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Lecture content

• Many body numerical investigations

• Mesons

• Few baryons

• Many Baryons...

• Multi-particle systems at finite temperature



Multi meson systems



Multi-boson energies

• Result for shift to 1/L7 is

• n=2: reproduces expansion of Lüscher

• Can include higher partial waves, higher body, excited states, fermions

• Measurement of energies allows extraction of interaction parameters

[ WD & M Savage, see also S Tan 07]
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of Ref. [10], and simply state the result. The energy-shift of the ground state is
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where the geometric constants that enter are 1

I = −8.9136329 T0 = −4116.2338

J = 16.532316 T1 = 450.6392

K = 8.4019240 SMS = −185.12506

L = 6.9458079 (3)

and
(

n

k

)

=n!/(n − k)!/k!. The last term in the last bracket of eq. (2) is the leading relativistic contribution to the
energy-shift. Deviations from the energy-shift of n-bosons computed with non-relativistic quantum mechanics arise
only for three or more particles as the two-particle energy-shift has the same form when computed in non-relativistic
quantum mechanics and in quantum field theory [1, 2]. In eq. (3), SMS is the value of the scheme-dependent quantity
S in the Minimal Subtraction (MS) scheme that we have employed to renormalize the theory (a change in scheme
results in a change in S and a compensating change in η3(µ)).2 The Ti are renormalization scheme independent. Our
result at n = 2 agrees with large volume expansion of Ref. [1, 2], and at n = 3 agrees with the previous computation
by Shina Tan [10].

The renormalization-scale independent, but volume dependent, quantity
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3 = η3(µ) +
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was determined in recent lattice QCD calculations [9]. It was found to be non-vanishing in systems of three, four
and five π+’s at pion masses of mπ ∼ 290 and 350 MeV in a ∼ (2.5 fm)3 volume, when extracted at O(L−6) in the

1 The constants I,J ,K were defined previously in Ref. [4], while the constant L is defined to be the integer-triplet sum

L =
X
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|n|8
,

and is equal to L = α4 in the notation of Ref. [10]. The constants T0,1 arise from combinations of up to three-loop diagrams, and involve
three-, six- and nine-dimensional sums over integers, and can be written in terms of constants defined in Ref [10] plus one additional
sum, S1,
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= 92.42215 .

2 In the notation of Ref. [4], SMS = 2Q + R. The numerical value in eq. (3) corrects a minor error in Q in Ref. [4].
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n=1,...,12 pion energies

• Effective energy plots: log[Cn(t)/Cn(t+1)]

DWF on MILC
mπ = 319 MeV

a=0.09 fm, 283x96
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Multi-boson energies

• Result for shift to 1/L7 is

• Multiple ways to extract parameters

• Different orders in L

• Can also form combinations of energies that cancel 3-body or cancel 2-body

2

of Ref. [10], and simply state the result. The energy-shift of the ground state is

E0(n, L) =
4π a

M L3

(

n
2

)

{

1 −
( a

π L

)

I +
( a

π L

)2
[

I2 + (2n − 5)J
]

−
( a

π L

)3 [

I3 + (2n − 7)IJ +
(

5n2 − 41n + 63
)

K
]

+
( a

π L

)4 [

I4 − 6I2J + (4 + n − n2)J 2 + 4(27 − 15n + n2)I K

+(14n3 − 227n2 + 919n− 1043)L
]

}

+

(

n
2

)

8π2a3r

M L6

[

1 +
( a

π L

)

3(n − 3)I
]

+

(

n
3

)

1

L6

[

η3(µ) +
64πa4

M

(

3
√

3 − 4π
)

log (µL) −
96a4

π2M
S

]

[

1 − 6
( a

πL

)

I
]

+

(

n
3

) [

192 a5

Mπ3L7
(T0 + T1 n) +

6πa3

M3L7
(n + 3) I

]

+ O
(

L−8
)

. (2)

where the geometric constants that enter are 1

I = −8.9136329 T0 = −4116.2338

J = 16.532316 T1 = 450.6392

K = 8.4019240 SMS = −185.12506

L = 6.9458079 (3)

and
(

n

k

)

=n!/(n − k)!/k!. The last term in the last bracket of eq. (2) is the leading relativistic contribution to the
energy-shift. Deviations from the energy-shift of n-bosons computed with non-relativistic quantum mechanics arise
only for three or more particles as the two-particle energy-shift has the same form when computed in non-relativistic
quantum mechanics and in quantum field theory [1, 2]. In eq. (3), SMS is the value of the scheme-dependent quantity
S in the Minimal Subtraction (MS) scheme that we have employed to renormalize the theory (a change in scheme
results in a change in S and a compensating change in η3(µ)).2 The Ti are renormalization scheme independent. Our
result at n = 2 agrees with large volume expansion of Ref. [1, 2], and at n = 3 agrees with the previous computation
by Shina Tan [10].

The renormalization-scale independent, but volume dependent, quantity

ηL
3 = η3(µ) +

64πa4

m

(

3
√

3 − 4π
)

log (µL) −
96a4

π2m
S (4)

was determined in recent lattice QCD calculations [9]. It was found to be non-vanishing in systems of three, four
and five π+’s at pion masses of mπ ∼ 290 and 350 MeV in a ∼ (2.5 fm)3 volume, when extracted at O(L−6) in the

1 The constants I,J ,K were defined previously in Ref. [4], while the constant L is defined to be the integer-triplet sum

L =
X

n!=0

1

|n|8
,

and is equal to L = α4 in the notation of Ref. [10]. The constants T0,1 arise from combinations of up to three-loop diagrams, and involve
three-, six- and nine-dimensional sums over integers, and can be written in terms of constants defined in Ref [10] plus one additional
sum, S1,

T0 + T1 n =
1

4
α1AA1 − I α1A1 +

1

2
(2n − 9)α2A1 +

3

4
(n − 4)α1B1 −

1

4
(7n − 29)L + 2(n − 3)S1 ,

where

S1 =
X

n,j!=0

1

|n|2|j|4 [ |n|2 + |n + j|2]
= 92.42215 .

2 In the notation of Ref. [4], SMS = 2Q + R. The numerical value in eq. (3) corrects a minor error in Q in Ref. [4].

2

of Ref. [10], and simply state the result. The energy-shift of the ground state is

E0(n, L) =
4π a

M L3

(

n
2

)

{

1 −
( a

π L

)

I +
( a

π L

)2
[

I2 + (2n − 5)J
]

−
( a

π L

)3 [

I3 + (2n − 7)IJ +
(

5n2 − 41n + 63
)

K
]

+
( a

π L

)4 [

I4 − 6I2J + (4 + n − n2)J 2 + 4(27 − 15n + n2)I K

+(14n3 − 227n2 + 919n− 1043)L
]

}

+

(

n
2

)

8π2a3r

M L6

[

1 +
( a

π L

)

3(n − 3)I
]

+

(

n
3

)

1

L6

[

η3(µ) +
64πa4

M

(

3
√

3 − 4π
)

log (µL) −
96a4

π2M
S

]

[

1 − 6
( a

πL

)

I
]

+

(

n
3

) [

192 a5

Mπ3L7
(T0 + T1 n) +

6πa3

M3L7
(n + 3) I

]

+ O
(

L−8
)

. (2)

where the geometric constants that enter are 1

I = −8.9136329 T0 = −4116.2338

J = 16.532316 T1 = 450.6392

K = 8.4019240 SMS = −185.12506

L = 6.9458079 (3)

and
(

n

k

)

=n!/(n − k)!/k!. The last term in the last bracket of eq. (2) is the leading relativistic contribution to the
energy-shift. Deviations from the energy-shift of n-bosons computed with non-relativistic quantum mechanics arise
only for three or more particles as the two-particle energy-shift has the same form when computed in non-relativistic
quantum mechanics and in quantum field theory [1, 2]. In eq. (3), SMS is the value of the scheme-dependent quantity
S in the Minimal Subtraction (MS) scheme that we have employed to renormalize the theory (a change in scheme
results in a change in S and a compensating change in η3(µ)).2 The Ti are renormalization scheme independent. Our
result at n = 2 agrees with large volume expansion of Ref. [1, 2], and at n = 3 agrees with the previous computation
by Shina Tan [10].

The renormalization-scale independent, but volume dependent, quantity

ηL
3 = η3(µ) +

64πa4

m

(

3
√

3 − 4π
)

log (µL) −
96a4

π2m
S (4)

was determined in recent lattice QCD calculations [9]. It was found to be non-vanishing in systems of three, four
and five π+’s at pion masses of mπ ∼ 290 and 350 MeV in a ∼ (2.5 fm)3 volume, when extracted at O(L−6) in the

1 The constants I,J ,K were defined previously in Ref. [4], while the constant L is defined to be the integer-triplet sum

L =
X

n!=0

1

|n|8
,

and is equal to L = α4 in the notation of Ref. [10]. The constants T0,1 arise from combinations of up to three-loop diagrams, and involve
three-, six- and nine-dimensional sums over integers, and can be written in terms of constants defined in Ref [10] plus one additional
sum, S1,

T0 + T1 n =
1

4
α1AA1 − I α1A1 +

1

2
(2n − 9)α2A1 +

3

4
(n − 4)α1B1 −

1

4
(7n − 29)L + 2(n − 3)S1 ,

where

S1 =
X

n,j!=0

1

|n|2|j|4 [ |n|2 + |n + j|2]
= 92.42215 .

2 In the notation of Ref. [4], SMS = 2Q + R. The numerical value in eq. (3) corrects a minor error in Q in Ref. [4].

2

of Ref. [10], and simply state the result. The energy-shift of the ground state is

E0(n, L) =
4π a

M L3

(

n
2

)

{

1 −
( a

π L

)

I +
( a

π L

)2
[

I2 + (2n − 5)J
]

−
( a

π L

)3 [

I3 + (2n − 7)IJ +
(

5n2 − 41n + 63
)

K
]

+
( a

π L

)4 [

I4 − 6I2J + (4 + n − n2)J 2 + 4(27 − 15n + n2)I K

+(14n3 − 227n2 + 919n− 1043)L
]

}

+

(

n
2

)

8π2a3r

M L6

[

1 +
( a

π L

)

3(n − 3)I
]

+

(

n
3

)

1

L6

[

η3(µ) +
64πa4

M

(

3
√

3 − 4π
)

log (µL) −
96a4

π2M
S

]

[

1 − 6
( a

πL

)

I
]

+

(

n
3

) [

192 a5

Mπ3L7
(T0 + T1 n) +

6πa3

M3L7
(n + 3) I

]

+ O
(

L−8
)

. (2)

where the geometric constants that enter are 1

I = −8.9136329 T0 = −4116.2338

J = 16.532316 T1 = 450.6392

K = 8.4019240 SMS = −185.12506

L = 6.9458079 (3)

and
(

n

k

)

=n!/(n − k)!/k!. The last term in the last bracket of eq. (2) is the leading relativistic contribution to the
energy-shift. Deviations from the energy-shift of n-bosons computed with non-relativistic quantum mechanics arise
only for three or more particles as the two-particle energy-shift has the same form when computed in non-relativistic
quantum mechanics and in quantum field theory [1, 2]. In eq. (3), SMS is the value of the scheme-dependent quantity
S in the Minimal Subtraction (MS) scheme that we have employed to renormalize the theory (a change in scheme
results in a change in S and a compensating change in η3(µ)).2 The Ti are renormalization scheme independent. Our
result at n = 2 agrees with large volume expansion of Ref. [1, 2], and at n = 3 agrees with the previous computation
by Shina Tan [10].

The renormalization-scale independent, but volume dependent, quantity

ηL
3 = η3(µ) +

64πa4

m

(

3
√

3 − 4π
)

log (µL) −
96a4

π2m
S (4)

was determined in recent lattice QCD calculations [9]. It was found to be non-vanishing in systems of three, four
and five π+’s at pion masses of mπ ∼ 290 and 350 MeV in a ∼ (2.5 fm)3 volume, when extracted at O(L−6) in the

1 The constants I,J ,K were defined previously in Ref. [4], while the constant L is defined to be the integer-triplet sum

L =
X

n!=0

1

|n|8
,

and is equal to L = α4 in the notation of Ref. [10]. The constants T0,1 arise from combinations of up to three-loop diagrams, and involve
three-, six- and nine-dimensional sums over integers, and can be written in terms of constants defined in Ref [10] plus one additional
sum, S1,

T0 + T1 n =
1

4
α1AA1 − I α1A1 +

1

2
(2n − 9)α2A1 +

3

4
(n − 4)α1B1 −

1

4
(7n − 29)L + 2(n − 3)S1 ,

where

S1 =
X

n,j!=0

1

|n|2|j|4 [ |n|2 + |n + j|2]
= 92.42215 .

2 In the notation of Ref. [4], SMS = 2Q + R. The numerical value in eq. (3) corrects a minor error in Q in Ref. [4].

Two-body 
interaction

Three-body 
interaction

Geometric 
coefficients

    

�



Multi-boson energies

• Result for shift to 1/L7 is

• Multiple ways to extract parameters

• Different orders in L

• Can also form combinations of energies that cancel 3-body or cancel 2-body

2

of Ref. [10], and simply state the result. The energy-shift of the ground state is

E0(n, L) =
4π a

M L3

(

n
2

)

{

1 −
( a

π L

)

I +
( a

π L

)2
[

I2 + (2n − 5)J
]

−
( a

π L

)3 [

I3 + (2n − 7)IJ +
(

5n2 − 41n + 63
)

K
]

+
( a

π L

)4 [

I4 − 6I2J + (4 + n − n2)J 2 + 4(27 − 15n + n2)I K

+(14n3 − 227n2 + 919n− 1043)L
]

}

+

(

n
2

)

8π2a3r

M L6

[

1 +
( a

π L

)

3(n − 3)I
]

+

(

n
3

)

1

L6

[

η3(µ) +
64πa4

M

(

3
√

3 − 4π
)

log (µL) −
96a4

π2M
S

]

[

1 − 6
( a

πL

)

I
]

+

(

n
3

) [

192 a5

Mπ3L7
(T0 + T1 n) +

6πa3

M3L7
(n + 3) I

]

+ O
(

L−8
)

. (2)

where the geometric constants that enter are 1

I = −8.9136329 T0 = −4116.2338

J = 16.532316 T1 = 450.6392

K = 8.4019240 SMS = −185.12506

L = 6.9458079 (3)

and
(

n

k

)

=n!/(n − k)!/k!. The last term in the last bracket of eq. (2) is the leading relativistic contribution to the
energy-shift. Deviations from the energy-shift of n-bosons computed with non-relativistic quantum mechanics arise
only for three or more particles as the two-particle energy-shift has the same form when computed in non-relativistic
quantum mechanics and in quantum field theory [1, 2]. In eq. (3), SMS is the value of the scheme-dependent quantity
S in the Minimal Subtraction (MS) scheme that we have employed to renormalize the theory (a change in scheme
results in a change in S and a compensating change in η3(µ)).2 The Ti are renormalization scheme independent. Our
result at n = 2 agrees with large volume expansion of Ref. [1, 2], and at n = 3 agrees with the previous computation
by Shina Tan [10].

The renormalization-scale independent, but volume dependent, quantity

ηL
3 = η3(µ) +

64πa4

m

(

3
√

3 − 4π
)

log (µL) −
96a4

π2m
S (4)

was determined in recent lattice QCD calculations [9]. It was found to be non-vanishing in systems of three, four
and five π+’s at pion masses of mπ ∼ 290 and 350 MeV in a ∼ (2.5 fm)3 volume, when extracted at O(L−6) in the

1 The constants I,J ,K were defined previously in Ref. [4], while the constant L is defined to be the integer-triplet sum

L =
X

n!=0

1

|n|8
,

and is equal to L = α4 in the notation of Ref. [10]. The constants T0,1 arise from combinations of up to three-loop diagrams, and involve
three-, six- and nine-dimensional sums over integers, and can be written in terms of constants defined in Ref [10] plus one additional
sum, S1,

T0 + T1 n =
1

4
α1AA1 − I α1A1 +

1

2
(2n − 9)α2A1 +

3

4
(n − 4)α1B1 −

1

4
(7n − 29)L + 2(n − 3)S1 ,

where

S1 =
X

n,j!=0

1

|n|2|j|4 [ |n|2 + |n + j|2]
= 92.42215 .

2 In the notation of Ref. [4], SMS = 2Q + R. The numerical value in eq. (3) corrects a minor error in Q in Ref. [4].

2

of Ref. [10], and simply state the result. The energy-shift of the ground state is

E0(n, L) =
4π a

M L3

(

n
2

)

{

1 −
( a

π L

)

I +
( a

π L

)2
[

I2 + (2n − 5)J
]

−
( a

π L

)3 [

I3 + (2n − 7)IJ +
(

5n2 − 41n + 63
)

K
]

+
( a

π L

)4 [

I4 − 6I2J + (4 + n − n2)J 2 + 4(27 − 15n + n2)I K

+(14n3 − 227n2 + 919n− 1043)L
]

}

+

(

n
2

)

8π2a3r

M L6

[

1 +
( a

π L

)

3(n − 3)I
]

+

(

n
3

)

1

L6

[

η3(µ) +
64πa4

M

(

3
√

3 − 4π
)

log (µL) −
96a4

π2M
S

]

[

1 − 6
( a

πL

)

I
]

+

(

n
3

) [

192 a5

Mπ3L7
(T0 + T1 n) +

6πa3

M3L7
(n + 3) I

]

+ O
(

L−8
)

. (2)

where the geometric constants that enter are 1

I = −8.9136329 T0 = −4116.2338

J = 16.532316 T1 = 450.6392

K = 8.4019240 SMS = −185.12506

L = 6.9458079 (3)

and
(

n

k

)

=n!/(n − k)!/k!. The last term in the last bracket of eq. (2) is the leading relativistic contribution to the
energy-shift. Deviations from the energy-shift of n-bosons computed with non-relativistic quantum mechanics arise
only for three or more particles as the two-particle energy-shift has the same form when computed in non-relativistic
quantum mechanics and in quantum field theory [1, 2]. In eq. (3), SMS is the value of the scheme-dependent quantity
S in the Minimal Subtraction (MS) scheme that we have employed to renormalize the theory (a change in scheme
results in a change in S and a compensating change in η3(µ)).2 The Ti are renormalization scheme independent. Our
result at n = 2 agrees with large volume expansion of Ref. [1, 2], and at n = 3 agrees with the previous computation
by Shina Tan [10].

The renormalization-scale independent, but volume dependent, quantity

ηL
3 = η3(µ) +

64πa4

m

(

3
√

3 − 4π
)

log (µL) −
96a4

π2m
S (4)

was determined in recent lattice QCD calculations [9]. It was found to be non-vanishing in systems of three, four
and five π+’s at pion masses of mπ ∼ 290 and 350 MeV in a ∼ (2.5 fm)3 volume, when extracted at O(L−6) in the

1 The constants I,J ,K were defined previously in Ref. [4], while the constant L is defined to be the integer-triplet sum

L =
X

n!=0

1

|n|8
,

and is equal to L = α4 in the notation of Ref. [10]. The constants T0,1 arise from combinations of up to three-loop diagrams, and involve
three-, six- and nine-dimensional sums over integers, and can be written in terms of constants defined in Ref [10] plus one additional
sum, S1,

T0 + T1 n =
1

4
α1AA1 − I α1A1 +

1

2
(2n − 9)α2A1 +

3

4
(n − 4)α1B1 −

1

4
(7n − 29)L + 2(n − 3)S1 ,

where

S1 =
X

n,j!=0

1

|n|2|j|4 [ |n|2 + |n + j|2]
= 92.42215 .

2 In the notation of Ref. [4], SMS = 2Q + R. The numerical value in eq. (3) corrects a minor error in Q in Ref. [4].

2

of Ref. [10], and simply state the result. The energy-shift of the ground state is

E0(n, L) =
4π a

M L3

(

n
2

)

{

1 −
( a

π L

)

I +
( a

π L

)2
[

I2 + (2n − 5)J
]

−
( a

π L

)3 [

I3 + (2n − 7)IJ +
(

5n2 − 41n + 63
)

K
]

+
( a

π L

)4 [

I4 − 6I2J + (4 + n − n2)J 2 + 4(27 − 15n + n2)I K

+(14n3 − 227n2 + 919n− 1043)L
]

}

+

(

n
2

)

8π2a3r

M L6

[

1 +
( a

π L

)

3(n − 3)I
]

+

(

n
3

)

1

L6

[

η3(µ) +
64πa4

M

(

3
√

3 − 4π
)

log (µL) −
96a4

π2M
S

]

[

1 − 6
( a

πL

)

I
]

+

(

n
3

) [

192 a5

Mπ3L7
(T0 + T1 n) +

6πa3

M3L7
(n + 3) I

]

+ O
(

L−8
)

. (2)

where the geometric constants that enter are 1

I = −8.9136329 T0 = −4116.2338

J = 16.532316 T1 = 450.6392

K = 8.4019240 SMS = −185.12506

L = 6.9458079 (3)

and
(

n

k

)

=n!/(n − k)!/k!. The last term in the last bracket of eq. (2) is the leading relativistic contribution to the
energy-shift. Deviations from the energy-shift of n-bosons computed with non-relativistic quantum mechanics arise
only for three or more particles as the two-particle energy-shift has the same form when computed in non-relativistic
quantum mechanics and in quantum field theory [1, 2]. In eq. (3), SMS is the value of the scheme-dependent quantity
S in the Minimal Subtraction (MS) scheme that we have employed to renormalize the theory (a change in scheme
results in a change in S and a compensating change in η3(µ)).2 The Ti are renormalization scheme independent. Our
result at n = 2 agrees with large volume expansion of Ref. [1, 2], and at n = 3 agrees with the previous computation
by Shina Tan [10].

The renormalization-scale independent, but volume dependent, quantity

ηL
3 = η3(µ) +

64πa4

m

(

3
√

3 − 4π
)

log (µL) −
96a4

π2m
S (4)

was determined in recent lattice QCD calculations [9]. It was found to be non-vanishing in systems of three, four
and five π+’s at pion masses of mπ ∼ 290 and 350 MeV in a ∼ (2.5 fm)3 volume, when extracted at O(L−6) in the

1 The constants I,J ,K were defined previously in Ref. [4], while the constant L is defined to be the integer-triplet sum

L =
X

n!=0

1

|n|8
,

and is equal to L = α4 in the notation of Ref. [10]. The constants T0,1 arise from combinations of up to three-loop diagrams, and involve
three-, six- and nine-dimensional sums over integers, and can be written in terms of constants defined in Ref [10] plus one additional
sum, S1,

T0 + T1 n =
1

4
α1AA1 − I α1A1 +

1

2
(2n − 9)α2A1 +

3

4
(n − 4)α1B1 −

1

4
(7n − 29)L + 2(n − 3)S1 ,

where

S1 =
X

n,j!=0

1

|n|2|j|4 [ |n|2 + |n + j|2]
= 92.42215 .

2 In the notation of Ref. [4], SMS = 2Q + R. The numerical value in eq. (3) corrects a minor error in Q in Ref. [4].

Two-body 
interaction

Three-body 
interaction

Geometric 
coefficients

    

�



Multi-boson energies

• Result for shift to 1/L7 is

• Multiple ways to extract parameters

• Different orders in L

• Can also form combinations of energies that cancel 3-body or cancel 2-body

2

of Ref. [10], and simply state the result. The energy-shift of the ground state is

E0(n, L) =
4π a

M L3

(

n
2

)

{

1 −
( a

π L

)

I +
( a

π L

)2
[

I2 + (2n − 5)J
]

−
( a

π L

)3 [

I3 + (2n − 7)IJ +
(

5n2 − 41n + 63
)

K
]

+
( a

π L

)4 [

I4 − 6I2J + (4 + n − n2)J 2 + 4(27 − 15n + n2)I K

+(14n3 − 227n2 + 919n− 1043)L
]

}

+

(

n
2

)

8π2a3r

M L6

[

1 +
( a

π L

)

3(n − 3)I
]

+

(

n
3

)

1

L6

[

η3(µ) +
64πa4

M

(

3
√

3 − 4π
)

log (µL) −
96a4

π2M
S

]

[

1 − 6
( a

πL

)

I
]

+

(

n
3

) [

192 a5

Mπ3L7
(T0 + T1 n) +

6πa3

M3L7
(n + 3) I

]

+ O
(

L−8
)

. (2)

where the geometric constants that enter are 1

I = −8.9136329 T0 = −4116.2338

J = 16.532316 T1 = 450.6392

K = 8.4019240 SMS = −185.12506

L = 6.9458079 (3)

and
(

n

k

)

=n!/(n − k)!/k!. The last term in the last bracket of eq. (2) is the leading relativistic contribution to the
energy-shift. Deviations from the energy-shift of n-bosons computed with non-relativistic quantum mechanics arise
only for three or more particles as the two-particle energy-shift has the same form when computed in non-relativistic
quantum mechanics and in quantum field theory [1, 2]. In eq. (3), SMS is the value of the scheme-dependent quantity
S in the Minimal Subtraction (MS) scheme that we have employed to renormalize the theory (a change in scheme
results in a change in S and a compensating change in η3(µ)).2 The Ti are renormalization scheme independent. Our
result at n = 2 agrees with large volume expansion of Ref. [1, 2], and at n = 3 agrees with the previous computation
by Shina Tan [10].

The renormalization-scale independent, but volume dependent, quantity

ηL
3 = η3(µ) +

64πa4

m

(

3
√

3 − 4π
)

log (µL) −
96a4

π2m
S (4)

was determined in recent lattice QCD calculations [9]. It was found to be non-vanishing in systems of three, four
and five π+’s at pion masses of mπ ∼ 290 and 350 MeV in a ∼ (2.5 fm)3 volume, when extracted at O(L−6) in the

1 The constants I,J ,K were defined previously in Ref. [4], while the constant L is defined to be the integer-triplet sum

L =
X

n!=0

1

|n|8
,

and is equal to L = α4 in the notation of Ref. [10]. The constants T0,1 arise from combinations of up to three-loop diagrams, and involve
three-, six- and nine-dimensional sums over integers, and can be written in terms of constants defined in Ref [10] plus one additional
sum, S1,

T0 + T1 n =
1

4
α1AA1 − I α1A1 +

1

2
(2n − 9)α2A1 +

3

4
(n − 4)α1B1 −

1

4
(7n − 29)L + 2(n − 3)S1 ,

where

S1 =
X

n,j!=0

1

|n|2|j|4 [ |n|2 + |n + j|2]
= 92.42215 .

2 In the notation of Ref. [4], SMS = 2Q + R. The numerical value in eq. (3) corrects a minor error in Q in Ref. [4].

2

of Ref. [10], and simply state the result. The energy-shift of the ground state is

E0(n, L) =
4π a

M L3

(

n
2

)

{

1 −
( a

π L

)

I +
( a

π L

)2
[

I2 + (2n − 5)J
]

−
( a

π L

)3 [

I3 + (2n − 7)IJ +
(

5n2 − 41n + 63
)

K
]

+
( a

π L

)4 [

I4 − 6I2J + (4 + n − n2)J 2 + 4(27 − 15n + n2)I K

+(14n3 − 227n2 + 919n− 1043)L
]

}

+

(

n
2

)

8π2a3r

M L6

[

1 +
( a

π L

)

3(n − 3)I
]

+

(

n
3

)

1

L6

[

η3(µ) +
64πa4

M

(

3
√

3 − 4π
)

log (µL) −
96a4

π2M
S

]

[

1 − 6
( a

πL

)

I
]

+

(

n
3

) [

192 a5

Mπ3L7
(T0 + T1 n) +

6πa3

M3L7
(n + 3) I

]

+ O
(

L−8
)

. (2)

where the geometric constants that enter are 1

I = −8.9136329 T0 = −4116.2338

J = 16.532316 T1 = 450.6392

K = 8.4019240 SMS = −185.12506

L = 6.9458079 (3)

and
(

n

k

)

=n!/(n − k)!/k!. The last term in the last bracket of eq. (2) is the leading relativistic contribution to the
energy-shift. Deviations from the energy-shift of n-bosons computed with non-relativistic quantum mechanics arise
only for three or more particles as the two-particle energy-shift has the same form when computed in non-relativistic
quantum mechanics and in quantum field theory [1, 2]. In eq. (3), SMS is the value of the scheme-dependent quantity
S in the Minimal Subtraction (MS) scheme that we have employed to renormalize the theory (a change in scheme
results in a change in S and a compensating change in η3(µ)).2 The Ti are renormalization scheme independent. Our
result at n = 2 agrees with large volume expansion of Ref. [1, 2], and at n = 3 agrees with the previous computation
by Shina Tan [10].

The renormalization-scale independent, but volume dependent, quantity

ηL
3 = η3(µ) +

64πa4

m

(

3
√

3 − 4π
)

log (µL) −
96a4

π2m
S (4)

was determined in recent lattice QCD calculations [9]. It was found to be non-vanishing in systems of three, four
and five π+’s at pion masses of mπ ∼ 290 and 350 MeV in a ∼ (2.5 fm)3 volume, when extracted at O(L−6) in the

1 The constants I,J ,K were defined previously in Ref. [4], while the constant L is defined to be the integer-triplet sum

L =
X

n!=0

1

|n|8
,

and is equal to L = α4 in the notation of Ref. [10]. The constants T0,1 arise from combinations of up to three-loop diagrams, and involve
three-, six- and nine-dimensional sums over integers, and can be written in terms of constants defined in Ref [10] plus one additional
sum, S1,

T0 + T1 n =
1

4
α1AA1 − I α1A1 +

1

2
(2n − 9)α2A1 +

3

4
(n − 4)α1B1 −

1

4
(7n − 29)L + 2(n − 3)S1 ,

where

S1 =
X

n,j!=0

1

|n|2|j|4 [ |n|2 + |n + j|2]
= 92.42215 .

2 In the notation of Ref. [4], SMS = 2Q + R. The numerical value in eq. (3) corrects a minor error in Q in Ref. [4].

2

of Ref. [10], and simply state the result. The energy-shift of the ground state is

E0(n, L) =
4π a

M L3

(

n
2

)

{

1 −
( a

π L

)

I +
( a

π L

)2
[

I2 + (2n − 5)J
]

−
( a

π L

)3 [

I3 + (2n − 7)IJ +
(

5n2 − 41n + 63
)

K
]

+
( a

π L

)4 [

I4 − 6I2J + (4 + n − n2)J 2 + 4(27 − 15n + n2)I K

+(14n3 − 227n2 + 919n− 1043)L
]

}

+

(

n
2

)

8π2a3r

M L6

[

1 +
( a

π L

)

3(n − 3)I
]

+

(

n
3

)

1

L6

[

η3(µ) +
64πa4

M

(

3
√

3 − 4π
)

log (µL) −
96a4

π2M
S

]

[

1 − 6
( a

πL

)

I
]

+

(

n
3

) [

192 a5

Mπ3L7
(T0 + T1 n) +

6πa3

M3L7
(n + 3) I

]

+ O
(

L−8
)

. (2)

where the geometric constants that enter are 1

I = −8.9136329 T0 = −4116.2338

J = 16.532316 T1 = 450.6392

K = 8.4019240 SMS = −185.12506

L = 6.9458079 (3)

and
(

n

k

)

=n!/(n − k)!/k!. The last term in the last bracket of eq. (2) is the leading relativistic contribution to the
energy-shift. Deviations from the energy-shift of n-bosons computed with non-relativistic quantum mechanics arise
only for three or more particles as the two-particle energy-shift has the same form when computed in non-relativistic
quantum mechanics and in quantum field theory [1, 2]. In eq. (3), SMS is the value of the scheme-dependent quantity
S in the Minimal Subtraction (MS) scheme that we have employed to renormalize the theory (a change in scheme
results in a change in S and a compensating change in η3(µ)).2 The Ti are renormalization scheme independent. Our
result at n = 2 agrees with large volume expansion of Ref. [1, 2], and at n = 3 agrees with the previous computation
by Shina Tan [10].

The renormalization-scale independent, but volume dependent, quantity

ηL
3 = η3(µ) +

64πa4

m

(

3
√

3 − 4π
)

log (µL) −
96a4

π2m
S (4)

was determined in recent lattice QCD calculations [9]. It was found to be non-vanishing in systems of three, four
and five π+’s at pion masses of mπ ∼ 290 and 350 MeV in a ∼ (2.5 fm)3 volume, when extracted at O(L−6) in the

1 The constants I,J ,K were defined previously in Ref. [4], while the constant L is defined to be the integer-triplet sum

L =
X

n!=0

1

|n|8
,

and is equal to L = α4 in the notation of Ref. [10]. The constants T0,1 arise from combinations of up to three-loop diagrams, and involve
three-, six- and nine-dimensional sums over integers, and can be written in terms of constants defined in Ref [10] plus one additional
sum, S1,

T0 + T1 n =
1

4
α1AA1 − I α1A1 +

1

2
(2n − 9)α2A1 +

3

4
(n − 4)α1B1 −

1

4
(7n − 29)L + 2(n − 3)S1 ,

where

S1 =
X

n,j!=0

1

|n|2|j|4 [ |n|2 + |n + j|2]
= 92.42215 .

2 In the notation of Ref. [4], SMS = 2Q + R. The numerical value in eq. (3) corrects a minor error in Q in Ref. [4].

Two-body 
interaction

Three-body 
interaction

Geometric 
coefficients

    

�



Multi-boson energies

• Result for shift to 1/L7 is

• Multiple ways to extract parameters

• Different orders in L

• Can also form combinations of energies that cancel 3-body or cancel 2-body

2

of Ref. [10], and simply state the result. The energy-shift of the ground state is

E0(n, L) =
4π a

M L3

(

n
2

)

{

1 −
( a

π L

)

I +
( a

π L

)2
[

I2 + (2n − 5)J
]

−
( a

π L

)3 [

I3 + (2n − 7)IJ +
(

5n2 − 41n + 63
)

K
]

+
( a

π L

)4 [

I4 − 6I2J + (4 + n − n2)J 2 + 4(27 − 15n + n2)I K

+(14n3 − 227n2 + 919n− 1043)L
]

}

+

(

n
2

)

8π2a3r

M L6

[

1 +
( a

π L

)

3(n − 3)I
]

+

(

n
3

)

1

L6

[

η3(µ) +
64πa4

M

(

3
√

3 − 4π
)

log (µL) −
96a4

π2M
S

]

[

1 − 6
( a

πL

)

I
]

+

(

n
3

) [

192 a5

Mπ3L7
(T0 + T1 n) +

6πa3

M3L7
(n + 3) I

]

+ O
(

L−8
)

. (2)

where the geometric constants that enter are 1

I = −8.9136329 T0 = −4116.2338

J = 16.532316 T1 = 450.6392

K = 8.4019240 SMS = −185.12506

L = 6.9458079 (3)

and
(

n

k

)

=n!/(n − k)!/k!. The last term in the last bracket of eq. (2) is the leading relativistic contribution to the
energy-shift. Deviations from the energy-shift of n-bosons computed with non-relativistic quantum mechanics arise
only for three or more particles as the two-particle energy-shift has the same form when computed in non-relativistic
quantum mechanics and in quantum field theory [1, 2]. In eq. (3), SMS is the value of the scheme-dependent quantity
S in the Minimal Subtraction (MS) scheme that we have employed to renormalize the theory (a change in scheme
results in a change in S and a compensating change in η3(µ)).2 The Ti are renormalization scheme independent. Our
result at n = 2 agrees with large volume expansion of Ref. [1, 2], and at n = 3 agrees with the previous computation
by Shina Tan [10].

The renormalization-scale independent, but volume dependent, quantity

ηL
3 = η3(µ) +

64πa4

m

(

3
√

3 − 4π
)

log (µL) −
96a4

π2m
S (4)

was determined in recent lattice QCD calculations [9]. It was found to be non-vanishing in systems of three, four
and five π+’s at pion masses of mπ ∼ 290 and 350 MeV in a ∼ (2.5 fm)3 volume, when extracted at O(L−6) in the

1 The constants I,J ,K were defined previously in Ref. [4], while the constant L is defined to be the integer-triplet sum

L =
X

n!=0

1

|n|8
,

and is equal to L = α4 in the notation of Ref. [10]. The constants T0,1 arise from combinations of up to three-loop diagrams, and involve
three-, six- and nine-dimensional sums over integers, and can be written in terms of constants defined in Ref [10] plus one additional
sum, S1,

T0 + T1 n =
1

4
α1AA1 − I α1A1 +

1

2
(2n − 9)α2A1 +

3

4
(n − 4)α1B1 −

1

4
(7n − 29)L + 2(n − 3)S1 ,

where

S1 =
X

n,j!=0

1

|n|2|j|4 [ |n|2 + |n + j|2]
= 92.42215 .

2 In the notation of Ref. [4], SMS = 2Q + R. The numerical value in eq. (3) corrects a minor error in Q in Ref. [4].

2

of Ref. [10], and simply state the result. The energy-shift of the ground state is

E0(n, L) =
4π a

M L3

(

n
2

)

{

1 −
( a

π L

)

I +
( a

π L

)2
[

I2 + (2n − 5)J
]

−
( a

π L

)3 [

I3 + (2n − 7)IJ +
(

5n2 − 41n + 63
)

K
]

+
( a

π L

)4 [

I4 − 6I2J + (4 + n − n2)J 2 + 4(27 − 15n + n2)I K

+(14n3 − 227n2 + 919n− 1043)L
]

}

+

(

n
2

)

8π2a3r

M L6

[

1 +
( a

π L

)

3(n − 3)I
]

+

(

n
3

)

1

L6

[

η3(µ) +
64πa4

M

(

3
√

3 − 4π
)

log (µL) −
96a4

π2M
S

]

[

1 − 6
( a

πL

)

I
]

+

(

n
3

) [

192 a5

Mπ3L7
(T0 + T1 n) +

6πa3

M3L7
(n + 3) I

]

+ O
(

L−8
)

. (2)

where the geometric constants that enter are 1

I = −8.9136329 T0 = −4116.2338

J = 16.532316 T1 = 450.6392

K = 8.4019240 SMS = −185.12506

L = 6.9458079 (3)

and
(

n

k

)

=n!/(n − k)!/k!. The last term in the last bracket of eq. (2) is the leading relativistic contribution to the
energy-shift. Deviations from the energy-shift of n-bosons computed with non-relativistic quantum mechanics arise
only for three or more particles as the two-particle energy-shift has the same form when computed in non-relativistic
quantum mechanics and in quantum field theory [1, 2]. In eq. (3), SMS is the value of the scheme-dependent quantity
S in the Minimal Subtraction (MS) scheme that we have employed to renormalize the theory (a change in scheme
results in a change in S and a compensating change in η3(µ)).2 The Ti are renormalization scheme independent. Our
result at n = 2 agrees with large volume expansion of Ref. [1, 2], and at n = 3 agrees with the previous computation
by Shina Tan [10].

The renormalization-scale independent, but volume dependent, quantity

ηL
3 = η3(µ) +

64πa4

m

(

3
√

3 − 4π
)

log (µL) −
96a4

π2m
S (4)

was determined in recent lattice QCD calculations [9]. It was found to be non-vanishing in systems of three, four
and five π+’s at pion masses of mπ ∼ 290 and 350 MeV in a ∼ (2.5 fm)3 volume, when extracted at O(L−6) in the

1 The constants I,J ,K were defined previously in Ref. [4], while the constant L is defined to be the integer-triplet sum

L =
X

n!=0

1

|n|8
,

and is equal to L = α4 in the notation of Ref. [10]. The constants T0,1 arise from combinations of up to three-loop diagrams, and involve
three-, six- and nine-dimensional sums over integers, and can be written in terms of constants defined in Ref [10] plus one additional
sum, S1,

T0 + T1 n =
1

4
α1AA1 − I α1A1 +

1

2
(2n − 9)α2A1 +

3

4
(n − 4)α1B1 −

1

4
(7n − 29)L + 2(n − 3)S1 ,

where

S1 =
X

n,j!=0

1

|n|2|j|4 [ |n|2 + |n + j|2]
= 92.42215 .

2 In the notation of Ref. [4], SMS = 2Q + R. The numerical value in eq. (3) corrects a minor error in Q in Ref. [4].

2

of Ref. [10], and simply state the result. The energy-shift of the ground state is

E0(n, L) =
4π a

M L3

(

n
2

)

{

1 −
( a

π L

)

I +
( a

π L

)2
[

I2 + (2n − 5)J
]

−
( a

π L

)3 [

I3 + (2n − 7)IJ +
(

5n2 − 41n + 63
)

K
]

+
( a

π L

)4 [

I4 − 6I2J + (4 + n − n2)J 2 + 4(27 − 15n + n2)I K

+(14n3 − 227n2 + 919n− 1043)L
]

}

+

(

n
2

)

8π2a3r

M L6

[

1 +
( a

π L

)

3(n − 3)I
]

+

(

n
3

)

1

L6

[

η3(µ) +
64πa4

M

(

3
√

3 − 4π
)

log (µL) −
96a4

π2M
S

]

[

1 − 6
( a

πL

)

I
]

+

(

n
3

) [

192 a5

Mπ3L7
(T0 + T1 n) +

6πa3

M3L7
(n + 3) I

]

+ O
(

L−8
)

. (2)

where the geometric constants that enter are 1

I = −8.9136329 T0 = −4116.2338

J = 16.532316 T1 = 450.6392

K = 8.4019240 SMS = −185.12506

L = 6.9458079 (3)

and
(

n

k

)

=n!/(n − k)!/k!. The last term in the last bracket of eq. (2) is the leading relativistic contribution to the
energy-shift. Deviations from the energy-shift of n-bosons computed with non-relativistic quantum mechanics arise
only for three or more particles as the two-particle energy-shift has the same form when computed in non-relativistic
quantum mechanics and in quantum field theory [1, 2]. In eq. (3), SMS is the value of the scheme-dependent quantity
S in the Minimal Subtraction (MS) scheme that we have employed to renormalize the theory (a change in scheme
results in a change in S and a compensating change in η3(µ)).2 The Ti are renormalization scheme independent. Our
result at n = 2 agrees with large volume expansion of Ref. [1, 2], and at n = 3 agrees with the previous computation
by Shina Tan [10].

The renormalization-scale independent, but volume dependent, quantity

ηL
3 = η3(µ) +

64πa4

m

(

3
√

3 − 4π
)

log (µL) −
96a4

π2m
S (4)

was determined in recent lattice QCD calculations [9]. It was found to be non-vanishing in systems of three, four
and five π+’s at pion masses of mπ ∼ 290 and 350 MeV in a ∼ (2.5 fm)3 volume, when extracted at O(L−6) in the

1 The constants I,J ,K were defined previously in Ref. [4], while the constant L is defined to be the integer-triplet sum

L =
X

n!=0

1

|n|8
,

and is equal to L = α4 in the notation of Ref. [10]. The constants T0,1 arise from combinations of up to three-loop diagrams, and involve
three-, six- and nine-dimensional sums over integers, and can be written in terms of constants defined in Ref [10] plus one additional
sum, S1,

T0 + T1 n =
1

4
α1AA1 − I α1A1 +

1

2
(2n − 9)α2A1 +

3

4
(n − 4)α1B1 −

1

4
(7n − 29)L + 2(n − 3)S1 ,

where

S1 =
X

n,j!=0

1

|n|2|j|4 [ |n|2 + |n + j|2]
= 92.42215 .

2 In the notation of Ref. [4], SMS = 2Q + R. The numerical value in eq. (3) corrects a minor error in Q in Ref. [4].

Two-body 
interaction

Three-body 
interaction

Geometric 
coefficients

    

�



Multi-boson energies

• Result for shift to 1/L7 is

• Multiple ways to extract parameters

• Different orders in L

• Can also form combinations of energies that cancel 3-body or cancel 2-body

2

of Ref. [10], and simply state the result. The energy-shift of the ground state is

E0(n, L) =
4π a

M L3

(

n
2

)

{

1 −
( a

π L

)

I +
( a

π L

)2
[

I2 + (2n − 5)J
]

−
( a

π L

)3 [

I3 + (2n − 7)IJ +
(

5n2 − 41n + 63
)

K
]

+
( a

π L

)4 [

I4 − 6I2J + (4 + n − n2)J 2 + 4(27 − 15n + n2)I K

+(14n3 − 227n2 + 919n− 1043)L
]

}

+

(

n
2

)

8π2a3r

M L6

[

1 +
( a

π L

)

3(n − 3)I
]

+

(

n
3

)

1

L6

[

η3(µ) +
64πa4

M

(

3
√

3 − 4π
)

log (µL) −
96a4

π2M
S

]

[

1 − 6
( a

πL

)

I
]

+

(

n
3

) [

192 a5

Mπ3L7
(T0 + T1 n) +

6πa3

M3L7
(n + 3) I

]

+ O
(

L−8
)

. (2)

where the geometric constants that enter are 1

I = −8.9136329 T0 = −4116.2338

J = 16.532316 T1 = 450.6392

K = 8.4019240 SMS = −185.12506

L = 6.9458079 (3)

and
(

n

k

)

=n!/(n − k)!/k!. The last term in the last bracket of eq. (2) is the leading relativistic contribution to the
energy-shift. Deviations from the energy-shift of n-bosons computed with non-relativistic quantum mechanics arise
only for three or more particles as the two-particle energy-shift has the same form when computed in non-relativistic
quantum mechanics and in quantum field theory [1, 2]. In eq. (3), SMS is the value of the scheme-dependent quantity
S in the Minimal Subtraction (MS) scheme that we have employed to renormalize the theory (a change in scheme
results in a change in S and a compensating change in η3(µ)).2 The Ti are renormalization scheme independent. Our
result at n = 2 agrees with large volume expansion of Ref. [1, 2], and at n = 3 agrees with the previous computation
by Shina Tan [10].

The renormalization-scale independent, but volume dependent, quantity

ηL
3 = η3(µ) +

64πa4

m

(

3
√

3 − 4π
)

log (µL) −
96a4

π2m
S (4)

was determined in recent lattice QCD calculations [9]. It was found to be non-vanishing in systems of three, four
and five π+’s at pion masses of mπ ∼ 290 and 350 MeV in a ∼ (2.5 fm)3 volume, when extracted at O(L−6) in the

1 The constants I,J ,K were defined previously in Ref. [4], while the constant L is defined to be the integer-triplet sum

L =
X

n!=0

1

|n|8
,

and is equal to L = α4 in the notation of Ref. [10]. The constants T0,1 arise from combinations of up to three-loop diagrams, and involve
three-, six- and nine-dimensional sums over integers, and can be written in terms of constants defined in Ref [10] plus one additional
sum, S1,

T0 + T1 n =
1

4
α1AA1 − I α1A1 +

1

2
(2n − 9)α2A1 +

3

4
(n − 4)α1B1 −

1

4
(7n − 29)L + 2(n − 3)S1 ,

where

S1 =
X

n,j!=0

1

|n|2|j|4 [ |n|2 + |n + j|2]
= 92.42215 .

2 In the notation of Ref. [4], SMS = 2Q + R. The numerical value in eq. (3) corrects a minor error in Q in Ref. [4].

2

of Ref. [10], and simply state the result. The energy-shift of the ground state is

E0(n, L) =
4π a

M L3

(

n
2

)

{

1 −
( a

π L

)

I +
( a

π L

)2
[

I2 + (2n − 5)J
]

−
( a

π L

)3 [

I3 + (2n − 7)IJ +
(

5n2 − 41n + 63
)

K
]

+
( a

π L

)4 [

I4 − 6I2J + (4 + n − n2)J 2 + 4(27 − 15n + n2)I K

+(14n3 − 227n2 + 919n− 1043)L
]

}

+

(

n
2

)

8π2a3r

M L6

[

1 +
( a

π L

)

3(n − 3)I
]

+

(

n
3

)

1

L6

[

η3(µ) +
64πa4

M

(

3
√

3 − 4π
)

log (µL) −
96a4

π2M
S

]

[

1 − 6
( a

πL

)

I
]

+

(

n
3

) [

192 a5

Mπ3L7
(T0 + T1 n) +

6πa3

M3L7
(n + 3) I

]

+ O
(

L−8
)

. (2)

where the geometric constants that enter are 1

I = −8.9136329 T0 = −4116.2338

J = 16.532316 T1 = 450.6392

K = 8.4019240 SMS = −185.12506

L = 6.9458079 (3)

and
(

n

k

)

=n!/(n − k)!/k!. The last term in the last bracket of eq. (2) is the leading relativistic contribution to the
energy-shift. Deviations from the energy-shift of n-bosons computed with non-relativistic quantum mechanics arise
only for three or more particles as the two-particle energy-shift has the same form when computed in non-relativistic
quantum mechanics and in quantum field theory [1, 2]. In eq. (3), SMS is the value of the scheme-dependent quantity
S in the Minimal Subtraction (MS) scheme that we have employed to renormalize the theory (a change in scheme
results in a change in S and a compensating change in η3(µ)).2 The Ti are renormalization scheme independent. Our
result at n = 2 agrees with large volume expansion of Ref. [1, 2], and at n = 3 agrees with the previous computation
by Shina Tan [10].

The renormalization-scale independent, but volume dependent, quantity

ηL
3 = η3(µ) +

64πa4

m

(

3
√

3 − 4π
)

log (µL) −
96a4

π2m
S (4)

was determined in recent lattice QCD calculations [9]. It was found to be non-vanishing in systems of three, four
and five π+’s at pion masses of mπ ∼ 290 and 350 MeV in a ∼ (2.5 fm)3 volume, when extracted at O(L−6) in the

1 The constants I,J ,K were defined previously in Ref. [4], while the constant L is defined to be the integer-triplet sum

L =
X

n!=0

1

|n|8
,

and is equal to L = α4 in the notation of Ref. [10]. The constants T0,1 arise from combinations of up to three-loop diagrams, and involve
three-, six- and nine-dimensional sums over integers, and can be written in terms of constants defined in Ref [10] plus one additional
sum, S1,

T0 + T1 n =
1

4
α1AA1 − I α1A1 +

1

2
(2n − 9)α2A1 +

3

4
(n − 4)α1B1 −

1

4
(7n − 29)L + 2(n − 3)S1 ,

where

S1 =
X

n,j!=0

1

|n|2|j|4 [ |n|2 + |n + j|2]
= 92.42215 .

2 In the notation of Ref. [4], SMS = 2Q + R. The numerical value in eq. (3) corrects a minor error in Q in Ref. [4].

2

of Ref. [10], and simply state the result. The energy-shift of the ground state is

E0(n, L) =
4π a

M L3

(

n
2

)

{

1 −
( a

π L

)

I +
( a

π L

)2
[

I2 + (2n − 5)J
]

−
( a

π L

)3 [

I3 + (2n − 7)IJ +
(

5n2 − 41n + 63
)

K
]

+
( a

π L

)4 [

I4 − 6I2J + (4 + n − n2)J 2 + 4(27 − 15n + n2)I K

+(14n3 − 227n2 + 919n− 1043)L
]

}

+

(

n
2

)

8π2a3r

M L6

[

1 +
( a

π L

)

3(n − 3)I
]

+

(

n
3

)

1

L6

[

η3(µ) +
64πa4

M

(

3
√

3 − 4π
)

log (µL) −
96a4

π2M
S

]

[

1 − 6
( a

πL

)

I
]

+

(

n
3

) [

192 a5

Mπ3L7
(T0 + T1 n) +

6πa3

M3L7
(n + 3) I

]

+ O
(

L−8
)

. (2)

where the geometric constants that enter are 1

I = −8.9136329 T0 = −4116.2338

J = 16.532316 T1 = 450.6392

K = 8.4019240 SMS = −185.12506

L = 6.9458079 (3)

and
(

n

k

)

=n!/(n − k)!/k!. The last term in the last bracket of eq. (2) is the leading relativistic contribution to the
energy-shift. Deviations from the energy-shift of n-bosons computed with non-relativistic quantum mechanics arise
only for three or more particles as the two-particle energy-shift has the same form when computed in non-relativistic
quantum mechanics and in quantum field theory [1, 2]. In eq. (3), SMS is the value of the scheme-dependent quantity
S in the Minimal Subtraction (MS) scheme that we have employed to renormalize the theory (a change in scheme
results in a change in S and a compensating change in η3(µ)).2 The Ti are renormalization scheme independent. Our
result at n = 2 agrees with large volume expansion of Ref. [1, 2], and at n = 3 agrees with the previous computation
by Shina Tan [10].

The renormalization-scale independent, but volume dependent, quantity

ηL
3 = η3(µ) +

64πa4

m

(

3
√

3 − 4π
)

log (µL) −
96a4

π2m
S (4)

was determined in recent lattice QCD calculations [9]. It was found to be non-vanishing in systems of three, four
and five π+’s at pion masses of mπ ∼ 290 and 350 MeV in a ∼ (2.5 fm)3 volume, when extracted at O(L−6) in the

1 The constants I,J ,K were defined previously in Ref. [4], while the constant L is defined to be the integer-triplet sum

L =
X

n!=0

1

|n|8
,

and is equal to L = α4 in the notation of Ref. [10]. The constants T0,1 arise from combinations of up to three-loop diagrams, and involve
three-, six- and nine-dimensional sums over integers, and can be written in terms of constants defined in Ref [10] plus one additional
sum, S1,

T0 + T1 n =
1

4
α1AA1 − I α1A1 +

1

2
(2n − 9)α2A1 +

3

4
(n − 4)α1B1 −

1

4
(7n − 29)L + 2(n − 3)S1 ,

where

S1 =
X

n,j!=0

1

|n|2|j|4 [ |n|2 + |n + j|2]
= 92.42215 .

2 In the notation of Ref. [4], SMS = 2Q + R. The numerical value in eq. (3) corrects a minor error in Q in Ref. [4].

Two-body 
interaction

Three-body 
interaction

Geometric 
coefficients

    

�



Multi-boson energies

• Result for shift to 1/L7 is

• Multiple ways to extract parameters

• Different orders in L

• Can also form combinations of energies that cancel 3-body or cancel 2-body

2

of Ref. [10], and simply state the result. The energy-shift of the ground state is

E0(n, L) =
4π a

M L3

(

n
2

)

{

1 −
( a

π L

)

I +
( a

π L

)2
[

I2 + (2n − 5)J
]

−
( a

π L

)3 [

I3 + (2n − 7)IJ +
(

5n2 − 41n + 63
)

K
]

+
( a

π L

)4 [

I4 − 6I2J + (4 + n − n2)J 2 + 4(27 − 15n + n2)I K

+(14n3 − 227n2 + 919n− 1043)L
]

}

+

(

n
2

)

8π2a3r

M L6

[

1 +
( a

π L

)

3(n − 3)I
]

+

(

n
3

)

1

L6

[

η3(µ) +
64πa4

M

(

3
√

3 − 4π
)

log (µL) −
96a4

π2M
S

]

[

1 − 6
( a

πL

)

I
]

+

(

n
3

) [

192 a5

Mπ3L7
(T0 + T1 n) +

6πa3

M3L7
(n + 3) I

]

+ O
(

L−8
)

. (2)

where the geometric constants that enter are 1

I = −8.9136329 T0 = −4116.2338

J = 16.532316 T1 = 450.6392

K = 8.4019240 SMS = −185.12506

L = 6.9458079 (3)

and
(

n

k

)

=n!/(n − k)!/k!. The last term in the last bracket of eq. (2) is the leading relativistic contribution to the
energy-shift. Deviations from the energy-shift of n-bosons computed with non-relativistic quantum mechanics arise
only for three or more particles as the two-particle energy-shift has the same form when computed in non-relativistic
quantum mechanics and in quantum field theory [1, 2]. In eq. (3), SMS is the value of the scheme-dependent quantity
S in the Minimal Subtraction (MS) scheme that we have employed to renormalize the theory (a change in scheme
results in a change in S and a compensating change in η3(µ)).2 The Ti are renormalization scheme independent. Our
result at n = 2 agrees with large volume expansion of Ref. [1, 2], and at n = 3 agrees with the previous computation
by Shina Tan [10].

The renormalization-scale independent, but volume dependent, quantity

ηL
3 = η3(µ) +

64πa4

m

(

3
√

3 − 4π
)

log (µL) −
96a4

π2m
S (4)

was determined in recent lattice QCD calculations [9]. It was found to be non-vanishing in systems of three, four
and five π+’s at pion masses of mπ ∼ 290 and 350 MeV in a ∼ (2.5 fm)3 volume, when extracted at O(L−6) in the

1 The constants I,J ,K were defined previously in Ref. [4], while the constant L is defined to be the integer-triplet sum

L =
X

n!=0

1

|n|8
,

and is equal to L = α4 in the notation of Ref. [10]. The constants T0,1 arise from combinations of up to three-loop diagrams, and involve
three-, six- and nine-dimensional sums over integers, and can be written in terms of constants defined in Ref [10] plus one additional
sum, S1,

T0 + T1 n =
1

4
α1AA1 − I α1A1 +

1

2
(2n − 9)α2A1 +

3

4
(n − 4)α1B1 −

1

4
(7n − 29)L + 2(n − 3)S1 ,

where

S1 =
X

n,j!=0

1

|n|2|j|4 [ |n|2 + |n + j|2]
= 92.42215 .

2 In the notation of Ref. [4], SMS = 2Q + R. The numerical value in eq. (3) corrects a minor error in Q in Ref. [4].

2

of Ref. [10], and simply state the result. The energy-shift of the ground state is

E0(n, L) =
4π a

M L3

(

n
2

)

{

1 −
( a

π L

)

I +
( a

π L

)2
[

I2 + (2n − 5)J
]

−
( a

π L

)3 [

I3 + (2n − 7)IJ +
(

5n2 − 41n + 63
)

K
]

+
( a

π L

)4 [

I4 − 6I2J + (4 + n − n2)J 2 + 4(27 − 15n + n2)I K

+(14n3 − 227n2 + 919n− 1043)L
]

}

+

(

n
2

)

8π2a3r

M L6

[

1 +
( a

π L

)

3(n − 3)I
]

+

(

n
3

)

1

L6

[

η3(µ) +
64πa4

M

(

3
√

3 − 4π
)

log (µL) −
96a4

π2M
S

]

[

1 − 6
( a

πL

)

I
]

+

(

n
3

) [

192 a5

Mπ3L7
(T0 + T1 n) +

6πa3

M3L7
(n + 3) I

]

+ O
(

L−8
)

. (2)

where the geometric constants that enter are 1

I = −8.9136329 T0 = −4116.2338

J = 16.532316 T1 = 450.6392

K = 8.4019240 SMS = −185.12506

L = 6.9458079 (3)

and
(

n

k

)

=n!/(n − k)!/k!. The last term in the last bracket of eq. (2) is the leading relativistic contribution to the
energy-shift. Deviations from the energy-shift of n-bosons computed with non-relativistic quantum mechanics arise
only for three or more particles as the two-particle energy-shift has the same form when computed in non-relativistic
quantum mechanics and in quantum field theory [1, 2]. In eq. (3), SMS is the value of the scheme-dependent quantity
S in the Minimal Subtraction (MS) scheme that we have employed to renormalize the theory (a change in scheme
results in a change in S and a compensating change in η3(µ)).2 The Ti are renormalization scheme independent. Our
result at n = 2 agrees with large volume expansion of Ref. [1, 2], and at n = 3 agrees with the previous computation
by Shina Tan [10].

The renormalization-scale independent, but volume dependent, quantity

ηL
3 = η3(µ) +

64πa4

m

(

3
√

3 − 4π
)

log (µL) −
96a4

π2m
S (4)

was determined in recent lattice QCD calculations [9]. It was found to be non-vanishing in systems of three, four
and five π+’s at pion masses of mπ ∼ 290 and 350 MeV in a ∼ (2.5 fm)3 volume, when extracted at O(L−6) in the

1 The constants I,J ,K were defined previously in Ref. [4], while the constant L is defined to be the integer-triplet sum

L =
X

n!=0

1

|n|8
,

and is equal to L = α4 in the notation of Ref. [10]. The constants T0,1 arise from combinations of up to three-loop diagrams, and involve
three-, six- and nine-dimensional sums over integers, and can be written in terms of constants defined in Ref [10] plus one additional
sum, S1,

T0 + T1 n =
1

4
α1AA1 − I α1A1 +

1

2
(2n − 9)α2A1 +

3

4
(n − 4)α1B1 −

1

4
(7n − 29)L + 2(n − 3)S1 ,

where

S1 =
X

n,j!=0

1

|n|2|j|4 [ |n|2 + |n + j|2]
= 92.42215 .

2 In the notation of Ref. [4], SMS = 2Q + R. The numerical value in eq. (3) corrects a minor error in Q in Ref. [4].

2

of Ref. [10], and simply state the result. The energy-shift of the ground state is

E0(n, L) =
4π a

M L3

(

n
2

)

{

1 −
( a

π L

)

I +
( a

π L

)2
[

I2 + (2n − 5)J
]

−
( a

π L

)3 [

I3 + (2n − 7)IJ +
(

5n2 − 41n + 63
)

K
]

+
( a

π L

)4 [

I4 − 6I2J + (4 + n − n2)J 2 + 4(27 − 15n + n2)I K

+(14n3 − 227n2 + 919n− 1043)L
]

}

+

(

n
2

)

8π2a3r

M L6

[

1 +
( a

π L

)

3(n − 3)I
]

+

(

n
3

)

1

L6

[

η3(µ) +
64πa4

M

(

3
√

3 − 4π
)

log (µL) −
96a4

π2M
S

]

[

1 − 6
( a

πL

)

I
]

+

(

n
3

) [

192 a5

Mπ3L7
(T0 + T1 n) +

6πa3

M3L7
(n + 3) I

]

+ O
(

L−8
)

. (2)

where the geometric constants that enter are 1

I = −8.9136329 T0 = −4116.2338

J = 16.532316 T1 = 450.6392

K = 8.4019240 SMS = −185.12506

L = 6.9458079 (3)

and
(

n

k

)

=n!/(n − k)!/k!. The last term in the last bracket of eq. (2) is the leading relativistic contribution to the
energy-shift. Deviations from the energy-shift of n-bosons computed with non-relativistic quantum mechanics arise
only for three or more particles as the two-particle energy-shift has the same form when computed in non-relativistic
quantum mechanics and in quantum field theory [1, 2]. In eq. (3), SMS is the value of the scheme-dependent quantity
S in the Minimal Subtraction (MS) scheme that we have employed to renormalize the theory (a change in scheme
results in a change in S and a compensating change in η3(µ)).2 The Ti are renormalization scheme independent. Our
result at n = 2 agrees with large volume expansion of Ref. [1, 2], and at n = 3 agrees with the previous computation
by Shina Tan [10].

The renormalization-scale independent, but volume dependent, quantity

ηL
3 = η3(µ) +

64πa4

m

(

3
√

3 − 4π
)

log (µL) −
96a4

π2m
S (4)

was determined in recent lattice QCD calculations [9]. It was found to be non-vanishing in systems of three, four
and five π+’s at pion masses of mπ ∼ 290 and 350 MeV in a ∼ (2.5 fm)3 volume, when extracted at O(L−6) in the

1 The constants I,J ,K were defined previously in Ref. [4], while the constant L is defined to be the integer-triplet sum

L =
X

n!=0

1

|n|8
,

and is equal to L = α4 in the notation of Ref. [10]. The constants T0,1 arise from combinations of up to three-loop diagrams, and involve
three-, six- and nine-dimensional sums over integers, and can be written in terms of constants defined in Ref [10] plus one additional
sum, S1,

T0 + T1 n =
1

4
α1AA1 − I α1A1 +

1

2
(2n − 9)α2A1 +

3

4
(n − 4)α1B1 −

1

4
(7n − 29)L + 2(n − 3)S1 ,

where

S1 =
X

n,j!=0

1

|n|2|j|4 [ |n|2 + |n + j|2]
= 92.42215 .

2 In the notation of Ref. [4], SMS = 2Q + R. The numerical value in eq. (3) corrects a minor error in Q in Ref. [4].

Two-body 
interaction

Three-body 
interaction

Geometric 
coefficients

    

�



Pion scattering

• Extractions of mπa from four orders in L

n�2

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥ n�3

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥ n�4

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥

n�5

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥ n�6

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b
m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥ n�7

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥

n�8

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥ n�9

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥ n�10

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥

n�11

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥ n�12

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥

n�2

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥ n�3

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥ n�4

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥

n�5

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥ n�6

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b
m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥ n�7

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥

n�8

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥ n�9

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥ n�10

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥
n�11

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥ n�12

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥

n�2

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�LO⇥

n�3

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�LO⇥

n�4

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�LO⇥

n�5

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�LO⇥

n�6

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b
m
⇥
a
⇥⇥⇤I�2⌅
�LO⇥

n�7

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�LO⇥

n�8

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�LO⇥

n�9

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�LO⇥

n�10

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�LO⇥

n�11

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�LO⇥

n�12

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�LO⇥

Lüscher 
exact

two-body



Pion scattering

• Extractions of mπa from four orders in L

n�2

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥ n�3

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥ n�4

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥

n�5

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥ n�6

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b
m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥ n�7

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥

n�8

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥ n�9

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥ n�10

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥

n�11

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥ n�12

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥

n�2

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥ n�3

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥ n�4

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥

n�5

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥ n�6

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b
m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥ n�7

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥

n�8

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥ n�9

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥ n�10

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥
n�11

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥ n�12

5 10 15 20

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NLO

⇥

Lüscher 
exact

two-body



Pion scattering

• Extractions of mπa from four orders in L

n�2

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥ n�3

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥ n�4

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥

n�5

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥ n�6

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b
m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥ n�7

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥

n�8

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥ n�9

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥ n�10

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥

n�11

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥ n�12

5 10 15 20
0.10

0.15

0.20

0.25

0.30

0.35

0.40

t⇧b

m
⇥
a
⇥⇥⇤I�2⌅
�NNL

O
⇥

Lüscher 
exact

two-body



N3LO: 1/L6
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Pion scattering
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2π+  interaction
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• Scattering lengths equally well extracted for  two mesons or ten mesons and 
compares well with experiment

• Well described by analytic prediction – shows presence of contribution that 
scales as (  )

• varies by two-orders of magnitude
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3π+ interaction
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n pions and m kaons

• Just how complex can we go?

• Weakly interacting two species systems: pions and kaons

• En,m of n pions and m kaons depends on three 2-body and four 3-body 
interaction parameters 

• Perturbative form is known for weakly interacting case [Smigielski & Wasem ‘08] 

• Matching to lattice energies allows for extraction of interaction parameters

• Extend single species construction (project to ptot=0 at sink)

where

• Reduced symmetry: contractions significantly more complex
Eg: n=6 pions, m=6 kaons: 1500 terms vs n=12 pions: 90 terms

[WD, B Smigielski 1103.4362]

⇡+ = u�5d, K+ = u�5s
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• 90 observables to analyse

• Boxes correspond to extracted 
energies and their uncertainties

• Dependence on Nπ and NK 
determines 2 & 3 body interactions

coefficients from the measured energies using Eqs. (4.5)
and (4.6). These determinations rely on a second bootstrap
analysis involving a resampling of the extracted energies.
The bootstrapping procedure for a specific correlation
function yielded P energies, and these formed the boot-
strap samples for the extraction of the two- and three-body
parameters.

Once the best fit multimeson energies were known, a
very similar procedure used for the analysis of the corre-
lators was used to find the !a’s and !!’s. Since a bootstrap
ensemble exists for every best fit energy value, we created
an energy sample, E" such that " 2 ½1;P ". This sample
carries an additional vector index that labels the energies
within the vector. In the case of single-species pion ener-
gies (the kaon case is identical), an energy vector initially

composed of E" ¼ fEð"Þ
2;0 ; E

ð"Þ
3;0 ; E

ð"Þ
4;0 g was used to fit to !a##

and !!3;###. We included another energy and refitted the
interaction parameters and repeated this until all the ener-
gies were exhausted. In the multispecies case, a base set of

fEð"Þ
2;0 ; . . . ; E

ð"Þ
12;0; E

ð"Þ
0;2 ; . . . ; E

ð"Þ
0;12g along with ten randomly

selected multispecies energies was created and fits per-
formed for all seven hadronic parameters. This first set
thus made use of 34 different energies. This set was en-
larged by one, the parameters were refitted, and the process
repeated until all 90 energies were used. The energy co-
variance matrix used in these fits is defined according to

C ðEÞi;j ¼
1

P & 1

XP

"¼1

ðE";i & hEiiÞðE";j & hEjiÞ; (5.6)

such that hEii ¼ ð1=P ÞPP
"¼1 E";i, and the energy $2 on

each bootstrap is defined as

$2
"¼

X

i;j

ðE";i&f";ið !a; !!ÞÞCðEÞ&1
i;j ðE";j&f";jð !a; !!ÞÞ; (5.7)

where fð !a; !!Þ is shorthand notation for the fit functions in
Eqs. (4.4), (4.5), and (4.6).

The systematic errors assigned to the !a’s and !!’s are
more complicated than those of the energies. Given a
particular energy set of N energies that are used to
make a determination of !a’s and !!’s there are 3N different
combinations of the intervals that must be fit in order to
completely propagate the systematic uncertainties of the
energies to those of the interaction parameters (it is 3N

because there is a ½tmin; tmax" for each best fit energy as well
as its systematic counterparts corresponding to the shifted
time interval in the forward and backward direction). Even
in the single-species case, when N ¼ 10, there are al-
ready'6( 104 combinations. For the multispecies case, it
is too costly to fit all these permutations. Rather, we only fit
Oð103Þ randomly chosen permutations and take the differ-
ence of the mean of this set from the best fit !a and !! as the
systematic error. From fitting all permutations in the

single-species case, up to N ¼ 9, it was seen the system-
atic error stabilized well before the total number of combi-
nations was computed and we assume this is also the case
for the two-species case.

VI. RESULTS

A. Energies

Using the methods discussed above, we extracted the
energies of the mixed and pure species system, from all 90
correlators. The final extracted values are shown in Tables I
and II below, along with their associated fit ranges. These
energies are shown in a three-dimensional plot along with
their respective uncertainties in Fig. 1.
The fits become progressively more difficult as the

number of mesons grows because of the increasing thermal
contamination. This is directly reflected in the quality of
the fits decreasing for large meson number in both the pure
species and mixed-species case. Fits to example correlators
are shown in Figure 6(a) 19.

B. Interactions

The extractions of interaction parameters from mixed-
meson energies were performed to yield the three scatter-
ing lengths and four three-body coefficients. This work
builds upon the studies of [8–10] and presents the first
measurements of !!3;##K, and !!#KK since these parameters
can only be measured within the framework of the mixed-
meson system.
The most straightforward determination of the scattering

lengths is given by using the eigenvalue relation from
Eq. (4.1). Using this, we find

0
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10

N
0

5

10

NK

0.5

1.0

1.5

EN ,NK

FIG. 1 (color online). Energy of multimeson states.
Uncertainties shown are result 24from combining statistical and
systematic uncertainties in quadrature. 25

LATTICE QCD STUDY OF MIXED SYSTEMS OF PIONS . . . PHYSICAL REVIEW D 00

7

m! !a!! ¼ 0:225" 0:001" 0:023;

mK !aKK ¼ 0:4465" 0:0006" 0:0266;

m!K !a!K ¼ 0:1560" 0:0004" 0:0095:

(6.1)

The three-body coefficients can only be determined within
the framework of Eqs. (4.4), (4.5), and (4.6). We also use
this same analysis to provide a check on the above results.
Given that our analysis provides multiple20 determinations of
the interactions parameters for varying numbers of combi-
nations of energies used in the fits, these must be combined
in some way to obtain the final values. Since each separate
extraction can be viewed as a somewhat independent mea-
surement, the final value given is taken to be the mean from
the set of all extractions. The final uncertainties on the
extractions are combinations of statistical uncertainties,
systematic uncertainties obtained from variation of the
fitting windows as discussed in Sec. VD, and a second
systematic uncertainty determined from the standard de-
viation of the full set of extractions, combined in quad-
rature. The systematics are the largest source of
uncertainties in the results. The individual extractions of
the various parameters and the final extractions are shown
in Figs. 3–7. The error bars shown combine the statistical
and systematic uncertainties as discussed in Sec. V in
quadrature. The shaded regions with thin borders denote
the final results and their uncertainties. For the mixed-
species extractions, the second shaded band with thick

borders denotes the range of uncertainty in the quoted
values from the single-species analysis. These are shown
together so the reader can see the overlap region between
both sets of results. The poorest behavior originates from
!"3;!!! where the mixed-species results drift away from the
pure species one. The final values of the interaction pa-
rameters for the single-species case are

mK !aKK ¼ 0:444" 0:011;

m! !a!! ¼ 0:224" 0:031;

mK !"3;KKKf
4
K ¼ 0:11" 0:28;

m! !"3;!!!f
4
! ¼ 1:81" 0:52;

(6.2)

whereas for the multispecies case we find

mK !aKK ¼ 0:461" 0:010;

m! !a!! ¼ 0:271" 0:021;

m!K !a!K ¼ 0:166" 0:016;

mK !"3;KKKf
4
K ¼ #0:08" 0:12;

m! !"3;!!!f
4
! ¼ 0:68" 0:33;

m!mK

m! þ 2mK
!"3;!KKf

4
!KK ¼ 0:22" 0:17;

m!mK

2m! þmK
!"3;!!Kf

4
!!K ¼ 0:45" 0:26:

(6.3)

28 30 32 34 36

44.5

44.0

43.5

43.0

42.5

42.0

t l.u.

lo
g

C
4,

0
t

28 30 32 34 36 38

104

102

100

98

96

t l.u.

lo
g

C
0,

8
t

28 30 32 34 36 38

102

100

98

96

94

t l.u.

lo
g

C
2,

6
t

28 30 32 34 36

97

96

95

94

93

92

91

90

t l.u.

lo
g

C
6,

2
t

FIG. 2 (color online).26 Plots of the log of the fitted correlation function (red) and those based on the full data set of gauge
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[WD, B Smigielski 1103.4362]

n pions and m kaons



Many meson systems
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Many meson systems

• Calculate correlation functions for systems 
containing very large isospin charge Iz=72
(~numbers of mesons)

• Improved contraction techniques and 
propagators from multiple source locations
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Many meson systems

• Calculate correlation functions for systems 
containing very large isospin charge Iz=72
(~numbers of mesons)

• Improved contraction techniques and 
propagators from multiple source locations

WD, K Orginos, Z Shi 1205.4224

FIG. 6: The e⇥ective mass of C
20⇡(t) from the 2-source calculation on the ensemble B4 is shown

on the left along with the extracted ground state energy represented as a black band. Similarly,
the e⇥ective mass of C

40⇡(t) (C72⇡(t)) from the 4 (6) source calculation on the same ensemble and
the corresponding extracted ground state energy is shown in the middle (on the right).

The ground state contribution comes from the m = 0 term, and thermal states are from the
m 6= 0 terms in the sum, corresponding to contributions where m ⇡

+’s propagate backwards
from the source to the sink around the temporal boundary. For the T = 128 B2 ensemble,
e↵ective mass plots are shown in Fig. 5 for various n, and it is clear that correlation functions
receive significant contributions from thermal states. Their analysis requires a fit including
all thermal states, Eq. (23), in order to extract the ground state energy. Since the number
of free parameters in the fit grows with n, the systematic uncertainty of En⇡ becomes large
and we are unable to extract any accurate information at large n. In order to minimize
contributions from thermal states, a longer temporal extent is required.

Thermal e↵ects are exponentially suppressed by the larger temporal extent and the en-
semble with T = 256 has greatly reduced contamination, and a simple single exponential fit
at intermediate times is su�cient to extract ground state energies, even for E

72⇡, as shown
in Fig. 6. E↵ective mass plots of C

20⇡, C40⇡ and C

72⇡ for this ensemble all show a plateau
region, and a single exponential fit, only including the term in Eq. (23) with m = 0, is
enough to extract the ground state energy En⇡. However, for significantly larger numbers
of pions, a still larger temporal extents would again be necessary.

A. Energies from 203 ⇥ 256 ensemble

Correlation functions, defined in Eq. (21), for systems with the quantum numbers of up
to 72 ⇡

+’s have been computed on the B4 ensemble. In this paper, only systems having zero
center of mass momentum are investigated. For a discussion of results for di↵erent total
momenta, see Ref [16]. Because of precision issues, we have computed correlation functions
from 2, 4, and 6 sources, from which E

1⇡!24⇡, E25⇡!48⇡ and E

49⇡!72⇡ have been extracted
respectively, where En⇡ is the ground state energy of a n-⇡+ system at rest. Fig. 7 shows
C

20⇡(t), C40⇡(t) and C

70⇡(t) from 6-source contractions. The breakdown at earlier time slices
of C

20⇡(t) indicates that computations with higher precision are required. Computations
with arbitrary precisions are accessible with the “arprec” library [19], however at the same
precision, they are ⇠ 5 times more expensive than with the fixed quad-double precision
(implemented using the “qd” library [20]). In our main studies, we perform all contractions
in quad-double precision, and multiply the uncontracted propagators by a prefactor before
performing the contractions such that the particular Cn⇡(t)’s that we focus on do not su↵er
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Many meson systems

• Calculate correlation functions for systems 
containing very large isospin charge Iz=72
(~numbers of mesons)

• Improved contraction techniques and 
propagators from multiple source locations

• Energy of these systems becomes enormous

• Dominated by repulsive interactions

WD, K Orginos, Z Shi 1205.4224
FIG. 13: E⇥ective mass plots with A± P method on ensemble B3 are shown.

FIG. 14: The ground state energies of a system of n-⇡+(En⇡) extracted from ensembles B1 (red),
B3 (blue) and B4 (green) are shown. The black line represents the total energy of n non-interacting
pions.

C. Energies from 163 ⇥ 128 and 243 ⇥ 128 ensembles

As the A ± P method has been validated on the B2 ensemble, systems having up to
72 ⇡

+’s has also been studied on ensembles B1 and B3 using this method. E↵ective mass
plots with extracted ground state energies from ensemble B1 are shown in Fig. 12 and those
from ensemble B3 are shown in Fig. 13. All calculations are done with the ICm, and ground
state energies are extracted with the same statistical method as those in the Section IVA.

21



Many meson systems

• Calculate correlation functions for systems 
containing very large isospin charge Iz=72
(~numbers of mesons)

• Improved contraction techniques and 
propagators from multiple source locations

• Energy of these systems becomes enormous

• Dominated by repulsive interactions

• More useful to think in terms of isospin density 
and energy density
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FIG. 13: E⇥ective mass plots with A± P method on ensemble B3 are shown.

FIG. 14: The ground state energies of a system of n-⇡+(En⇡) extracted from ensembles B1 (red),
B3 (blue) and B4 (green) are shown. The black line represents the total energy of n non-interacting
pions.

C. Energies from 163 ⇥ 128 and 243 ⇥ 128 ensembles

As the A ± P method has been validated on the B2 ensemble, systems having up to
72 ⇡

+’s has also been studied on ensembles B1 and B3 using this method. E↵ective mass
plots with extracted ground state energies from ensemble B1 are shown in Fig. 12 and those
from ensemble B3 are shown in Fig. 13. All calculations are done with the ICm, and ground
state energies are extracted with the same statistical method as those in the Section IVA.
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FIG. 19: Energy densities (✏) calculated on 3 di⇥erent volumes are shown as a function of isospin
density. The blue points are from the 163 ensemble, the black ones are from the 203 ensemble and
the pink one are from the 243 ensemble. The inset show the slight di⇥erence in energy density on
three ensembles.

This Stefan-Boltzmann energy density is given by

✏SB =
NfNc

4⇡2

µ

4

I (33)

where Nf = 3 and Nc = 3. The ratio of ✏/✏SB is plotted in Fig. 22, and exhibits similar
behaviours in all three volumes. The ratio increases from µI = m⇡ to a peak around µI ⇡
1.3 m⇡, and then drops and eventually begins to plateau at around µI ⇡ 3 m⇡. Peak posi-
tions, µI

peak, for each volume identified from Fig. 22 are µI
peak = {1.20(5), 1.25(5), 1.27(5)}m⇡

for L = {16, 20, 24} respectively. With an extrapolation linear in 1/L3, the peak position
in infinite volume is µI

peak = 1.30(7) m⇡. The system for µI < 1.3 m⇡, can be identified as
a pion gas. When µI ⇠ µ

I
peak, pions start to condense and the system resides in the BEC

state. The plateau beginning to form beyond µI ⇡ 3 m⇡, may indicate a crossover from the
BEC to BCS state, however higher precision and larger µI is required to make a definite
statement. Discretization e↵ects also remain to be investigated.

Two flavour QCD with finite µI at large T has been investigated in Ref. [12], where
a finite temperature deconfinement phase transition was identified at µI < m⇡, however
for µI > m⇡ no results were presented. In Ref. [14], the phase diagram of Nf = 4 + 4
QCD was investigated at di↵erent temperatures and values µI using the grand canonical
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• Characterise the thermodynamic properties 
of the system

• Isospin chemical potential

Bose-Einstein condensation

µI =
dE

dn

����
V

FIG. 20: The isospin chemical potential, µI , is plotted as a function of the isospin density, ⇢I ,
from three lattice ensembles, B1 (red), B3 (blue) and B4 (green). The solid black line is from
expectations of �PT [8]

T

µIm⇡

A

< d�5u >= 0

< ⇡+ >6= 0 < d�5u >6= 0

FIG. 21: Expected QCD phase diagram following Ref. [8]. Our calculations at a fixed temperature,
T ⇠ 20 MeV probe the phase structure along the red dashed line from µI = m⇡ to µI = 4.5 m⇡.
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FIG. 22: The ✏/✏SB is plotted as a function of µI/m⇡.

approach, and a phase transition from a pion gas to a BEC state has also been suggested at
µI slightly higher than m⇡, in agreement with the results found here. Two color QCD has
been studied in Ref. [37], where the authors identified the transition from vacuum to BEC
state and the BEC/BCS transition. Somewhat interestingly, the ratio of the energy density
and its Stefan-Boltzmann limit has also been studied (inset of Fig. 1 in Ref. [37]), showing
qualitatively similar behaviour to that found in the current study.

VII. CONCLUSION

In this work, we have studied lattice QCD at non-zero isospin chemical potential using a
canonical approach in which we have investigated systems with the quantum numbers of up
to 72 ⇡

+’s in three lattice volumes, L3 ⇠ (2.0, 2.5 and 3.0 fm)3 at a pion mass of m⇡ ⇠ 390
MeV at a single lattice spacing. In order to perform this study, we have developed several
new methods for performing the requisite Wick contractions of quark field operators. These
methods are an enormous computational improvement over previous approaches and their
accuracy and performance have been carefully investigated.

In our analysis, we have determined the ground state energies of multi-pion systems in
three di↵erent volumes and have used this to extract the isospin chemical potential of the
states that are produced. In the smallest volumes, systems with isospin chemical potentials
of up to µI ⇠ 1600 MeV are created. By considering the energy density as a function of
the isospin chemical potential, we provide strong evidence for the transition of the system
from a weakly interacting pion gas to a Bose-Einstein condensed (BEC) phase at µ ⇠ m⇡

as expected from �PT. At higher values of the chemical potential the system is expected to
transition to a BCS state and we have sought numerical evidence for this but do not have
conclusive results. It is interesting to note that the behaviour of the energy density as a
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FIG. 21: Expected QCD phase diagram following Ref. [8]. Our calculations at a fixed temperature,
T ⇠ 20 MeV probe the phase structure along the red dashed line from µI = m⇡ to µI = 4.5 m⇡.
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been studied in Ref. [37], where the authors identified the transition from vacuum to BEC
state and the BEC/BCS transition. Somewhat interestingly, the ratio of the energy density
and its Stefan-Boltzmann limit has also been studied (inset of Fig. 1 in Ref. [37]), showing
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MeV at a single lattice spacing. In order to perform this study, we have developed several
new methods for performing the requisite Wick contractions of quark field operators. These
methods are an enormous computational improvement over previous approaches and their
accuracy and performance have been carefully investigated.

In our analysis, we have determined the ground state energies of multi-pion systems in
three di↵erent volumes and have used this to extract the isospin chemical potential of the
states that are produced. In the smallest volumes, systems with isospin chemical potentials
of up to µI ⇠ 1600 MeV are created. By considering the energy density as a function of
the isospin chemical potential, we provide strong evidence for the transition of the system
from a weakly interacting pion gas to a Bose-Einstein condensed (BEC) phase at µ ⇠ m⇡

as expected from �PT. At higher values of the chemical potential the system is expected to
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FIG. 22: The ✏/✏SB is plotted as a function of µI/m⇡.

approach, and a phase transition from a pion gas to a BEC state has also been suggested at
µI slightly higher than m⇡, in agreement with the results found here. Two color QCD has
been studied in Ref. [37], where the authors identified the transition from vacuum to BEC
state and the BEC/BCS transition. Somewhat interestingly, the ratio of the energy density
and its Stefan-Boltzmann limit has also been studied (inset of Fig. 1 in Ref. [37]), showing
qualitatively similar behaviour to that found in the current study.
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In this work, we have studied lattice QCD at non-zero isospin chemical potential using a
canonical approach in which we have investigated systems with the quantum numbers of up
to 72 ⇡

+’s in three lattice volumes, L3 ⇠ (2.0, 2.5 and 3.0 fm)3 at a pion mass of m⇡ ⇠ 390
MeV at a single lattice spacing. In order to perform this study, we have developed several
new methods for performing the requisite Wick contractions of quark field operators. These
methods are an enormous computational improvement over previous approaches and their
accuracy and performance have been carefully investigated.

In our analysis, we have determined the ground state energies of multi-pion systems in
three di↵erent volumes and have used this to extract the isospin chemical potential of the
states that are produced. In the smallest volumes, systems with isospin chemical potentials
of up to µI ⇠ 1600 MeV are created. By considering the energy density as a function of
the isospin chemical potential, we provide strong evidence for the transition of the system
from a weakly interacting pion gas to a Bose-Einstein condensed (BEC) phase at µ ⇠ m⇡

as expected from �PT. At higher values of the chemical potential the system is expected to
transition to a BCS state and we have sought numerical evidence for this but do not have
conclusive results. It is interesting to note that the behaviour of the energy density as a
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Multi baryon systems



The trouble with baryons

• Importance sampling of QCD functional integrals 
➤ correlators determined stochastically 

• Variance in single nucleon correlator (C) determined by 

• For nucleon: 

• For nucleus A:

N

N✝

[Lepage ’89]

�2(C) = hCC†i � |hCi|2

signal

noise

⇠ exp [�(MN � 3/2m⇡)t]

signal

noise

⇠ exp [�A(MN � 3/2m⇡)t]
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Multi-baryon systems

• 3H, 4He and more exotic: 4HeΛ, 4HeΛΛ  (hypernuclei)

• Correlators for significantly larger A

• Caveat: at unphysical quark masses



Nuclei

• 3H, 4He and more exotic: 4HeΛ, 4HeΛΛ  (hypernuclei)

• Correlators for significantly larger A

• Recent studies at SU(3) point (physical ms)

• Isotropic clover lattices 

• Single lattice spacing: 0.145 fm

• Multiple volumes: 3.4, 4.5, 6.7 fm

• High statistics
TABLE I: Parameters of the ensembles of gauge-field configurations and of the measurements used
in this work. The lattices have dimension L3 ⇥ T , a lattice spacing b, and a bare quark mass b mq

(in lattice units) generating a pion of mass m�. Nsrc light-quark sources are used (as described in
the text) to perform measurements on Ncfg configurations in each ensemble.

Label L/b T/b � b mq b [fm] L [fm] T [fm] m� [MeV] m� L m� T Ncfg Nsrc

A 24 48 6.1 -0.2450 0.145 3.4 6.7 806.5(0.3)(0)(8.9) 14.3 28.5 3822 48

B 32 48 6.1 -0.2450 0.145 4.5 6.7 806.9(0.3)(0.5)(8.9) 19.0 28.5 3050 24

C 48 64 6.1 -0.2450 0.145 6.7 9.0 806.7(0.3)(0)(8.9) 28.5 38.0 1212 32

each configuration. The quark propagators were constructed with gauge invariant Gaussian
smeared sources with stout-smeared gauge links. These sources are distributed over a grid,
the center of which is randomly distributed within the lattice volume on each configuration,
and the quark propagators are computed using the BiCGstab algorithm with a tolerance
of 10�12 in double precision. The quark propagators, and ones that are smeared at the
sink using the same smearing parameters as used at the source, give rise to two sets of
correlation functions for each combination of source and sink interpolating field, labeled as
SS and SP, respectively. The propagators are contracted to form baryon blocks projected
to fixed momentum at the sink for use in the calculation of the correlation functions to be
described below. The blocks are defined as

Bijk
H (p, t; x0) =

�

x

eip·xS(f1),i0

i (x, t; x0)S
(f2),j0

j (x, t; x0)S
(f3),k0

k (x, t; x0)b
(H)
i0j0k0 , (1)

where S(f) is a quark propagator of flavor f and the indices are combined spin-color indices
running over i = 1, . . . , NcNs.1 The choice of the fi and the tensor b(H) depend on the
spin and flavor of the baryon, H, under consideration. For our calculations we used the
local interpolating fields constructed in [31] restricted to those that contain only upper spin
components (in the Dirac spinor basis). This choice results in the simplest interpolating
fields that also have the best overlap with the single octet baryon ground states. Blocks are
constructed for all momenta |p|2 < 4 allowing for the study of multi-baryon systems with
zero or non-zero total momentum and with non-trivial spatial wave functions.

B. Multi-Baryon Interpolating Operators and Contractions

In order to construct correlation functions for the multi-hadron systems, interpolating op-
erators with well defined quantum numbers at the source and sink are constructed. As
we intend to perform calculations away from the SU(3) flavor symmetry limit at lighter
quark masses, the quantum numbers of parity �, angular momentum J2 and Jz, strangeness
s, baryon number (atomic number) A, and isospin I2 and Iz are used to define the in-
terpolating operators. 2 These interpolating operators are first constructed recursively at

1 To be specific, for a quark spin component is = 1, . . . , Ns and color component ic = 1, . . . , Nc, the

combined index i = Nc(is � 1) + ic.
2 For calculations restricted to the SU(3) flavor symmetric limit, it would also be advantageous to work

directly with SU(3) irreducible representations.
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SU(3) symmetric world

• In flavour SU(3) symmetric case, multi-baryon states cone in multiplets

• Unphysical symmetries manifest in spectrum
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FIG. 17: The bound-state energy levels in the J⇡ = 0+ 4

⇤⇤

He ( 4

⇤⇤

H and nn⇤⇤) sector. The
points and their associated uncertainties correspond to the energies of the states extracted from
the correlation functions with the quantum numbers of the ground state of 4

⇤⇤

He. The excited
state of the 4

⇤⇤

He , in the 28, has the same energy as the ground state of 4He. The locations of
the energy-levels associated with non-interacting ⇤-3

⇤

He, N⇤-N⇤, H-dibaryon-di-nucleon, N⇤-N-⇤,
di-nucleon-⇤-⇤, H-dibaryon-N-N, and ⇤-⇤-N-N continuum states, determined from the two-body
binding energies given in Table VII and the three-body energies given in eq. (9) and eq. (12), are
shown.

identify this as the ground state of the 4

⇤⇤

He, 4

⇤⇤

H, nn⇤⇤ isotriplet. However, it is possible
that this is an excited state of the nucleus, with irreps other than the 28 and 27 containing
a lower energy state. Further, it is also possible that this state is a continuum scattering
state associated with N+ 3

⇤⇤

H. Clearly, further calculations are required to unambiguously
distinguish the energy of the 27 ground state from that of the 28 excited state.

VII. FIVE-BODY SYSTEMS

There are a plethora of five-body systems that can be explored theoretically at the SU(3)
symmetric point, dictated, in part, by the product of five 8’s,

8⌦ 8⌦ 8⌦ 8⌦ 8 = 32 1� 145 8� 100 10� 100 10� 180 27� 20 28� 20 28

� 100 35� 100 35� 94 64� 5 80� 5 80� 36 81� 36 81

� 20 125� 4 154� 4 154� 216 . (17)

25

can be straightforwardly constructed as

8⌦ 8⌦ 8 = 64� 2 35� 2 35� 6 27� 4 10� 4 10� 8 8� 2 1 . (6)

However, the local sources constructed from only the upper-components of the quark fields
produce correlation functions containing a subset of these irreps,

8⌦ 8⌦ 8 ! 35� 35� 2 27� 10� 10� 2 8� 1 , (7)

and further decomposition into states with J⇡ = 1

2

+

and J⇡ = 3

2

+

gives

( 8⌦ 8⌦ 8 )J⇡
=1/2+ ! 35� 35� 27� 8

( 8⌦ 8⌦ 8 )J⇡
=3/2+ ! 27� 10� 10� 8� 1 . (8)

It is clear from the SU(3) irreps contributing to the three-body systems that, with our
source structure, a given correlation function contains contributions from multiple SU(3)
irreps. With a relatively small number of states identified with the present set of correlation
functions, the SU(3) classification of states is di�cult to establish from the spectra alone.
More generally, it is expected that the spectrum of states in any given correlation function
becomes increasingly complicated with increasing numbers of baryons even when constrained
by SU(3) flavor symmetry. As the focus of this work is systems containing only a small
number of strange quarks, we have chosen to use the same notation as in hypernuclear
spectroscopy. States in 3He (same as 3H by isospin symmetry), 3

⇤

He (same as 3

⇤

H and nn⇤
by isospin symmetry), the isosinglet 3

⇤

H, and the isotriplet 3

⌃

He have been identified in the
three-body sector.

Correlation functions calculated with LQCD will not only contain contributions from
ground state and excited states of the bound nuclei, but also continuum states that con-
sist of all possible sub-clusterings of the baryons. For instance, the correlation functions
used to extract the 3He nuclear states will also contain contributions from the deuteron-
proton, di-proton-neutron in addition to the proton-proton-neutron continuum states. With
su�cient precision in the calculation, one will be able to use these levels to extract, for
instance, the deuteron-proton scattering phase-shift [24]. Given that the two-body sector is
well-established, the spectrum of such continuum states can be approximately constructed.
Clearly, states of the 3He nucleus can only be cleanly identified when they are not close in
energy to the expected location of non-interacting continuum states. The generalization of
this discussion applies to other systems comprised of three or more baryons. In Appendix B,
an example of the expected finite volume scattering state spectrum is constructed for each
of the volumes that are used in this analysis, demonstrating the extent of this problem in
large volumes.

A. I = 1

2

: 3H and 3He

In nature, the I = 1

2

, J⇡ = 1

2

+

ground state of the 3He nucleus is the only bound state of two
protons and a neutron, and it is known to be dominantly composed of two protons in a 1S

0

state coupled to a s-wave neutron. Four 3He correlation functions, resulting from di↵erent
source structures defined by s = 0, I = 1

2

and J⇡ = 1

2

+

quantum numbers transforming

13

to be unity in calculations performed with isotropic lattices. Fitting ⇠H to the energy of the
pion and baryon, given in Table III and Table IV, respectively, yields ⇠⇡ = 1.0120(32)(18) and
⇠B = 1.014(11)(02). Therefore, the dispersion relations are known with su�cient precision
to provide only a small uncertainty in the extraction of multi-hadron energies.

IV. TWO-BODY SYSTEMS

In general, the two-body states can be classified by isospin, strangeness, parity and angular
momentum. In the limit of SU(3) flavor symmetry, the energy eigenstates can also be
classified by SU(3) quantum numbers. The lowest-lying baryons transform as 8 under SU(3),
and therefore the two-body states have degeneracies determined by the dimensionality of
the irreps in the product,

8⌦ 8 = 27� 10� 10� 8S � 8A � 1 . (4)

As the wave-function of such systems is totally antisymmetric, the s-wave 1S
0

channels
transform under SU(3) as 27 � 8S � 1, while the 3S

1

-3D
1

coupled channels transform as
10� 10� 8A. The source structures we have employed, in which the quark-level operators
reside at one point in the spatial volume, have vanishing overlap with the 8S irrep, and
as a result, we are unable to determine the energy of this two-body irrep. Correlation
functions are not constructed directly in terms of their SU(3) transformation properties, but
the contributing SU(3) irreps can be deduced from their structure: 10 from the deuteron,
27 from the di-nucleon, 1� 27 from the H-dibaryon (the 8S is absent), 10 from n⌃� in the
3S

1

-3D
1

coupled channels, and 8A from I = 0 N⌅ in the 3S
1

-3D
1

coupled channels. EMP’s
extracted from the two-body correlation functions for systems at rest calculated with the
483 ⇥ 64 ensemble are shown in fig. 4. The energies of states that are negatively shifted
relative to two free baryons are presented in Table V, Table VI and Table VII, respectively,
and displayed in fig. 5.

The energies of the states that are presented in this work, along with their statistical
uncertainties, are determined from a single parameter correlated �2-minimization procedure
performed over a specific time interval of EMP’s and from exponential fits to the correlation
functions directly, with covariance matrices determined with either Jackknife or Bootstrap.
The systematic uncertainty that is assigned to these energies is determined by varying the
fit interval over a range of values consistent with the identified plateau region. The full
range of the central values of the extracted energies is taken to represent the 3� range of
values of the systematic uncertainty, but we quote the 1� value rather than the 3� value
in order to make combining the systematic and statistical uncertainties in quadrature more
transparent.

A number of scattering states with positive energy-shifts relative to two free baryons have
also been identified using di↵erent correlation functions, but their uncertainties are large
enough to preclude clean extraction of scattering phase-shifts using Lüschers method [35, 36],
and we defer analysis of these states to a later time when adequate statistics have been
accumulated.

In su�ciently large volumes, the binding momentum associated with a two-body bound
state at rest in the lattice volume will scale as

(L) = 
0

+
6Z2

 

L
e�0L + ... , (5)
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TABLE XII: The calculated bound state energies in J⇡ = 3

2

+

3

⌃

He. “g.s.” denotes the ground
state.

3

⌃

He 243 ⇥ 48 323 ⇥ 48 483 ⇥ 64

g.s. (MeV) 60(10)(5) 53(7)(5) 59(10)(5)

ground-state wavefunction is pn⌃, where the nucleons couple to I = 0, J = 1, as in 3

⇤

H. As
yet, the only observed ⌃ hypernucleus is 4

⌃

He (ppn⌃0) [47, 48], but at the SU(3) point it is
possible that this three-body system binds. The sources used to generate this correlation
function transform as 27 under SU(3), 7 and result in EMP’s that exhibit clear plateaus.
The ground state energies extracted from the three ensembles are given in Table XII, and
the associated EMP’s are shown in fig. 12. The ground state energy and the anticipated
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FIG. 12: The EMP’s associated with one J⇡ = 3

2

+

3

⌃

He correlation function computed with the
243 ⇥ 48 (left), 323 ⇥ 48 (center) and 483 ⇥ 64 (right) ensembles, with momentum |P| = 0. The
shaded regions corresponds to the statistical uncertainty associated with the shown fitting interval.

continuum thresholds based upon the non-interacting two-body energies are shown in fig. 13.

VI. FOUR-BODY SYSTEMS

There are a large number of four-body systems and states that could be explored theoretically
with LQCD at the SU(3) symmetric point, dictated by the product of four 8’s,

8⌦ 8⌦ 8⌦ 8 = 8 1� 32 8� 20 10� 20 10� 33 27� 2 28� 2 28� 15 35� 15 35

� 12 64� 3 81� 3 81� 125 , (13)

giving a total of 166 lowest-lying states (one per distinct irrep) with distinguishable quantum
numbers. The local sources that have been used in this work to generate correlation functions
project onto a subset of the irreps,

( 8⌦ 8⌦ 8⌦ 8 )J⇡
=0

+ ! 1� 27� 28

( 8⌦ 8⌦ 8⌦ 8 )J⇡
=1

+ ! 8� 10� 10� 35

( 8⌦ 8⌦ 8⌦ 8 )J⇡
=2

+ ! 8� 27 , (14)

7 This 27 irrep is di↵erent from that in the J⇡ = 1
2

+
channel. In principle the ground state of the system

could reside in the 64 irrep, but this is not accessible with our present operator structure.
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• Quark-hadron contraction method

• Multiple boost frames



Nuclei (A=3,4)

NPLQCD arXiv:1206.5219

Ì

ÌÌ

Ì

Ì

Ì
ÌÌ
ÌÌ
Ì
Ì
ÌÌ

Ì0 4 8 12 16 20 24
-0.2
-0.15
-0.1
-0.05

0.
0.05
0.1

têb

b
D
E

4
⇤⇤He

Ì

ÌÌ

Ì

Ì

Ì
ÌÌ
ÌÌÌ

Ì
Ì

Ì

Ì

0 4 8 12 16 20 24
-0.1

-0.05

0.

0.05

0.1

têb

b
D
E

3He

Ì

Ì

Ì
Ì

Ì

Ì
Ì
ÌÌ
ÌÌÌ

Ì

0 4 8 12 16 20 24
-0.15

-0.1

-0.05

0.

0.05

0.1

têb

b
D
E

4He

Ì

Ì
Ì
Ì
Ì
ÌÌÌ

ÌÌ
ÌÌ
Ì

Ì

0 4 8 12 16 20 24
-0.15

-0.1

-0.05

0.

0.05

0.1

têb

b
D
E

3
⇤He

• Quark-hadron contraction method



Nuclei (A=3,4)

NPLQCD arXiv:1206.5219

S + n + p d + S SNH3s1L + NS
3He H 3

2

+ L
-100

-50

0

50

D
E
HMe

V
L

L=48 , »p»=0
L=32 , »p»=0
L=24 , »p»=0

FIG. 13: The bound-state energy levels in the J⇡ = 3

2

+

3

⌃

He sector. The points and their associated
uncertainties correspond to the energies of the states extracted from the correlation functions with
the quantum numbers of the ground state of 3

⌃

He. The locations of the energy-levels associated
with non-interacting continuum states, determined from the two-body binding energies given in
Table VII, are shown.

which greatly reduces the complexity of individual correlation functions. In order to restrict
ourselves to systems that are currently of phenomenological importance, we explore systems
containing up to two strange quarks only, the isosinglet 4He, the iso-doublet 4

⇤

H and 4

⇤

He,
the isosinglet 4

⇤⇤

H and the isotriplet 4

⇤⇤

He, 4

⇤⇤

H, and nn⇤⇤.

A. I = 0 : 4He

In nature, the 4He nucleus is anomalously deeply bound when compared to nuclei nearby
in the periodic table due to its closed shell structure, with a total binding energy of B↵ ⇠
28 MeV, or a binding energy per nucleon of B/A ⇠ 7 MeV. We anticipate that at the SU(3)
symmetric point, the binding energy of 4He will be even deeper given the bindings of the
deuteron and di-neutron found in the two-body sector. Two of the 4He correlation functions,
resulting from di↵erent source structures defined by s = 0, I = 0 and J⇡ = 0+ quantum
numbers, transform as an element of the 28 irrep of SU(3), as determined by the action of
the SU(3) Casimir operators presented in Appendix A. 8 EMP’s of one of these correlation
functions are shown in fig. 14, from which the energies of the lowest lying states have been

8 The 28 is the only allowed I = 0, s = 0, A=4 irrep.
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FIG. 17: The bound-state energy levels in the J⇡ = 0+ 4

⇤⇤

He ( 4

⇤⇤

H and nn⇤⇤) sector. The
points and their associated uncertainties correspond to the energies of the states extracted from
the correlation functions with the quantum numbers of the ground state of 4

⇤⇤

He. The excited
state of the 4

⇤⇤

He , in the 28, has the same energy as the ground state of 4He. The locations of
the energy-levels associated with non-interacting ⇤-3

⇤

He, N⇤-N⇤, H-dibaryon-di-nucleon, N⇤-N-⇤,
di-nucleon-⇤-⇤, H-dibaryon-N-N, and ⇤-⇤-N-N continuum states, determined from the two-body
binding energies given in Table VII and the three-body energies given in eq. (9) and eq. (12), are
shown.

identify this as the ground state of the 4

⇤⇤

He, 4

⇤⇤

H, nn⇤⇤ isotriplet. However, it is possible
that this is an excited state of the nucleus, with irreps other than the 28 and 27 containing
a lower energy state. Further, it is also possible that this state is a continuum scattering
state associated with N+ 3

⇤⇤

H. Clearly, further calculations are required to unambiguously
distinguish the energy of the 27 ground state from that of the 28 excited state.

VII. FIVE-BODY SYSTEMS

There are a plethora of five-body systems that can be explored theoretically at the SU(3)
symmetric point, dictated, in part, by the product of five 8’s,

8⌦ 8⌦ 8⌦ 8⌦ 8 = 32 1� 145 8� 100 10� 100 10� 180 27� 20 28� 20 28

� 100 35� 100 35� 94 64� 5 80� 5 80� 36 81� 36 81

� 20 125� 4 154� 4 154� 216 . (17)
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d, nn, 3He, 4He
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FIG. 1: Nucleon effective mass on (5.8 fm)3 box in lattice unites. Fit result with one standard

deviation error band is expressed by solid lines.
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FIG. 2: Effective energy shift ∆Eeff
L for 4He channel on (5.8 fm)3 box in lattice units. Fit result

with one standard deviation error band is expressed by solid lines.
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FIG. 5: Same as Fig. 3 for 3He channel.
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FIG. 3: Spatial volume dependence of ∆EL in GeV units for 4He channel. Outer bar denotes

the combined error of statistical and systematic ones added in quadrature. Inner bar is for the

statistical error. Extrapolated result in the infinite spatial volume limit is shown by filled square

symbol together with the fit line (dashed). Experimental value (star) and quenched result (open

diamond) are also presented.
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FIG. 4: Same as Fig. 2 for 3He channel.

18

1

Status and physics plan of 
the PACS-CS Project

� Collaboration members

� PACS-CS status 

� physics plan

� Summary

Akira Ukawa
Center for Computational Sciences
University of Tsukuba

Lattice 2006
July 25
Tucson

Related talks: 
T. Ishikawa Spectroscopy session 3(Tue)
K. Ishikawa Algorithm session 2(Tue)
Y. Kuramashi Algorithm session 1(Mon)

• PACS-CS: bound d,nn, 3He, 4He

• Previous quenched work

• Recent unquenched study at mπ=500 MeV

• HALQCD 

• Extract an energy-dependent NN potential

• Strong enough to bind H, 4He at mPS=490 MeV 
SU(3) pt

• d, nn not bound
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Multi-pion correlation function

• Consider N pion correlation function

• For a lattice of temporal extent  T (inverse temperature)

• Many states contribute (ignore excitations)

ensembles [54] are shown in Table II5.
The results of the present calculation are presented in lattice units (l.u.), or in terms of

dimensionless quantities such as m⌅/f⌅ which eliminates the requirement of scale setting.
They are performed only at one lattice spacing, due to limited computer time, and as a
result the continuum limit cannot be determined. Unlike the two meson system, for which
mixed-action chiral perturbation theory (MA⌅PT) [55, 56, 57] has been used to include the
leading order e⇥ects of the finite lattice spacing, MA⌅PT calculations have not yet been
performed for the multi-⇤+ systems, and therefore the leading lattice spacing artifacts in
these calculations cannot be removed at present. The lattice spacing artifacts are assumed
to be small, occurring at O(b2), but a systematic study must be performed in the future.

B. Correlation functions

In this work we determine the ⇤+⇤+ and ⇤+⇤+⇤+ interactions from the ground-state energy
of n < 13 ⇤+’s (isospin stretched states). By working in the mu = md limit and restricting
the calculation to states of maximal isospin, only the simplest sets of propagator contractions
are required to be performed (i.e. no disconnected diagrams) in order to form the correlation
functions from which the ground-state energies are extracted.

Naively, there are (n!)2 contractions (for large n this behaves as ⇥ (2n + 1
3)⇤e2n(log n�1))

contributing to the correlation function of n-⇤+’s,

Cn(t) ⇤ ⇧
�

⇤

x

⇤�(x, t)

⇥n �
⇤+(0, 0)

⇥n

⌃ , (13)

where ⇤+(x, t) = u(x, t)�5d(x, t). However, this correlation function can be written as 6

Cn(t) ⇤ ⇧ ( ⇥�⇥ )n ⌃ , (14)

where

� =
⇤

x

S(x, t; 0, 0) S†(x, t; 0, 0) , (15)

and S(x, t; 0, 0) is a light-quark propagator. The object (block) � is a 12 � 12 (4-spin and
3 color) bosonic time-dependent matrix, and ⇥� is a twelve component Grassmann variable.
Using

⇧⇥�1⇥�2 ...⇥�n⇥⇥1⇥⇥2 ...⇥⇥n⌃ ⇤ ⇧�1�2..�n⇤1..⇤12�n ⇧⇥1⇥2..⇥n⇤1..⇤12�n , (16)

leads to correlation functions

Cn(t) = ⇧�1�2..�n⇤1..⇤12�n ⇧⇥1⇥2..⇥n⇤1..⇤12�n (�)⇥1

�1
(�)⇥2

�2
.. (�)⇥n

�n
. (17)

5 Until this point the two-body scattering length for a generic system has been denoted by a. For the �+�+

system, we denote the scattering length by a(I=2)
�� .

6 We thank David Kaplan and Michael Endres for discussions on this topic. For a general approach to
evaluating contractions involving a large number of fermions, see Ref. [58].
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Cn(t) = Tr
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Four pion correlation
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Analysis on finite T correlators

• Can rewrite the t dependence as

• Extracting the eigen-energies from these correlators is difficult

• Many parameters appear in each correlator

• Correlations between different Cj as the energy Ek occur in all Cj (j≥k) 
occur in multiple places

• Various ways to deal with this: eg cascading fits

FIG. 5: The black data is the e⇥ective mass calculated from the original data from ensemble B2,
and blue line is reconstructed from the ground state energies extracted from the ensemble B4 as
discussed in the main text. The red line is the fitted value of En⇡ extracted from the correlators
of ensemble B4.

For the T = 128 (256) ensembles, 8 (16) colorwave propagators are generated on each
configuration located 16 time slices apart to minimize correlations between propagators. For
ensembles {B1, B2, B3, B4}, {180, 51, 147, 98} configurations and {33, 19, 19, 7} momenta
are used respectively. In order to reduce contamination from thermal states, a temporal
extent of T = 256 is desirable for systems of large numbers of pions. On the B1 and
B3 ensembles, the A ± P (antiperiodic ± periodic propagator) method [26–28] is applied
to e↵ectively double the temporal extent. The validity of this method is investigated by
comparing results from ensemble B4 (203⇥256) and with those from ensemble B2 (203⇥128)
with the A±P method and it is found to be sound at the precision we achieve for the systems
under consideration as discussed below.

IV. GROUND STATE ENERGIES

Previous studies of the energies and isospin chemical potentials [6, 16] on ensemble B2
showed that thermal states contribute significantly to correlation functions and, even for
C

12⇡(t), the ground state does not dominate in any region of Euclidean time. The expected
form of correlation functions of an n-⇡+ system with temporal extent T is [6]

Cn⇡(t) =

bn
2 cX

m=0

✓
n

m

◆
A

n
mZ

n
me

�(En�m+Em)T/2 cosh((En�m � Em)(t� T/2)) + . . . , (23)

where A

n
m = 1 when m = n/2, otherwise A

n
m = 2. Em is the ground state energy of a m-⇡+

system, the Z

n
m are the overlap factors for contribution with m ⇡’s propagating backward

around the temporal boundary, and the ellipsis denotes contributions from excited states.
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Thermal pollution

Investigations of QCD at non-zero isospin density
Zhifeng Shi1, William Detmold 1,2

1 The College of William and Mary, Williamsburg,VA 2 Jefferson Lab, Newport News, VA

Abstract
We investigate QCD at large isospin density induced by explicit construction of many pion
systems via multi-source recursion relations. At large isospin density, corresponding to an
isospin chemical potential µI ∼ mρ, we find indications of a phase transition to a conjectured
ρ-condensed phase.

1 Methodology

1.1 Recursion relation in spatial space

In order to explore system containing up to 12M π+’s, M different source(s) are required because
of the Pauli principle. The correlation function for a system with ni-π

+ in the ith source is:

C(n1π
+
1 ,..., nmπ+

m)
(t) = 〈

(
∑

x

π+(x, t)

)n(
π−(y1, 0)

)n1

...

(
π−(ym, 0)

)nm

〉 , (1)

Calculating this correlation function from Wick’s theorem involves 12M !12M ! contractions,
which make the study for a system of large number of π+’s extremely time consuming. However
the recursion relation of correlation functions, discovered in reference[1], makes the study of such
system feasible. Correlation function

C(n1π
+
1 ,..., nmπ+

m)
(t) = (−)n




∏

i

ni!



 〈 Q(n1,n2,...,nm) 〉 , (2)

where n̄ =
∑m

i=1 ni and Q(n1,n2,...,nm) satisfies the ascending recursion relation:

Q(n1+1,n2,...,nm) = 〈 Q(n1,n2,...,nm) 〉 P1 − n Q(n1,n2,...,nm) P1
... + 〈 Q(n1+1,n2,...nk−1,...,nm) 〉 Pk − n Q(n1+1,n2,...nk−1,...,nm) Pk
... + 〈 Q(n1+1,n2,...,nm−1) 〉 Pm − n Q(n1+1,n2,...,nm−1) Pm , (3)

Initial conditions are Q(1,0,...,0) = P1 = A1, Q(0,1,...,0) = P2 = A2, · · · , where Ai are uncontracted
single pion correlators.

Descending recursion relations also exist and are usefull in constructing large correlators.

Qn =
M∑

k=1

1

N + 1− n̄
〈Qn+1k

A−1
(
Pk · A−1

)
〉 · IN −Qn+1k

A−1
(
Pk · A−1

)
(4)

Initial condition is Q12,...,12 = (N − 1)! det(A) · IN .
The correlation functions of two species from multiple sources have similar recursion relations,

which are also available in the original paper[1].

1.2 The recursion relation in momentum space

The correlation function of a system having n1-π
+ in the first source and n2-π

+ in another
source with total momentum n1pf1 + n2pf2, is:

Cn1π+,n2π+ (t) = 〈
2∏

i=1




∑

xi,x′i

e−i(pi1x1−pi2x′i)u (xi, t) γ5d (x′i, t)




ni

·
n∏

i=1




∑

yi

eipfiyid (yi, 0) γ5u (yi, 0)



〉

where n1p
1
1 + n2p

2
1 − n1p

1
2 − n2p

2
2 =

∑n
i=1pfi.

Each choice of pij, i, j = 1, 2 satisfying this relation is an independent measurement. Replacing
propagators in the spatial space by propagators constructed from momentum sources, the same
recursion relation still holds. The only difference is the construction of uncontracted correlation
functions Ai,j.

S(x,t;y1,0)

S+ (x,t;y1,0)

S(x,t;y2,0)

S+ (x,t;y2,0)

d
u

1

2

x

S(p1
1,t;p,0)

S(p1
2,t;p,0)

d
u

1

2

p

S(p2
1,t;p−pf1,0)

S+ (p2
2,t;p−pf2,0)

p1
1

p2
1

p1
2

p2
2

pf1
pf2
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2 Results

Because of the finiteness of the temporal extent and the easily factorisable nature of the multi-
hadronic systems being constructed, thermal effects are particularly important so the correlation
functions have the form:

Cnπ+ (t) =
n∑

m=0

(
n

m

)
Zn
me−(Em+En−m)T/2 cosh ((Em − En−m) · (t− T/2)) + · · ·

where dots represent higher excitations, T is the maximal value of the temporal extent and En
is the energy of a system of n-π+. The dominant state comes from all π+’s propagating in the
same direction, and thermal states are from some π+’s propagating in one direction while the rest
propagate in the opposite direction.

2.1 Verify the dispersion relation

This calculation is done on an anisotropic 163 × 128 lattice with ξ = 3.5. on the lattice only
discrete momentum 2π

L n are allowed . Enπ+ of systems with total momentum pt = n · p, for
p = (0, 0, 1), (0, 1, 1), (0, 0, 2), have been extracted for n = 4, 3, 2 respectively and are fitted into

the dispersion relation: E2(n,pt)
n2 − (c·pt

n )2 = E2(n,0)
n2 , where pt = n · p and got |c| = 1.015(32),

which confirms the validity of this method.

2.2 One species from single source

For notational convenience:p11 → p1, p
1
2 → p2, p

2
1 → p3, p

2
2 → p4.

Azimuthal symmetry ensures many combinations of p1,p2 be independent measurements of the
same physics , and also provides more configurations. As Enπ+ extracted from different choices of
p1 and p2 are the same within errors, here we choose p1 = p2 = (1, 1, 1) for further discussion.
Enπ+’s extracted for fits with and without one excited state in addition to the thermal states
discussed above from different time intervals give consistent results.
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FIG[2.2]:The left panel shows energies of a rest system of n-π+(Enπ+) extracted from both
methods and the right panel compares Z0.

Decomposing Cnπ+(t) into different contributions gives much more insight into how
much each state contributes. Let’s take C12π+(t) for example. The green line is from
the first excited state, the blue is the ground state and other lines are thermal states.
The zeros temperature ground state is not dominant in any region of this correlator.
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2.3 One species from two sources

By choosing p1 = p2, p3 = p4 but p1 (= p3 systems having up to 24π+ are studied by the same
recursion relation, and Enπ+ are extracted as before. As there are more ways to construct a n-π+

system and the recursion relation forces us to calculate allQ’s before getting to 24-π+s’, which costs
100 times more than the one source case. Similarly system of 36 π+’s requires a third source, and
becomes 100 times more expensive again. However a new method has rescently been constructed to
calculate correlation functions much more faster, allowing calculation of systems of at least 96 π+’s.
C40π+(t) calculated with this new method from 4 sources in a single configuration is shown below.
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FIG[2.3]: Left panel shows En1π+,n2π+ extracted from Cn1π+,n2π+ plotted against
x = 2n1 + n2. Statistical error and systematic error are added up in quadrature. Right
panel is C40π+(t) calculated from a new method.

2.4 Isospin chemical potential(µI)

µI is defined as µI (n) = dE
dn , which are calculated by applying backward derivative on the

lattice. Calculations on all lattice sizes, 163× 128, 203× 128 and 243× 128, give consistent results.

FIG[2.4] µI
mπ+

−1 is plotted against the isospin density ρI , which is defined as the number of
n
V , where V is the volume of the system computed with the lattice spacing a = 0.125fm.
The black line is the prediction from χPT[2].

At small ρI , µI behaves as expected from the χPT, but µI turns over and flats out at larger
ρI , which is out of our expectation. Our conjecture is that at this ρI the system goes from a
π-condensation phase into a phase that also contains a condenstate of a particular component of
ρ mesons[3]. Further investigations are being done by directly putting a ρ+ into π+-medium, and
studying the behavior of the screening mass of ρ+ as a function of the density of π+. Preliminary
results do show an unusual behavior at the density where we suspect a phase transition.

At no point does the ground state dominate the correlator!!!


