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Lecture content

• Multi-particle systems at finite temporal extent

• Medium effects and multi-hadron matrix elements

• Open Issues for the future



Multi-particle systems at finite temporal extent



Multi-pion correlation function

• Consider N pion correlation function

• For a lattice of temporal extent  T (inverse temperature)

• Many states contribute (ignore excitations)

ensembles [54] are shown in Table II5.
The results of the present calculation are presented in lattice units (l.u.), or in terms of

dimensionless quantities such as m⌅/f⌅ which eliminates the requirement of scale setting.
They are performed only at one lattice spacing, due to limited computer time, and as a
result the continuum limit cannot be determined. Unlike the two meson system, for which
mixed-action chiral perturbation theory (MA⌅PT) [55, 56, 57] has been used to include the
leading order e⇥ects of the finite lattice spacing, MA⌅PT calculations have not yet been
performed for the multi-⇤+ systems, and therefore the leading lattice spacing artifacts in
these calculations cannot be removed at present. The lattice spacing artifacts are assumed
to be small, occurring at O(b2), but a systematic study must be performed in the future.

B. Correlation functions

In this work we determine the ⇤+⇤+ and ⇤+⇤+⇤+ interactions from the ground-state energy
of n < 13 ⇤+’s (isospin stretched states). By working in the mu = md limit and restricting
the calculation to states of maximal isospin, only the simplest sets of propagator contractions
are required to be performed (i.e. no disconnected diagrams) in order to form the correlation
functions from which the ground-state energies are extracted.

Naively, there are (n!)2 contractions (for large n this behaves as ⇥ (2n + 1
3)⇤e2n(log n�1))

contributing to the correlation function of n-⇤+’s,

Cn(t) ⇤ ⇧
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where ⇤+(x, t) = u(x, t)�5d(x, t). However, this correlation function can be written as 6

Cn(t) ⇤ ⇧ ( ⇥�⇥ )n ⌃ , (14)

where

� =
⇤

x

S(x, t; 0, 0) S†(x, t; 0, 0) , (15)

and S(x, t; 0, 0) is a light-quark propagator. The object (block) � is a 12 � 12 (4-spin and
3 color) bosonic time-dependent matrix, and ⇥� is a twelve component Grassmann variable.
Using

⇧⇥�1⇥�2 ...⇥�n⇥⇥1⇥⇥2 ...⇥⇥n⌃ ⇤ ⇧�1�2..�n⇤1..⇤12�n ⇧⇥1⇥2..⇥n⇤1..⇤12�n , (16)

leads to correlation functions

Cn(t) = ⇧�1�2..�n⇤1..⇤12�n ⇧⇥1⇥2..⇥n⇤1..⇤12�n (�)⇥1

�1
(�)⇥2

�2
.. (�)⇥n

�n
. (17)

5 Until this point the two-body scattering length for a generic system has been denoted by a. For the �+�+

system, we denote the scattering length by a(I=2)
�� .

6 We thank David Kaplan and Michael Endres for discussions on this topic. For a general approach to
evaluating contractions involving a large number of fermions, see Ref. [58].
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• Consider π+ correlator (mu=md)

Many meson 2-point correlator

C(1)(t) =

*
0

�����
X

x

d�5u(x, t)u�5d(0, 0)

����� 0

+

t!1�! A1e
�E1t



• Consider π+ correlator (mu=md)

Many meson 2-point correlator

C(1)(t) =

*
0

�����
X

x

d�5u(x, t)u�5d(0, 0)

����� 0

+

t!1�! A1e
�E1t



• Consider π+ correlator (mu=md)

Many meson 2-point correlator
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• Now an n π+ correlator (mu=md)

Many meson 2-point correlator

C(n)(t) =
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Many meson 2-point correlator
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• Now an n π+ correlator (mu=md)

Many meson 2-point correlator
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Analysis on finite T correlators

• Can rewrite the t dependence as

• Extracting the eigen-energies from these correlators is difficult

• Many parameters appear in each correlator

• Correlations between different Cj as the energy Ek occurs in all Cj (j≥k)

• Various ways to deal with this: eg cascading fits

FIG. 5: The black data is the e⇥ective mass calculated from the original data from ensemble B2,
and blue line is reconstructed from the ground state energies extracted from the ensemble B4 as
discussed in the main text. The red line is the fitted value of En⇡ extracted from the correlators
of ensemble B4.

For the T = 128 (256) ensembles, 8 (16) colorwave propagators are generated on each
configuration located 16 time slices apart to minimize correlations between propagators. For
ensembles {B1, B2, B3, B4}, {180, 51, 147, 98} configurations and {33, 19, 19, 7} momenta
are used respectively. In order to reduce contamination from thermal states, a temporal
extent of T = 256 is desirable for systems of large numbers of pions. On the B1 and
B3 ensembles, the A ± P (antiperiodic ± periodic propagator) method [26–28] is applied
to e↵ectively double the temporal extent. The validity of this method is investigated by
comparing results from ensemble B4 (203⇥256) and with those from ensemble B2 (203⇥128)
with the A±P method and it is found to be sound at the precision we achieve for the systems
under consideration as discussed below.

IV. GROUND STATE ENERGIES

Previous studies of the energies and isospin chemical potentials [6, 16] on ensemble B2
showed that thermal states contribute significantly to correlation functions and, even for
C

12⇡(t), the ground state does not dominate in any region of Euclidean time. The expected
form of correlation functions of an n-⇡+ system with temporal extent T is [6]
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where A

n
m = 1 when m = n/2, otherwise A

n
m = 2. Em is the ground state energy of a m-⇡+

system, the Z

n
m are the overlap factors for contribution with m ⇡’s propagating backward

around the temporal boundary, and the ellipsis denotes contributions from excited states.
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Thermal pollution

Investigations of QCD at non-zero isospin density
Zhifeng Shi1, William Detmold 1,2

1 The College of William and Mary, Williamsburg,VA 2 Jefferson Lab, Newport News, VA

Abstract
We investigate QCD at large isospin density induced by explicit construction of many pion
systems via multi-source recursion relations. At large isospin density, corresponding to an
isospin chemical potential µI ∼ mρ, we find indications of a phase transition to a conjectured
ρ-condensed phase.

1 Methodology

1.1 Recursion relation in spatial space

In order to explore system containing up to 12M π+’s, M different source(s) are required because
of the Pauli principle. The correlation function for a system with ni-π

+ in the ith source is:

C(n1π
+
1 ,..., nmπ+

m)
(t) = 〈

(
∑

x

π+(x, t)

)n(
π−(y1, 0)

)n1

...

(
π−(ym, 0)

)nm

〉 , (1)

Calculating this correlation function from Wick’s theorem involves 12M !12M ! contractions,
which make the study for a system of large number of π+’s extremely time consuming. However
the recursion relation of correlation functions, discovered in reference[1], makes the study of such
system feasible. Correlation function

C(n1π
+
1 ,..., nmπ+

m)
(t) = (−)n




∏

i

ni!



 〈 Q(n1,n2,...,nm) 〉 , (2)

where n̄ =
∑m

i=1 ni and Q(n1,n2,...,nm) satisfies the ascending recursion relation:

Q(n1+1,n2,...,nm) = 〈 Q(n1,n2,...,nm) 〉 P1 − n Q(n1,n2,...,nm) P1
... + 〈 Q(n1+1,n2,...nk−1,...,nm) 〉 Pk − n Q(n1+1,n2,...nk−1,...,nm) Pk
... + 〈 Q(n1+1,n2,...,nm−1) 〉 Pm − n Q(n1+1,n2,...,nm−1) Pm , (3)

Initial conditions are Q(1,0,...,0) = P1 = A1, Q(0,1,...,0) = P2 = A2, · · · , where Ai are uncontracted
single pion correlators.

Descending recursion relations also exist and are usefull in constructing large correlators.

Qn =
M∑

k=1

1

N + 1− n̄
〈Qn+1k

A−1
(
Pk · A−1

)
〉 · IN −Qn+1k

A−1
(
Pk · A−1

)
(4)

Initial condition is Q12,...,12 = (N − 1)! det(A) · IN .
The correlation functions of two species from multiple sources have similar recursion relations,

which are also available in the original paper[1].

1.2 The recursion relation in momentum space

The correlation function of a system having n1-π
+ in the first source and n2-π

+ in another
source with total momentum n1pf1 + n2pf2, is:

Cn1π+,n2π+ (t) = 〈
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where n1p
1
1 + n2p

2
1 − n1p

1
2 − n2p

2
2 =

∑n
i=1pfi.

Each choice of pij, i, j = 1, 2 satisfying this relation is an independent measurement. Replacing
propagators in the spatial space by propagators constructed from momentum sources, the same
recursion relation still holds. The only difference is the construction of uncontracted correlation
functions Ai,j.
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2 Results

Because of the finiteness of the temporal extent and the easily factorisable nature of the multi-
hadronic systems being constructed, thermal effects are particularly important so the correlation
functions have the form:

Cnπ+ (t) =
n∑

m=0

(
n

m

)
Zn
me−(Em+En−m)T/2 cosh ((Em − En−m) · (t− T/2)) + · · ·

where dots represent higher excitations, T is the maximal value of the temporal extent and En
is the energy of a system of n-π+. The dominant state comes from all π+’s propagating in the
same direction, and thermal states are from some π+’s propagating in one direction while the rest
propagate in the opposite direction.

2.1 Verify the dispersion relation

This calculation is done on an anisotropic 163 × 128 lattice with ξ = 3.5. on the lattice only
discrete momentum 2π

L n are allowed . Enπ+ of systems with total momentum pt = n · p, for
p = (0, 0, 1), (0, 1, 1), (0, 0, 2), have been extracted for n = 4, 3, 2 respectively and are fitted into

the dispersion relation: E2(n,pt)
n2 − (c·pt

n )2 = E2(n,0)
n2 , where pt = n · p and got |c| = 1.015(32),

which confirms the validity of this method.

2.2 One species from single source

For notational convenience:p11 → p1, p
1
2 → p2, p

2
1 → p3, p

2
2 → p4.

Azimuthal symmetry ensures many combinations of p1,p2 be independent measurements of the
same physics , and also provides more configurations. As Enπ+ extracted from different choices of
p1 and p2 are the same within errors, here we choose p1 = p2 = (1, 1, 1) for further discussion.
Enπ+’s extracted for fits with and without one excited state in addition to the thermal states
discussed above from different time intervals give consistent results.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10  12

E
n

n(# of pions)

fit with Mp
fit without Mp

-12

-10

-8

-6

-4

-2

 0

 2

 0  2  4  6  8  10  12

lo
g
(Z

0
(n

))

n(# of pions)

fitting with Mp
fitting without Mp

FIG[2.2]:The left panel shows energies of a rest system of n-π+(Enπ+) extracted from both
methods and the right panel compares Z0.

Decomposing Cnπ+(t) into different contributions gives much more insight into how
much each state contributes. Let’s take C12π+(t) for example. The green line is from
the first excited state, the blue is the ground state and other lines are thermal states.
The zeros temperature ground state is not dominant in any region of this correlator.
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2.3 One species from two sources

By choosing p1 = p2, p3 = p4 but p1 (= p3 systems having up to 24π+ are studied by the same
recursion relation, and Enπ+ are extracted as before. As there are more ways to construct a n-π+

system and the recursion relation forces us to calculate allQ’s before getting to 24-π+s’, which costs
100 times more than the one source case. Similarly system of 36 π+’s requires a third source, and
becomes 100 times more expensive again. However a new method has rescently been constructed to
calculate correlation functions much more faster, allowing calculation of systems of at least 96 π+’s.
C40π+(t) calculated with this new method from 4 sources in a single configuration is shown below.
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FIG[2.3]: Left panel shows En1π+,n2π+ extracted from Cn1π+,n2π+ plotted against
x = 2n1 + n2. Statistical error and systematic error are added up in quadrature. Right
panel is C40π+(t) calculated from a new method.

2.4 Isospin chemical potential(µI)

µI is defined as µI (n) = dE
dn , which are calculated by applying backward derivative on the

lattice. Calculations on all lattice sizes, 163× 128, 203× 128 and 243× 128, give consistent results.

FIG[2.4] µI
mπ+

−1 is plotted against the isospin density ρI , which is defined as the number of
n
V , where V is the volume of the system computed with the lattice spacing a = 0.125fm.
The black line is the prediction from χPT[2].

At small ρI , µI behaves as expected from the χPT, but µI turns over and flats out at larger
ρI , which is out of our expectation. Our conjecture is that at this ρI the system goes from a
π-condensation phase into a phase that also contains a condenstate of a particular component of
ρ mesons[3]. Further investigations are being done by directly putting a ρ+ into π+-medium, and
studying the behavior of the screening mass of ρ+ as a function of the density of π+. Preliminary
results do show an unusual behavior at the density where we suspect a phase transition.

At no point does the ground state dominate the correlator!!!



Medium effects and matrix elements

• So far we have only investigated spectroscopy of multi-hadron systems

• What about the structure and other properties of such systems?

• Moments, form factors, polarisabilites, weak interactions....

• Probed by matrix elements in multi-hadron eigenstates

• What about in medium properties – how does a proton get modified in a 
nucleus (intrinsically not a well defined separation)?

• Really an interpretation of the above

• Very new direction of investigation

[image from JLab]



• Static quark potential

Colour screening of static charges

[Leinweber][Bali et al.][Petreczky/Petrov]



• Static quark potential

Colour screening of static charges

V(r)

[Leinweber][Bali et al.][Petreczky/Petrov]



• Static quark potential

Colour screening of static charges

[Leinweber][Bali et al.][Petreczky/Petrov]

• Screening: evidence for quark-gluon plasma



• Static quark potential

Color screening

R

t

�! Z exp[�V (R)(t� tw)]

CW (R, tw, t) =

*
0

������

X

y,|r|=R

W(y + r, t;y, tw)

������
0

+



• Static quark potential

Color screening

R

t

�! Z exp[�V (R)(t� tw)]

CW (R, tw, t) =

*
0

������

X

y,|r|=R

W(y + r, t;y, tw)

������
0

+

Ê

Ê
Ê

Ê
ÊÊ
Ê

‡ ‡
‡
‡ ‡
‡ ‡

‡
‡ ‡ ‡ ‡ ‡

Ï
Ï Ï Ï Ï

ÏÏ Ï
Ï Ï

Ï Ï Ï Ï Ï Ï ÏÚ
Ú Ú Ú ÚÚ Ú Ú Ú Ú

Ú Ú Ú Ú Ú Ú Ú

Ê

Ê
Ê

Ê
ÊÊ
Ê

‡ ‡
‡
‡ ‡
‡ ‡

‡
‡ ‡ ‡ ‡ ‡

Ï
Ï Ï Ï Ï

ÏÏ Ï
Ï Ï

Ï Ï Ï Ï Ï Ï ÏÚ
Ú Ú Ú ÚÚ Ú Ú Ú Ú

Ú Ú Ú Ú Ú Ú Ú
ÊÊ ‡‡ ÏÏ ÚÚNHYP=0 NHYP=1 NHYP=2 NHYP=4

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

V
HRL
@Ge

V
D

R @fmD
0.0 0.2 0.4 0.6 0.8 1.0

-10

-8

-6

-4

-2

0

R @fmD

FHR
L@G

eV
fm
-
1 D



• Static quark potential

Color screening

R
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• Modified by condensate? Hadronic screening?
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• n pion correlator

• Wilson loop correlator

• Pions and Wilson loop

• Ratio gives shift in potential due to interaction of potential with pion system

In medium effects
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Effective δV plots
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• DWF on MILC: a=0.09 fm, 283x96, mπ=318 MeV

[WD & M Savage, PRL 102:032004, 2009]



δV(R, n)
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δF(R, n=1 & 5)
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• Small effect: δF(n=1)/F = 2/1000 at large R

• Constant at large R

• Dielectric medium inside flux tube
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Hadron structure in QCD

• Deep inelastic scattering experiments 
probe parton distribution functions qH(x)

• Probability of finding a parton (q,g) in 
hadron h carrying longitudinal 
momentum fraction x

• Operator product expansion: 
Mellin moments of PDFs defined 
by forward matrix elements of local 
operators

• n=1 corresponds to LC momentum fraction 
carried by quarks inside H  

• Phenomenologically find DIS on nuclei
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Hadron structure in QCD

• Proton structure ntensively studied in QCD using 3-pt functions (see James 
Zanotti’s lectures next week)

• Limited to low moments by reduced lattice symmetry

• Most studies for nucleon, but also pion, rho, ...

• Disconnected term often neglected (absent for isovector quantities)

• What about multi-baryon structure (EMC effect)?
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y,x
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C3(t,p)
C2(t,p)

t!1�! hH|O|Hi



• Pionic analogue of EMC effect

• n π+ 3-point correlator 

Many meson 3-point correlator

2

can both be extended to multi-hadron systems and the external source method has been theoretically investigated in
this context in two hadron systems in Ref. [? ]. In the following, we focus primarily on the current insertion method.

A. External field method

In the external field approach, two point correlation functions are measured for multiple di↵erent configurations
of an external field (for example, di↵erent field strengths). The response of the correlator to the field allows the
determination of a property of the hadronic system under consideration. This approach has been explored extensively
for single baryons and mesons [REFS]. It has also been theoretically investigated for two-nucleon systems [REF] in
the presence of external magnetic or axial fields but no numerical calculations have been performed.

To be concrete, we consider the correlator corresponding to a
For this approach to be applicable as spectroscopy, the final and initial states of the system must be the same so

the external field

B. Two- and three- point correlation functions

For clarity, will consider the case of a state containing m hadrons of type h assuming only a single species of hadron.
The two point function

Cm(t,p) =
D
0
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"
mY
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X

x

eipi·x�(x, t)

#
⇥
�†(x0)

⇤m
���0

E
, (1)

where �† is an interpolating operator that creates states with the quantum numbers of the hadron h. For brevity, we
will denote the source (at x� 0) and sink (at t) operators as Oi(x0) and Of (x, t), respectively. The total momentum
of the multi-hadron state is p =

Pm
i=1 pi as selected by the summations over spatial sink locations (the individual pi

are not quantum numbers).
Corresponding three point correlation functions allow the matrix elements of a local operator J to be determined.

To be specific, we consider

C(n)
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D
0
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⇤m
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suppressing any possible Lorentz, spinor and flavour structure of the operator In this correlation function, the operator
is inserted at time-slice ⌧ injecting spatial momentum, q.

More complicated cases can be considered, but the above correlators, in which the three-momentum is specified at
the sink and at the operator are those that are typically considered.

1. Spectral decomposition

The spectral decomposition of the correlators introduced above is straightforward to construct, but there are
subtleties that can lead to significant e↵ects in the case of multi-hadron systems for actual numerical calculations so
we pursue this calculation in detail. Lattice calculations are performed in a geometry of finite size both in the spatial
and temporal directions and to maintain a connection to a field-theoretic system in the continuum limit, boundary
conditions in the temporal direction are periodic for bosonic degrees of freedom (gluons) and anti-periodic for the
fermionic degrees of freedom (quarks). We denote the temporal extent of the lattice as T .

The spectral decomposition proceeds through the resolution of the identity operator into a sum over contributions
of all states in the Hilbert space of QCD. Many states will make no contribution because of orthogonality with respect
to the quantum numbers of the multi-hadronic interpolating operators in the correlators that we consider. Let Oi

raise a good quantum number measured by the operator Q by a certain amount Q and Of lower it by the same
amount and let J not change that quanta. We can define subspaces Qq = {|↵i : Q|↵i = q|↵i}, where by definition,
the vacuum state is in Q0. In a finite volume, the spectrum is discrete and the states can be ordered by their energy
eigenvalue. To this end, we define the bases (assuming no degeneracies)

|↵iq 2 Qq, Ĥ|↵iq = E(q)
↵ |↵iq, E(q)

↵ < E
(q)
↵+1, ↵ = 0, 1, 2, . . . (3)

[WD & H-W Lin, in progress]
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can both be extended to multi-hadron systems and the external source method has been theoretically investigated in
this context in two hadron systems in Ref. [? ]. In the following, we focus primarily on the current insertion method.

A. External field method

In the external field approach, two point correlation functions are measured for multiple di↵erent configurations
of an external field (for example, di↵erent field strengths). The response of the correlator to the field allows the
determination of a property of the hadronic system under consideration. This approach has been explored extensively
for single baryons and mesons [REFS]. It has also been theoretically investigated for two-nucleon systems [REF] in
the presence of external magnetic or axial fields but no numerical calculations have been performed.

To be concrete, we consider the correlator corresponding to a
For this approach to be applicable as spectroscopy, the final and initial states of the system must be the same so

the external field

B. Two- and three- point correlation functions

For clarity, will consider the case of a state containing m hadrons of type h assuming only a single species of hadron.
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where �† is an interpolating operator that creates states with the quantum numbers of the hadron h. For brevity, we
will denote the source (at x� 0) and sink (at t) operators as Oi(x0) and Of (x, t), respectively. The total momentum
of the multi-hadron state is p =

Pm
i=1 pi as selected by the summations over spatial sink locations (the individual pi

are not quantum numbers).
Corresponding three point correlation functions allow the matrix elements of a local operator J to be determined.

To be specific, we consider
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suppressing any possible Lorentz, spinor and flavour structure of the operator In this correlation function, the operator
is inserted at time-slice ⌧ injecting spatial momentum, q.

More complicated cases can be considered, but the above correlators, in which the three-momentum is specified at
the sink and at the operator are those that are typically considered.

1. Spectral decomposition

The spectral decomposition of the correlators introduced above is straightforward to construct, but there are
subtleties that can lead to significant e↵ects in the case of multi-hadron systems for actual numerical calculations so
we pursue this calculation in detail. Lattice calculations are performed in a geometry of finite size both in the spatial
and temporal directions and to maintain a connection to a field-theoretic system in the continuum limit, boundary
conditions in the temporal direction are periodic for bosonic degrees of freedom (gluons) and anti-periodic for the
fermionic degrees of freedom (quarks). We denote the temporal extent of the lattice as T .

The spectral decomposition proceeds through the resolution of the identity operator into a sum over contributions
of all states in the Hilbert space of QCD. Many states will make no contribution because of orthogonality with respect
to the quantum numbers of the multi-hadronic interpolating operators in the correlators that we consider. Let Oi

raise a good quantum number measured by the operator Q by a certain amount Q and Of lower it by the same
amount and let J not change that quanta. We can define subspaces Qq = {|↵i : Q|↵i = q|↵i}, where by definition,
the vacuum state is in Q0. In a finite volume, the spectrum is discrete and the states can be ordered by their energy
eigenvalue. To this end, we define the bases (assuming no degeneracies)

|↵iq 2 Qq, Ĥ|↵iq = E(q)
↵ |↵iq, E(q)

↵ < E
(q)
↵+1, ↵ = 0, 1, 2, . . . (3)

[WD & H-W Lin, in progress]
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can both be extended to multi-hadron systems and the external source method has been theoretically investigated in
this context in two hadron systems in Ref. [? ]. In the following, we focus primarily on the current insertion method.

A. External field method

In the external field approach, two point correlation functions are measured for multiple di↵erent configurations
of an external field (for example, di↵erent field strengths). The response of the correlator to the field allows the
determination of a property of the hadronic system under consideration. This approach has been explored extensively
for single baryons and mesons [REFS]. It has also been theoretically investigated for two-nucleon systems [REF] in
the presence of external magnetic or axial fields but no numerical calculations have been performed.

To be concrete, we consider the correlator corresponding to a
For this approach to be applicable as spectroscopy, the final and initial states of the system must be the same so

the external field

B. Two- and three- point correlation functions

For clarity, will consider the case of a state containing m hadrons of type h assuming only a single species of hadron.
The two point function
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where �† is an interpolating operator that creates states with the quantum numbers of the hadron h. For brevity, we
will denote the source (at x� 0) and sink (at t) operators as Oi(x0) and Of (x, t), respectively. The total momentum
of the multi-hadron state is p =

Pm
i=1 pi as selected by the summations over spatial sink locations (the individual pi

are not quantum numbers).
Corresponding three point correlation functions allow the matrix elements of a local operator J to be determined.

To be specific, we consider
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suppressing any possible Lorentz, spinor and flavour structure of the operator In this correlation function, the operator
is inserted at time-slice ⌧ injecting spatial momentum, q.

More complicated cases can be considered, but the above correlators, in which the three-momentum is specified at
the sink and at the operator are those that are typically considered.

1. Spectral decomposition

The spectral decomposition of the correlators introduced above is straightforward to construct, but there are
subtleties that can lead to significant e↵ects in the case of multi-hadron systems for actual numerical calculations so
we pursue this calculation in detail. Lattice calculations are performed in a geometry of finite size both in the spatial
and temporal directions and to maintain a connection to a field-theoretic system in the continuum limit, boundary
conditions in the temporal direction are periodic for bosonic degrees of freedom (gluons) and anti-periodic for the
fermionic degrees of freedom (quarks). We denote the temporal extent of the lattice as T .

The spectral decomposition proceeds through the resolution of the identity operator into a sum over contributions
of all states in the Hilbert space of QCD. Many states will make no contribution because of orthogonality with respect
to the quantum numbers of the multi-hadronic interpolating operators in the correlators that we consider. Let Oi

raise a good quantum number measured by the operator Q by a certain amount Q and Of lower it by the same
amount and let J not change that quanta. We can define subspaces Qq = {|↵i : Q|↵i = q|↵i}, where by definition,
the vacuum state is in Q0. In a finite volume, the spectrum is discrete and the states can be ordered by their energy
eigenvalue. To this end, we define the bases (assuming no degeneracies)

|↵iq 2 Qq, Ĥ|↵iq = E(q)
↵ |↵iq, E(q)

↵ < E
(q)
↵+1, ↵ = 0, 1, 2, . . . (3)
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m ie�Emt

[WD & H-W Lin, in progress]

where hO(n)
m i = hm⇡|J (n)|m⇡i
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In the external field approach, two point correlation functions are measured for multiple di↵erent configurations
of an external field (for example, di↵erent field strengths). The response of the correlator to the field allows the
determination of a property of the hadronic system under consideration. This approach has been explored extensively
for single baryons and mesons [REFS]. It has also been theoretically investigated for two-nucleon systems [REF] in
the presence of external magnetic or axial fields but no numerical calculations have been performed.

To be concrete, we consider the correlator corresponding to a
For this approach to be applicable as spectroscopy, the final and initial states of the system must be the same so
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B. Two- and three- point correlation functions

For clarity, will consider the case of a state containing m hadrons of type h assuming only a single species of hadron.
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where �† is an interpolating operator that creates states with the quantum numbers of the hadron h. For brevity, we
will denote the source (at x� 0) and sink (at t) operators as Oi(x0) and Of (x, t), respectively. The total momentum
of the multi-hadron state is p =
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i=1 pi as selected by the summations over spatial sink locations (the individual pi
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suppressing any possible Lorentz, spinor and flavour structure of the operator In this correlation function, the operator
is inserted at time-slice ⌧ injecting spatial momentum, q.

More complicated cases can be considered, but the above correlators, in which the three-momentum is specified at
the sink and at the operator are those that are typically considered.

1. Spectral decomposition

The spectral decomposition of the correlators introduced above is straightforward to construct, but there are
subtleties that can lead to significant e↵ects in the case of multi-hadron systems for actual numerical calculations so
we pursue this calculation in detail. Lattice calculations are performed in a geometry of finite size both in the spatial
and temporal directions and to maintain a connection to a field-theoretic system in the continuum limit, boundary
conditions in the temporal direction are periodic for bosonic degrees of freedom (gluons) and anti-periodic for the
fermionic degrees of freedom (quarks). We denote the temporal extent of the lattice as T .

The spectral decomposition proceeds through the resolution of the identity operator into a sum over contributions
of all states in the Hilbert space of QCD. Many states will make no contribution because of orthogonality with respect
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In the external field approach, two point correlation functions are measured for multiple di↵erent configurations
of an external field (for example, di↵erent field strengths). The response of the correlator to the field allows the
determination of a property of the hadronic system under consideration. This approach has been explored extensively
for single baryons and mesons [REFS]. It has also been theoretically investigated for two-nucleon systems [REF] in
the presence of external magnetic or axial fields but no numerical calculations have been performed.

To be concrete, we consider the correlator corresponding to a
For this approach to be applicable as spectroscopy, the final and initial states of the system must be the same so
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of the multi-hadron state is p =
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suppressing any possible Lorentz, spinor and flavour structure of the operator In this correlation function, the operator
is inserted at time-slice ⌧ injecting spatial momentum, q.

More complicated cases can be considered, but the above correlators, in which the three-momentum is specified at
the sink and at the operator are those that are typically considered.

1. Spectral decomposition

The spectral decomposition of the correlators introduced above is straightforward to construct, but there are
subtleties that can lead to significant e↵ects in the case of multi-hadron systems for actual numerical calculations so
we pursue this calculation in detail. Lattice calculations are performed in a geometry of finite size both in the spatial
and temporal directions and to maintain a connection to a field-theoretic system in the continuum limit, boundary
conditions in the temporal direction are periodic for bosonic degrees of freedom (gluons) and anti-periodic for the
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where hO(n)
m i = hm⇡|J (n)|m⇡i



Backwards propagator contamination

• Thermal contamination gets very bad near the midpoint of the temporal extent

• Fraction of non-thermal contributions to 2pt correlator (T=64 here)

• Trying to measure three point function at  t>T/4 is problematic – nothing to do 
with physically relevant state
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• Pionic analogue of EMC effect

• n π+ 3-point correlator 
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+ excitations and thermal effects 

• Contractions performed by treating the struck meson 
as a separate species

• System now looks like (m-1) pions + 1 “kaon”

• Can be written as products of traces of two matrices 
[WD & B Smigielski, arXiv:1103.4362]

⇧ =
X

x

�5S(x, t; 0)�5S
†(x, t; 0), ⇧̃⌧ =

x,y �5S(x, t;y, ⌧)�OS(y, ⌧ ; 0)�5S
†(x, t; 0)

Colour/Dirac structure of operator

2

can both be extended to multi-hadron systems and the external source method has been theoretically investigated in
this context in two hadron systems in Ref. [? ]. In the following, we focus primarily on the current insertion method.

A. External field method

In the external field approach, two point correlation functions are measured for multiple di↵erent configurations
of an external field (for example, di↵erent field strengths). The response of the correlator to the field allows the
determination of a property of the hadronic system under consideration. This approach has been explored extensively
for single baryons and mesons [REFS]. It has also been theoretically investigated for two-nucleon systems [REF] in
the presence of external magnetic or axial fields but no numerical calculations have been performed.

To be concrete, we consider the correlator corresponding to a
For this approach to be applicable as spectroscopy, the final and initial states of the system must be the same so

the external field

B. Two- and three- point correlation functions

For clarity, will consider the case of a state containing m hadrons of type h assuming only a single species of hadron.
The two point function

Cm(t,p) =
D
0
���

"
mY

i=1

X

x

eipi·x�(x, t)

#
⇥
�†(x0)

⇤m
���0

E
, (1)

where �† is an interpolating operator that creates states with the quantum numbers of the hadron h. For brevity, we
will denote the source (at x� 0) and sink (at t) operators as Oi(x0) and Of (x, t), respectively. The total momentum
of the multi-hadron state is p =

Pm
i=1 pi as selected by the summations over spatial sink locations (the individual pi

are not quantum numbers).
Corresponding three point correlation functions allow the matrix elements of a local operator J to be determined.

To be specific, we consider

C(n)
m (⌧, t,p) =

D
0
���

"
mY

i=1

X

x

eipi·x�(x, t)

#
X

y

eiq·yJ (y, ⌧)
⇥
�†(x0)

⇤m
���0

E
. (2)

suppressing any possible Lorentz, spinor and flavour structure of the operator In this correlation function, the operator
is inserted at time-slice ⌧ injecting spatial momentum, q.

More complicated cases can be considered, but the above correlators, in which the three-momentum is specified at
the sink and at the operator are those that are typically considered.

1. Spectral decomposition

The spectral decomposition of the correlators introduced above is straightforward to construct, but there are
subtleties that can lead to significant e↵ects in the case of multi-hadron systems for actual numerical calculations so
we pursue this calculation in detail. Lattice calculations are performed in a geometry of finite size both in the spatial
and temporal directions and to maintain a connection to a field-theoretic system in the continuum limit, boundary
conditions in the temporal direction are periodic for bosonic degrees of freedom (gluons) and anti-periodic for the
fermionic degrees of freedom (quarks). We denote the temporal extent of the lattice as T .

The spectral decomposition proceeds through the resolution of the identity operator into a sum over contributions
of all states in the Hilbert space of QCD. Many states will make no contribution because of orthogonality with respect
to the quantum numbers of the multi-hadronic interpolating operators in the correlators that we consider. Let Oi

raise a good quantum number measured by the operator Q by a certain amount Q and Of lower it by the same
amount and let J not change that quanta. We can define subspaces Qq = {|↵i : Q|↵i = q|↵i}, where by definition,
the vacuum state is in Q0. In a finite volume, the spectrum is discrete and the states can be ordered by their energy
eigenvalue. To this end, we define the bases (assuming no degeneracies)

|↵iq 2 Qq, Ĥ|↵iq = E(q)
↵ |↵iq, E(q)

↵ < E
(q)
↵+1, ↵ = 0, 1, 2, . . . (3)

�! ZmhO(n)
m ie�Emt



Double ratio

• Define ratio to extract matrix elements (eg for momentum fraction)

• Double ratio – allows direct investigation of ratio of moments

• No need to renormalise operator!

• Calculate ratios for various quark masses [DWF valence on MILC sea]

R(n)(t, ⌧) =
C(n)

3 (t; ⌧)

C(n)
2 (t)

t�⌧�! 1
En⇡

hn ⇡+|O44|n ⇡+i

R

(n)(t, ⌧)
R

(1)(t, ⌧)
�! m⇡ hn ⇡

+|O44|n ⇡

+i
En⇡ h⇡+|O44|⇡+i �! En⇡ hxin⇡+

m⇡hxi⇡+



Double ratio

0 5 10 15 20 25 30

0.6

0.8

1.0

1.2

1.4

a t

<
xH1L
>
ê<xH

1L>

0 5 10 15 20 25 30

0.6

0.8

1.0

1.2

1.4

a t

<
xH2L
>
ê<xH

1L>

0 5 10 15 20 25 30

0.6

0.8

1.0

1.2

1.4

a t

<
xH3L
>
ê<xH

1L>

0 5 10 15 20 25 30

0.6

0.8

1.0

1.2

1.4

a t

<
xH4L
>
ê<xH

1L>

0 5 10 15 20 25 30

0.6

0.8

1.0

1.2

1.4

a t

<
xH5L
>
ê<xH

1L>
0 5 10 15 20 25 30

0.6

0.8

1.0

1.2

1.4

a t

<
xH6L
>
ê<xH

1L>

0 5 10 15 20 25 30

0.6

0.8

1.0

1.2

1.4

a t

<
xH7L
>
ê<xH

1L>

0 5 10 15 20 25 30

0.6

0.8

1.0

1.2

1.4

a t

<
xH8L
>
ê<xH

1L>

0 5 10 15 20 25 30

0.6

0.8

1.0

1.2

1.4

a t

<
xH9L
>
ê<xH

1L>

0 5 10 15 20 25 30

0.6

0.8

1.0

1.2

1.4

a t

<
xH10
L>ê<

xH1L
>

0 5 10 15 20 25 30

0.6

0.8

1.0

1.2

1.4

a t

<
xH11
L>ê<

xH1L
>

0 5 10 15 20 25 30

0.6

0.8

1.0

1.2

1.4

a t

<
xH12
L>ê<

xH1L
>

DWF on MILC
mπ = 350 MeV

a=0.12 fm, 203x64



Medium modification

• Extracted ratio of moments is not unity – medium modification of pion stucture

• Extension to baryons certainly possible but messier as usual!

§ xπ,N/x π,0 with thermal-state degrees of freedom 
 multiple tsep used 

Pion Momentum Fraction 

Huey-Wen Lin — New Horizons for Lattice Computations with Chiral Fermions 
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Matrix elements in multi-hadron systems

• Many pion PDF moments are one example of 
matrix elements of multi-hadron systems

• Other theoretical investigations

• WD & M Savage “Electroweak matrix 
elements in the two nucleon sector from lattice 
QCD ” hep-lat/0403005

• H Meyer,  “Photodisintegration of a Bound State 
on the Torus “, 1202.6675

• V Bernard, D Hoya, U-G Meißner & A 
Rusetsky, “Matrix elements of unstable 
particles”  1205.4642



• Consider QCD in the presence of a constant background magnetic field 

• Implement by adding term to the action (careful with boundaries)

• Shifts spin-1/2 particle masses

• Changing strength of background 
field allows µ, β to be extracted

• Two nucleon states

• Levels split and mix

• Landau levels:

• Similar for electro-weak 
fields and twist-two fields

Background fields

E

m=+1

m=-1

m=03S1

1S0
m=0

B=0 B≠0
M"# = M0 ± µ|B| + 4⇡�|B|2 + . . .



EFT two-body currents

〈d|O|d〉 = + + . . .

L2κ0

• Two-body contributions

• Magnetic moment: two body modification L2

• Twist-two current: leading EMC effect αn (more complicated as necessary to 
include pions)

µd =
2

1� �r3
(�L2 + 0)

hxnid = 2hxniN + ↵nhd|(N†
N)2|di + . . .



EFT two-body currents

〈d|O|d〉 = + + . . .

αn〈xn〉

• Two-body contributions

• Magnetic moment: two body modification L2

• Twist-two current: leading EMC effect αn (more complicated as necessary to 
include pions)

µd =
2

1� �r3
(�L2 + 0)

hxnid = 2hxniN + ↵nhd|(N†
N)2|di + . . .



• Background field modifies eigenvalue equation for m=±1 states

• Asymptotic expansion of lowest scattering level

where

• Mixes 1S0 and 3S1 m=0 states (coupled channels – but perturbative)

Energy levels in BF

where

[WD & MJ Savage Nucl Phys A 743, 170]
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Energy levels in B field

EFT prediction for behaviour of m=±1 energy levels

|e B| = 1000 MeV2
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Energy levels in B field

EFT prediction for behaviour of m=±1 energy levels

|e B| = 1000 MeV2
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Open issues



Noise

• Noise in QCD correlators is generically a problem – somehow related to the sign 
problem discussed in Gert Aarts’ lectures

• There are hints that we can suppress noise for certain choices of correlation 
functions

• How effectively can this be systematised?

• Can this be done for large A systems that we afford to 
perform contractions for?

• Are we measuring things the most sensible way?

• David K will say a lot more about noise on Friday



Density of states

p + p + n + n d + p + n nn + p + p nn + pp d + d 3He + n4He H0 +L-150
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FIG. 15: The bound-state energy levels in the J⇡ = 0+ 4He sector. The points and their associated
uncertainties correspond to the energies of the states extracted from the correlation functions with
the quantum numbers of the ground state of 4He. The locations of the energy-levels associated with
non-interacting N-3He, d-d, di-nucleon-di-nucleon, di-nucleon-N-N, d-N-N and N-N-N-N continuum
states, determined from the two-body binding energies given in Table VII and the three-body
energies given in eq. (9), are shown.

4He, and hence the ground states have the same energy. 9 The EMP’s from these correlation
functions are the same as those shown in fig. 14, from which the energies of the lowest lying
states have been determined, and are the same as those in Table XIII. The spectrum in this
channel, and a subset of associated continuum states, are the same as those in fig. 15. There
are no continuum states from other SU(3) irreps lying lower than those associated with the
4He spectrum (assuming that we have correctly identified the ground states in the 3-body
sector). However, due to the presence of di↵erent SU(3) irreps in this channel, the spectrum
of excited states of the nucleus, and the continuum states, is expected to be di↵erent from
that in the 4He channel.

As is the case for 4He, while the lowest-lying state extracted from the correlation functions
has a central value that is lower than any of the non-interacting continuum states, the
precision of the calculation is not su�cient to exclude the possibility that it is, in fact,
a continuum state, e.g. 3He+⇤, or 3

⇤

He+N. The extrapolated binding energy is given in

9 The s = �1, I = 1
2 systems of various spin configurations have components transforming in the 81 and

125 irreps that are inaccessible to our operator construction, but that may in principle contain the ground

state of this system.
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• One specific issue that is a bit frightening at the moment is the density of scattering 
states in multi-hadron systems

• States far below thresholds are presumably OK, but how do we learn about d–d 
scattering?

• Back to Maiani-Testa No-go Theorem



Density of states

of the corresponding energy levels. For two body clusters, it is expected that there will be
O(1/L3) shifts in the continuum energies but for higher body clusters the form of the energy
shifts is not known. In fig. 20 we present the expected (ignoring interactions) finite volume
energy levels in the 4He sector for each of the volumes used in this work.
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FIG. 20: Expected energy levels in the J⇡ = 0+ 4He sector. The blue, green and red lines in
each column denote the location of non-interacting continuum levels in the 243⇥ 48 , 323⇥ 48 and
483⇥ 64 ensembles, respectively. The location of the states in the 243⇥ 48 and 323⇥ 48 ensembles
have been displaced slightly for demonstrative purposes.

With more accurate LQCD calculations and additional interpolating operators, we aim to
investigate these states in the future. However, this makes clear the di�culty in extracting
excited states in nuclei from this type of calculation. The continuum states rapidly accu-
mulate as the lattice volume becomes large, and isolating nuclear excited states above the
lowest-lying continuum states will be challenging with current technology and algorithms.
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(1994) [arXiv:hep-lat/9407012].
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[arXiv:hep-lat/9501024].

[3] S. R. Beane, P. F. Bedaque, K. Orginos and M. J. Savage, Phys. Rev. Lett. 97, 012001 (2006)
[arXiv:hep-lat/0602010].
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• One specific issue that is a bit frightening at the moment is the density of scattering 
states in multi-hadron systems

• States far below thresholds are presumably OK, but how do we learn about d–d 
scattering?

• Back to Maiani-Testa No-go Theorem



Density of states
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• One specific issue that is a bit frightening at the moment is the density of scattering 
states in multi-hadron systems

• States far below thresholds are presumably OK, but how do we learn about d–d 
scattering?

• Back to Maiani-Testa No-go Theorem



Theoretical problems 

• For large A systems, how do we control the volume, lattice spacing, unphysical 
quark mass artefacts?

• Maybe just empirically? 

• Can we have a better theoretical understanding?

• What other kinds of observables can we calculate?



Summary

• Nuclear physics and multi-hadron systems are a frontier for QCD calculations

• Major advances in the last few years (Amax=2 → Amax=28)

• Definitely a difficult problem – noise, contractions, theoretical understanding,...

• Lots of possibilities for new calculations – new observables, new approaches

• Lots of room for improvements (theoretical, algorithmic and computational)

• How far can we go?
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