

�
Tr

�
∂µΣ∂µΣ

†�−mqλTr
�
Σ+ Σ†��

• Leading and next-to-leading order Lagrangian in isospin limit mu = md

• Compute quark mass dependence of chiral condensate, pion mass, pion-pion 
scattering, ..., in terms of a few low-energy constants

aI=2
ππ = A2

√
mq [1 +B2 mq (logmq + C2)]

�ψψ� = A0 [1 +B0 mq (logmq + C0)]

m2
π = A1 mq [1 +B1 mq (logmq + C1)]

• Further applications: electroweak properties of pions require external fields



Incorporating External Fields in ChPT

• Start by incorporating external gauge fields in QCD

Lψ = ψLD/L ψL + ψRD/R ψR

[SU(2)L]⊗ [SU(2)R]Local invariance

(DL)µ = ∂µ + ig Gµ + iLµ

(DR)µ = ∂µ + ig Gµ + iRµ

Lµ = Rµ = QeAµE.g. external vector field

and
Lµ −→ L(x)LµL

†(x) + i[∂µL(x)]L
†(x)

Rµ −→ R(x)RµR
†(x) + i[∂µR(x)]R†(x)

ψL −→ L(x)ψL

ψR −→ R(x)ψR

• Then incorporate external gauge fields in ChPT

Σ → L(x)ΣR†(x) DµΣ → L(x)[DµΣ]R
†(x)Need covariant derivative

DµΣ = ∂µΣ+ iLµΣ− iΣR†
µ

L2 =
f2

8

�
Tr

�
DµΣDµΣ

†�−mqλTr
�
Σ+ Σ†��

Leading-order chiral Lagrangian [with external fields counted as           ]O(p)

*Additional operators 
at higher orders



What is f?

∆L = W−
µ J+

µL J+
µL = uLγµdL

π → µ+ νµ

Pion weak decay 

π
µ

νµ

W

Strong part factorizes into QCD matrix element
(the rest you learned how to compute in QFT)

pion decay constant
Γπ→µ+νµ =

G2
F

8π
f2
πm

2
µmπ|Vud|2

�
1−

m2
µ

m2
π

�2

ChPT current matches the QCD current

Ja
µL =

∂Lχ

∂La
µ

�����
Lµ=0

=
f2

4
Tr

�
iτaΣ∂µΣ

†�+ · · · = f

2
Tr (τa∂µφ) + · · ·

� 0 |J+
µL|π(�p) � = ipµ fπ

� 0 |J+
µL|π(�p) � = ipµ (f + · · · )

τ+ =
1

2
(τ1 + iτ2)

fπ = f [1 +Bmq (logmq + C)]

fπ = 132 MeV

Dimensionless power counting p2/Λ2
χ

Λχ = 2
√
2πf ∼ 1.2 GeV m2

π/Λ
2
χ



Exercise:

The masses of hadrons are modified by electromagnetism. 

 

Construct all leading-order electromagnetic mass operators by promoting the 
electric charge matrix to fields transforming under the chiral group. (Notice that 
no photon fields will appear in the electromagnetic mass operators because 
there are no external photon lines.) Which pion masses are affected by the 
leading-order operators? Finally give an example of a next-to-leading order 
operator, or find them all. 


