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Lecture content

• Multi-hadron interactions: theoretical work

• Many boson systems

• Three baryons

• More: baryons EFT in FV

• Contraction methods

• Many pions

• Many nucleons



Theory



Bosons in a box

• Long-standing problem: how do interacting particles 
confined in a box behave?

• Uhlenbeck 30’s, Bogoliubov 47, Huang&Yang 57

• Tackled in terms of density expansion

• For weakly interacting particles, an expansion 
in a/L might be useful



• Hamiltonian formulation = pionless EFT for pions with 2 & 3 body interactions

• Time-dependent perturbation theory calculation to determine large volume 
expansion of n particle ground state energies

• 5th order PT gives energy shift of n meson system to 1/L7 

• 2 & 3 body interactions (N body: L-3(N-1))

• Relativistic up to particle production threshold

• Three loop diagrams: 9d integer sums

The Energy of n Identical Bosons in a Finite Volume at O(L�7)

William Detmold and Martin J. Savage1

1Department of Physics, University of Washington, Box 351560, Seattle, WA 98195, USA
(Dated: January 30, 2008)

H =
�

k

h†
k hk

⌥
|k|2

2M
� |k|4

8M3

�

+
1

(2!)2
�

Q,k,p

h†
Q
2 +k

h†
Q
2 �k

hQ
2 +p hQ

2 �p

⌥
4⇤a

M
+

⇤a

M

⌥
ar � 1

2M2

��
|k|2 + |p|2

⇥ �

+
�3(µ)
(3!)2

�

Q,k,p,r,s

h†
Q
3 +k

h†
Q
3 +p

h†
Q
3 �k�p

hQ
3 +rhQ

3 +s hQ
3 �r�s , (1)

E0(n, L) =
4⇤ a

M L3

⌥
n
2

�↵
1�

⇧ a

⇤ L

⌃
I +

⇧ a

⇤ L

⌃2 ⇤
I2 + (2n� 5)J

⌅

�
⇧ a

⇤ L

⌃3 �
I3 + (2n� 7)IJ +

�
5n2 � 41n + 63

⇥
K
✏

+
⇧ a

⇤ L

⌃4 �
I4 � 6I2J + (4 + n� n2)J 2 + 4(27� 15n + n2)I K

+(14n3 � 227n2 + 919n� 1043)L
✏�

+
⌥

n
2

�
8⇤2a3r

M L6

�
1 +

⇧ a

⇤ L

⌃
3(n� 3)I

✏

+
⌥

n
3

�
1
L6

 
�3(µ) +

64⇤a4

M

⇧
3
⌦

3� 4⇤
⌃

log (µL) � 96a4

⇤2M
S
⌦ �

1 � 6
⇧ a

⇤L

⌃
I
✏

+
⌥

n
3

� 
192 a5

M⇤3L7
(T0 + T1 n) +

6⇤a3

M3L7
(n + 3) I

⌦
+ O

�
L�8

⇥
. (2)

E0(n, L) =
4⇤ a

M L3

⌥
n
2

�↵
1�

⌥
a

⇤ L

�
I +

⌥
a

⇤ L

�2 ⇤
I2 + (2n� 5)J

⌅

�
⌥

a

⇤ L

�3 �
I3 + (2n� 7)IJ +

�
5n2 � 41n + 63

⇥
K
✏

+
⌥

a

⇤ L

�4 �
I4 � 6I2J + (4 + n� n2)J 2 + 4(27� 15n + n2)I K

+(14n3 � 227n2 + 919n� 1043)L + 16(n� 2) (T0 + T1 n)
✏�

+
⌥

n
3

�
1
L6

�3(µ)
 
1 � 6

⌥
a

⇤L

�
I
⌦

+
⌥

n
3

�
6⇤a3

M3L7
(n + 3) I + O

�
L�8

⇥
. (3)

kinetic terms

two body interaction

three body interaction

[Beane, WD & Savage;  WD & Savage ]

Bosons in a box



Lots of diagrams!

• Eg: non-vanishing O(V4) contributions for n=6 particles
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Three meson interactions

• At 1/L6, point-like three-boson interaction must occur [Braaten, Nieto ‘95]

• IR and UV divergent diagrams appear, needing renormalisation

• RGI 3BI:        physically meaningful

• Depends logarithmically on L 

• Naive dimensional-analysis 

• Combinations of energy shifts isolates
the RGI interaction 

m⇡f4
⇡⌘(L)

3 ⇠ 1

⌘(L)
3



Multi-boson energies

• Result for shift to 1/L7  is

• n=2: reproduces expansion of Lüscher formula

• Can include higher partial waves, higher body

• Measurement of energies allows extraction of interaction parameters

[ WD & M Savage, see also S Tan 07]
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where the geometric constants that enter are 1
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L = 6.9458079 (3)
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=n!/(n − k)!/k!. The last term in the last bracket of eq. (2) is the leading relativistic contribution to the
energy-shift. Deviations from the energy-shift of n-bosons computed with non-relativistic quantum mechanics arise
only for three or more particles as the two-particle energy-shift has the same form when computed in non-relativistic
quantum mechanics and in quantum field theory [1, 2]. In eq. (3), SMS is the value of the scheme-dependent quantity
S in the Minimal Subtraction (MS) scheme that we have employed to renormalize the theory (a change in scheme
results in a change in S and a compensating change in η3(µ)).2 The Ti are renormalization scheme independent. Our
result at n = 2 agrees with large volume expansion of Ref. [1, 2], and at n = 3 agrees with the previous computation
by Shina Tan [10].
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Multi-boson energies

• Result for shift to 1/L7  is

• n=2: reproduces expansion of Lüscher formula

• Can include higher partial waves, higher body

• Measurement of energies allows extraction of interaction parameters
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Multi-boson energies

• Result for shift to 1/L7  is

• n=2: reproduces expansion of Lüscher formula

• Can include higher partial waves, higher body

• Measurement of energies allows extraction of interaction parameters

[ WD & M Savage, see also S Tan 07]
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Multi baryon interactions

• When interactions are strong, perturbative expansion breaks down
eg: nucleon-nucleon!

• Full Lüscher relation is valid, but small a/L, r/L expansions 
not well behaved

• For multiple nucleons, need N-body generalisation of Lüscher relation

• In infinite volume this is the Faddeev-Yakubovsky equations

• Eg: three nucleons 

Formalism Pionless EFT

Bound State Amplitude

Compare residues of bound state poles in scattering amplitude

Two coupled integral equations for two bound state amplitudes

= + + +

= + + +

Energies for which integral equations are solvable → binding energies

Calculation of the finite volume dinucleon propagator:

= + + ++ ... =
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[
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√
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Reduces indeed to the infinite volume dinucleon propagator for L → ∞

Loop momenta are quantized → Rewrite using Poisson’s sum equation

Simon Kreuzer (Uni Bonn) Triton in a Finite Volume 8
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Three nucleon systems

• Kreuzer & Hammer [PLB 694 (2011) 424]  studied three-nucleon systems (triton) 
in pionless EFT (valid at low energies, p<mπ)

• See also Luu Lattice2008, Polejaeva & Rusetsky [12],  Kreuzer & Grießhammer [12] 

• Lagrangian involves nucleons (N) and dibaryon fields (s,t)

• Three body interaction

region near the critical pion mass accessible to the pionless EFT, whose input parameters
for various pion masses can be obtained from chiral EFT. This program has successfully
been carried out to next-to-next-to-leading order (N2LO) in the infinite volume [30, 31].
When investigating this pion mass region with Lattice QCD, it is again desirable to have
control over the effects of the finite volume. In particular, the influence of the finite volume
on the infrared limit cycle is not known.

To leading order in the pionless EFT, the Lagrangian for a system of three nucleons can
be written as [11]

L =N †

(

i∂t +
1

2
∇2

)

N +
gt
2
tj

†tj +
gs
2
sA

†sA

−
gt
2

[

tj
† (NT τ2σjσ2N) + h.c.

]

−
gs
2

[

sA
† (NTσ2τAτ2N) + h.c.

]

+ L3 ,
(1)

where the units have been set such that ! = m = 1 and σj (τA) are the Pauli matrices acting
in spin (isospin) space. The degrees of freedom in this Lagrangian are the nucleon field N
and two auxiliary dinucleon fields, tj and sA. The field tj (sA) corresponds to two nucleons
in the 3S1 (1S0)-channel. The SU(4)-invariant three-body interaction contained in L3 is
proportional to (N †N)3. It can be written as a dinucleon-nucleon contact interaction with
a dimensionless coupling constant H(Λ) [11],

L3 =−
2H(Λ)

Λ2

(

g2tN
†(tjσj)

†(tiσi)N +
gtgs
3

[

N †(tjσj)
†(sAτA)N + h.c.

]

+ g2sN
†(sAτA)

†(sBτB)N

)

,

(2)

where Λ is the momentum cutoff. Finite-range corrections can be incorporated as higher
orders in the EFT [14–17] but will not be considered here. The coupling constants gs,t
can be matched to the two-body scattering lengths as,t in the corresponding channel or, in
the case of gt, to the deuteron binding energy. The three-body coupling H(Λ) approaches
an ultraviolet limit cycle for large Λ. The analytic dependence of H on the cutoff can be
expressed as

H(Λ) =
cos [s0 log(Λ/Λ∗) + arctan s0]

cos [s0 log(Λ/Λ∗)− arctan s0]
, (3)

where s0 = 1.00624... and the phase Λ∗ has to be fixed from a three-body datum. The
low-energy constant Λ∗ is also known as the “three-body parameter”. This renormalization
procedure remedies the incorrect ultraviolet behavior of the EFT. Once Λ∗ has been fixed
from a three-body datum, all other low-energy three-body observables can be predicted. For
more details on the infinite volume case we refer the reader to the literature [11, 14–17].

We now consider placing the system inside a cubic box. The finite volume modifies the
infrared regime due to momentum quantization. In a finite cubic volume with edge length L
and periodic boundary conditions, the allowed momenta are given by 2π

L $n, $n ∈ Z3, yielding
a low-momentum scale 2π

L corresponding to the minimal accessible non-zero momentum.
As long as this scale is small compared to the high-energy scale given by the momentum
cutoff Λ, the ultraviolet behavior of the amplitudes is unaffected by the finite volume and
the renormalized values for the coupling constants obtained in the infinite volume can be
used for finite volume calculations. We will explicitly verify that this claim holds for our
results.
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can be matched to the two-body scattering lengths as,t in the corresponding channel or, in
the case of gt, to the deuteron binding energy. The three-body coupling H(Λ) approaches
an ultraviolet limit cycle for large Λ. The analytic dependence of H on the cutoff can be
expressed as

H(Λ) =
cos [s0 log(Λ/Λ∗) + arctan s0]

cos [s0 log(Λ/Λ∗)− arctan s0]
, (3)

where s0 = 1.00624... and the phase Λ∗ has to be fixed from a three-body datum. The
low-energy constant Λ∗ is also known as the “three-body parameter”. This renormalization
procedure remedies the incorrect ultraviolet behavior of the EFT. Once Λ∗ has been fixed
from a three-body datum, all other low-energy three-body observables can be predicted. For
more details on the infinite volume case we refer the reader to the literature [11, 14–17].

We now consider placing the system inside a cubic box. The finite volume modifies the
infrared regime due to momentum quantization. In a finite cubic volume with edge length L
and periodic boundary conditions, the allowed momenta are given by 2π

L $n, $n ∈ Z3, yielding
a low-momentum scale 2π

L corresponding to the minimal accessible non-zero momentum.
As long as this scale is small compared to the high-energy scale given by the momentum
cutoff Λ, the ultraviolet behavior of the amplitudes is unaffected by the finite volume and
the renormalized values for the coupling constants obtained in the infinite volume can be
used for finite volume calculations. We will explicitly verify that this claim holds for our
results.
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• Infinite volume Faddeev eqns correspond to coupled integral equations
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FIG. 1: Integral equation for the triton amplitudes Ft (shaded circle) and Fs (shaded square).
Single lines denote nucleons, double lines indicate dinucleons in the 3S1 channel and thick solid
lines denote dinucleons in the 1S0 channel.

The properties of the triton are determined by the bound state amplitude in the spin-1/2
channel which is given by the integral equation in Fig. 1. This equation has non-trivial
solutions only for negative energies E3 whose absolute values correspond to the binding
energies. The triton amplitude has two components Ft (shaded circle) and Fs (shaded
square) that correspond to the outgoing dinucleon being in the 3S1 and 1S0 channels. The
single lines denote nucleons, while the double and thick solid lines indicate full dinucleon
propagators in the 3S1 and 1S0 channels, respectively. The amplitude gets contributions from
one-nucleon exchange as well as from the three-body interaction in L3. The loop momenta in
this equation are quantized in a finite volume as described above. The full propagator for the
dinucleon fields is obtained by dressing the bare propagator from Eq. (1) with nucleon loops
to all orders. This yields an geometric series of diagrams that can be evaluated analytically:
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. (4)

The result reproduces the infinite volume dinucleon propagator except for a volume depen-
dent term that vanishes in the limit L → ∞.

Using the Feynman rules from the Lagrangian in Eqs. (1) and (2) and the full dimer
propagators from above, we can explicitly write down the coupled integral equations for the
triton amplitude from Fig. 1. It involves integrations over the loop energy and sums over
the quantized loop momenta. The integrations are performed by virtue of the residue theo-
rem while the sums over the quantized momenta are rewritten into sums of integrals using
Poisson’s resummation formula
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where ds,t(!y) = (g2s,t/8π)Ds,t(E3 − !y 2/2, !y) depends only on the absolute value of !y. The
integral equations (5) obey Wigner SU(4) symmetry in the ultraviolet. As a consequence, a
SU(4)-symmetric three-body interaction with running coupling H(Λ) is sufficient for renor-
malization [11].

In a finite cubic box, spherical symmetry is broken down to cubic symmetry. As a conse-
quence, the infinitely many irreducible representations of the double cover of the rotational
group, SU(2), become reducible in terms of the eight irreducible representations of the dou-
ble cover of the cubic group, 2O. The triton has j = 1/2. This partial wave is contained
in the G+

1 representation, which also contains j = 7/2, 9/2, . . . [32]. Assuming that the
triton amplitude in finite volume transforms under the G+

1 representation, it is possible to
decompose it into the different partial waves [33, 34] as

F(!y) =

(G+
1 )

∑

j= 1
2
, 7
2
,...

∑

t

F (j,t)(y)
∑

mj

C̃jtmj
|jmj〉. (7)

The coefficients C̃jtmj
can be determined by explicitly decomposing the reducible represen-

tations [34] and the sum over t is needed if a partial wave is contained more than once.
Since this is not the case for partial waves less than 13/2, we will omit this index in the
following. The vectors |jmj〉 are given by |jmj〉 =

∑

m,sC
jmj

!(j)m 1
2
s
|#(j)m〉 ⊗ |12s〉, where the

C’s are Clebsch-Gordan coefficients, |#m〉 is a spherical harmonic and |12s〉 is a spin-1/2
spinor. The sign in #(j) = j ± 1

2 has to be chosen such that #(j) is even in order to get the
positive parity of the triton.

Projecting out the Jth partial wave and performing the angular integrations in Eq. (5)
yields an infinite set of coupled equations:

(

F (J)
t (y)

F (J)
s (y)

)

=
4

π

∫ Λ

0

dy y2

2#(J) + 1

(G+
1 )

∑

j

[

M2(y)Z
(!(J))(p, y) +M3(y)

2H(Λ)

Λ2
δ!(J),0

]

(

F (j)
t (y)

F (j)
s (y)

)

×
[

δJj +
∑

"n∈Z3

"n "="0

√
4π

∑

!′

i!
′

j!′(L|!n|y)

√

(2#(j) + 1)(2#′ + 1)

2#(J) + 1

×
∑

m(!(j)),s( 1
2
)

C̃j,m+s

C̃JM

Y ∗
!′(M−s−m)(n̂)C

JM
!(J)(M−s) 1

2
sC

j,m+s
!(j)m 1

2
s
C!(J)0

!(j)0!′0C
!(J)(M−s)
!(j)m!′(M−s−m)

]

.

(8)

The notation m(#) is used to indicate summation over m = −#, . . . , #. The partial waves of
Z are given by

Z(!)(p, y) =
2#+ 1

py
Q!

(

p2 + y2 − E3

py

)

, (9)

where Q! is a Legendre function of the second kind. Note that the δJj-term in Eq. (8)
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Three-nucleons in finite volume

• Boundary conditions impose cubic symmetry: irreps of SU(2) must be decomposed 
into irreps of double cover of octahedral group 2O

• Project out partial waves
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The notation m(#) is used to indicate summation over m = −#, . . . , #. The partial waves of
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Triton at finite volume

• Binding energy of triton tuned to physical value at infinite volume

• Fitted by a simple exponential form

• Lattice calculations at different volumes would constrain the LEC H(Λ)

The Triton in Finite Volume Results

The Triton in Finite Volume

E∞
3 = −8.4818 MeV

Size of the triton ∼ 2 fm

Results are renormalized

Shift at volumes typical in
Lattice QCD already more
than 100%! 5 10 15

L [fm]

-20

-10

0

E 3 [M
eV

]

Λ = 600 MeV
H = 0
physical value
Epelbaum et al.
Fit

Fit of the form E3(L) = E3(L = ∞)
[

1 + c
L e−L/L0

]

Comparison to data from Chiral EFT on the lattice [Epelbaum et al, 10]:
study higher partial waves, higher orders
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reproduces the infinite volume result. This equation is now specialized to the case J = 1/2:

(
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)

=
4

π

∫ Λ

0

dy y2
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M2(y)Z
(0)(p, y) +M3(y)

2H(Λ)
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F (j)
t (y)

F (j)
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×
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Since the leading term in the expansion of the Bessel functions in Eq. (10) is 1/(L|#n|y),
these contributions are suppressed by at least a/L. They will be small for volumes not too
small compared to the size of the bound state. The lowest partial wave that is mixed with
J = 1/2 is the J = 7/2 wave. Contributions from higher partial waves will be suppressed
kinematically for shallow states with small binding momentum. This is ensured by the
spherical harmonic in the second term of Eq. (10). Only for small lattices, i.e. when a/L is
large, this behavior is counteracted by terms stemming from the spherical Bessel function
j"(j)(L|#n|y) and higher partial waves may contribute significantly. In this first study, we will
therefore neglect contributions from higher partial waves. We are encouraged to do so by
our results for the bosonic case, where calculations including one more partial wave yielded
corrections on the percent level even for small volumes [19]. Thus, only two coupled integral
equations remain. Details of the numerical methods used to solve these equations can also
be found in [19].

In the following, we will present our results for the energy of the triton for cubic volumes
with various edge lengths L. In order to verify that the results are properly renormalized,
we produced two data sets. For one set, the cutoff was set to Λ = 600 MeV and the three-
body coupling was chosen such that the triton binding energy is reproduced in the infinite
volume. For the other set, the cutoff was chosen such that the three-body force vanishes
for the physical triton binding energy in the infinite volume. This is always possible due
to the limit cycle behavior of the three-body force. Both data sets should agree if the
renormalitzation has been carried out properly.

Figure 2 shows the triton binding energy for finite cubic volumes with edge lengths L
ranging from 17 fm down to 2 fm. The values from our two data sets (squares and circles)
are in good agreement, indicating that our results are indeed cutoff independent. For large
volumes, the deviation of the triton energy from its infinite volume value is small. When
going to edge lengths smaller than about 10 fm, the energy of the state strongly decreases.
Near L = 6 fm, the shift is already more than 100%. The dependence of the energy on L
can be nicely fitted to a function of the form

E3(L) = E3(L = ∞)
[

1 +
c

L
e−L/L0

]

, (11)

indicated by the solid line in Fig. 2. We find the values L0 = 2.9 fm and c = 39 fm. The
length scale L0 is associated with the size of the physical triton wave function. Thus the
L-dependence of the triton energy is similar to the behavior in the two-body sector [35, 36].

The triangles give the results from a lattice calculation using chiral EFT at N2LO by
Epelbaum and collaborators [20]. While they agree with our results for L>∼ 10 fm, the
finite volume shifts are larger for smaller volumes. This discrepancy could be due to the
fact that Epelbaum et al. calculate the volume dependence of the lowest state in the G+

1
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Beyond three baryons

• Philosophical approach is similar to three baryon case

• Perform lattice calculations and extract eigen-energies of N baryon system

• Perform EFT calculation in appropriate finite volumes for a range of values of 
LECs until results match onto lattice calculation

• Using the determined LECs, perform infinite volume EFT calculation to extract 
infinite volume binding/scattering information

• Problems

• Has not really been attempted

• Four and higher body EFT calculations are computationally demanding

• Convergence of EFT (for nucleons, pionless EFT is probably not enough) must 
be carefully investigated



Contractions



Multi-meson contractions

• An n meson correlation function is

• For few meson systems can do Wick contractions by hand 

• Cn can be written in terms of 12 cpt Grassman valued variables ηi and matrix Π 

• Using the 12 cpt Grassman identity

we can write

• Appears in the expansion

ensembles [54] are shown in Table II5.
The results of the present calculation are presented in lattice units (l.u.), or in terms of

dimensionless quantities such as m⌅/f⌅ which eliminates the requirement of scale setting.
They are performed only at one lattice spacing, due to limited computer time, and as a
result the continuum limit cannot be determined. Unlike the two meson system, for which
mixed-action chiral perturbation theory (MA⌅PT) [55, 56, 57] has been used to include the
leading order e⇥ects of the finite lattice spacing, MA⌅PT calculations have not yet been
performed for the multi-⇤+ systems, and therefore the leading lattice spacing artifacts in
these calculations cannot be removed at present. The lattice spacing artifacts are assumed
to be small, occurring at O(b2), but a systematic study must be performed in the future.

B. Correlation functions

In this work we determine the ⇤+⇤+ and ⇤+⇤+⇤+ interactions from the ground-state energy
of n < 13 ⇤+’s (isospin stretched states). By working in the mu = md limit and restricting
the calculation to states of maximal isospin, only the simplest sets of propagator contractions
are required to be performed (i.e. no disconnected diagrams) in order to form the correlation
functions from which the ground-state energies are extracted.

Naively, there are (n!)2 contractions (for large n this behaves as ⇥ (2n + 1
3)⇤e2n(log n�1))

contributing to the correlation function of n-⇤+’s,

Cn(t) ⇤ ⇧
�

⇤

x

⇤�(x, t)

⇥n �
⇤+(0, 0)

⇥n

⌃ , (13)

where ⇤+(x, t) = u(x, t)�5d(x, t). However, this correlation function can be written as 6

Cn(t) ⇤ ⇧ ( ⇥�⇥ )n ⌃ , (14)

where

� =
⇤

x

S(x, t; 0, 0) S†(x, t; 0, 0) , (15)

and S(x, t; 0, 0) is a light-quark propagator. The object (block) � is a 12 � 12 (4-spin and
3 color) bosonic time-dependent matrix, and ⇥� is a twelve component Grassmann variable.
Using

⇧⇥�1⇥�2 ...⇥�n⇥⇥1⇥⇥2 ...⇥⇥n⌃ ⇤ ⇧�1�2..�n⇤1..⇤12�n ⇧⇥1⇥2..⇥n⇤1..⇤12�n , (16)

leads to correlation functions

Cn(t) = ⇧�1�2..�n⇤1..⇤12�n ⇧⇥1⇥2..⇥n⇤1..⇤12�n (�)⇥1

�1
(�)⇥2

�2
.. (�)⇥n

�n
. (17)

5 Until this point the two-body scattering length for a generic system has been denoted by a. For the �+�+

system, we denote the scattering length by a(I=2)
�� .

6 We thank David Kaplan and Michael Endres for discussions on this topic. For a general approach to
evaluating contractions involving a large number of fermions, see Ref. [58].
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(a) (b) (c) (d)

FIG. 1: Graphical representation of the contractions for three pions with Iz = 3, (a,b,c). By
restricting to the maximal isospin, computationally demanding contractions such as the type shown
in (d) are eliminated.

While correct, further simplifications are possible. Let us recall that for an arbitrary 12⇥12
matrix, A,

det (1 + �A) =
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nCj �j Cj(t) , (18)

where in the last line we identify the matrix A with �. Further,

det (1 + �A) = exp (Tr [log [ 1 + �A] ] ) = exp

⇧
Tr

⌥
 

p=1

(�)p�1

p
�pAp

� ⌃

= 1 + � Tr [ A ] +
�2

2

�
(Tr [ A ])2 � Tr

⇤
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⌅⇥

+
�3

6

�
2Tr
⇤

A3
⌅
� 3Tr [ A ] Tr

⇤
A2
⌅

+ ( Tr [ A ])3 ⇥ + . . . .(19)

Therefore, by equating terms of the same order in the expansion parameter � in eq. (18)
and eq. (19), one can recover the n-⇥+ correlation functions in eq. (17). As an example, the
contractions for the 3-⇥+ system are

C3(t) ⇤ trC,S [�]3 � 3 trC,S

⇤
�2
⌅
trC,S [�] + 2 trC,S

⇤
�3
⌅

, (20)

where the traces, trC,S, are over color and spin indices. The three contributions in the
correlator in eq. (20) are shown in fig. 1, (a), (b), and (c), respectively. As it is the energy of
states with maximal z-component of isospin that are calculated in this work, disconnected
contractions, such as those in fig. 1(d), do not contribute to the correlation functions that are
computed. The explicit form of the contractions for n = 1, . . . 13 are given in Appendix A.
Rewriting the contractions in terms of traces over the �-blocks greatly reduces the required
number of calculations, with the number of independent contributions to the correlation
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Multi-meson contractions

C12(t) = T 12
1 � 66T2T

10
1 + 440T3T

9
1 + 1485T 2

2 T 8
1 � 2970T4T

8
1 � 15840T2T3T

7
1 + 19008T5T

7
1 � 13860T 3

2 T 6
1

+36960T 2
3 T 6

1 + 83160T2T4T
6
1 � 110880T6T

6
1 + 166320T 2

2 T3T
5
1 � 332640T3T4T

5
1 � 399168T2T5T

5
1

+570240T7T
5
1 + 51975T 4

2 T 4
1 � 554400T2T

2
3 T 4

1 + 623700T 2
4 T 4

1 � 623700T 2
2 T4T

4
1 + 1330560T3T5T

4
1

+1663200T2T6T
4
1 � 2494800T8T

4
1 + 492800T 3

3 T 3
1 � 554400T 3

2 T3T
3
1 + 3326400T2T3T4T

3
1

+1995840T 2
2 T5T

3
1 � 3991680T4T5T

3
1 � 4435200T3T6T

3
1 � 5702400T2T7T

3
1 + 8870400T9T

3
1

�62370T 5
2 T 2

1 + 1663200T 2
2 T 2

3 T 2
1 � 3742200T2T

2
4 T 2

1 + 4790016T 2
5 T 2

1 + 1247400T 3
2 T4T

2
1

�3326400T 2
3 T4T

2
1 � 7983360T2T3T5T

2
1 � 4989600T 2

2 T6T
2
1 + 9979200T4T6T

2
1 + 11404800T3T7T

2
1

+14968800T2T8T
2
1 � 23950080T10T

2
1 � 1478400T2T

3
3 T1 + 4989600T3T

2
4 T1 + 415800T 4

2 T3T1

�4989600T 2
2 T3T4T1 � 1995840T 3

2 T5T1 + 5322240T 2
3 T5T1 + 11975040T2T4T5T1 + 13305600T2T3T6T1

�15966720T5T6T1 + 8553600T 2
2 T7T1 � 17107200T4T7T1 � 19958400T3T8T1 � 26611200T2T9T1

+43545600T11T1 + 10395T 6
2 + 246400T 4

3 � 1247400T 3
4 � 554400T 3

2 T 2
3 + 1871100T 2

2 T 2
4

�4790016T2T
2
5 + 6652800T 2

6 � 311850T 4
2 T4 + 3326400T2T

2
3 T4 + 3991680T 2

2 T3T5 � 7983360T3T4T5

+1663200T 3
2 T6 � 4435200T 2

3 T6 � 9979200T2T4T6 � 11404800T2T3T7 + 13685760T5T7

�7484400T 2
2 T8 + 14968800T4T8 + 17740800T3T9 + 23950080T2T10 � 39916800T12 (A12)

C13(t) = T 13
1 � 78T2T

11
1 + 572T3T

10
1 + 2145T 2

2 T 9
1 � 4290T4T

9
1 � 25740T2T3T

8
1 + 30888T5T

8
1

�25740T 3
2 T 7

1 + 68640T 2
3 T 7

1 + 154440T2T4T
7
1 � 205920T6T

7
1 + 360360T 2

2 T3T
6
1

�720720T3T4T
6
1 � 864864T2T5T

6
1 + 1235520T7T

6
1 + 135135T 4

2 T 5
1 � 1441440T2T

2
3 T 5

1

+1621620T 2
4 T 5

1 � 1621620T 2
2 T4T

5
1 + 3459456T3T5T

5
1 + 4324320T2T6T

5
1 � 6486480T8T

5
1

+1601600T 3
3 T 4

1 � 1801800T 3
2 T3T

4
1 + 10810800T2T3T4T

4
1 + 6486480T 2

2 T5T
4
1 � 12972960T4T5T

4
1

�14414400T3T6T
4
1 � 18532800T2T7T

4
1 + 28828800T9T

4
1 � 270270T 5

2 T 3
1 + 7207200T 2

2 T 2
3 T 3

1

�16216200T2T
2
4 T 3

1 + 20756736T 2
5 T 3

1 + 5405400T 3
2 T4T

3
1 � 14414400T 2

3 T4T
3
1 � 34594560T2T3T5T

3
1

�21621600T 2
2 T6T

3
1 + 43243200T4T6T

3
1 + 49420800T3T7T

3
1 + 64864800T2T8T

3
1 � 103783680T10T

3
1

�9609600T2T
3
3 T 2

1 + 32432400T3T
2
4 T 2

1 + 2702700T 4
2 T3T

2
1 � 32432400T 2

2 T3T4T
2
1

�12972960T 3
2 T5T

2
1 + 34594560T 2

3 T5T
2
1 + 77837760T2T4T5T

2
1 + 86486400T2T3T6T

2
1

�103783680T5T6T
2
1 + 55598400T 2

2 T7T
2
1 � 111196800T4T7T

2
1 � 129729600T3T8T

2
1

�172972800T2T9T
2
1 + 283046400T11T

2
1 + 135135T 6

2 T1 + 3203200T 4
3 T1 � 16216200T 3

4 T1

�7207200T 3
2 T 2

3 T1 + 24324300T 2
2 T 2

4 T1 � 62270208T2T
2
5 T1 + 86486400T 2

6 T1

�4054050T 4
2 T4T1 + 43243200T2T

2
3 T4T1 + 51891840T 2

2 T3T5T1 � 103783680T3T4T5T1

+21621600T 3
2 T6T1 � 57657600T 2

3 T6T1 � 129729600T2T4T6T1 � 148262400T2T3T7T1

+177914880T5T7T1 � 97297200T 2
2 T8T1 + 194594400T4T8T1 + 230630400T3T9T1

+311351040T2T10T1 � 518918400T12T1 + 4804800T 2
2 T 3

3 � 32432400T2T3T
2
4

+41513472T3T
2
5 � 540540T 5

2 T3 � 9609600T 3
3 T4 + 10810800T 3

2 T3T4

+3243240T 4
2 T5 � 34594560T2T

2
3 T5 + 38918880T 2

4 T5 � 38918880T 2
2 T4T5

�43243200T 2
2 T3T6 + 86486400T3T4T6 + 103783680T2T5T6 � 18532800T 3

2 T7

+49420800T 2
3 T7 + 111196800T2T4T7 � 148262400T6T7 + 129729600T2T3T8

�155675520T5T8 + 86486400T 2
2 T9 � 172972800T4T9 � 207567360T3T10

�283046400T2T11 + 479001600T13 (A13)
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T j
i = tr

⇥
Xi

⇤j



Few pion contractions

C1⇡(t) =

C2⇡(t) =

C3⇡(t) = �3 �2

�



Meson blocks

• Define a partly contracted pion correlator

• Time-dependent 12x12 
matrix (spin-colour indices)

• Correlators (⟨...⟩ indicates color-spin trace)

• Functional definition

• Generalises to 

⇧ ⌘ R1 =
X

x

Su(x, t;x0)�5Sd(x0;x, t)�5 =
X

x

Su(x, t;x0)S†
d(x, t;x0)

C1(t) = h⇧i, C2(t) = h⇧i2 � h⇧2i, . . .

⇧ij = ūi(x)uk(x0)
�

�ūj(x)�uk(x0)
C1(t)

(Rn)ij ⌘ ūi(x)uk(x0)
�

�ūj(x)�uk(x0)
Cn(t)

...



Recursion relation

• Contractions are not simply related

• Block objects are simply related

• Recursion relation

• Initial condition is that 

• Can also construct a descending recursion as we know that R13=0 

Rn+1 = hRni R1 � n Rn R1

R1 = ⇧, Rj = 0, 8j < 1

...

n+1

= - n

...

n

...

n

[WD, M Savage, PRD 82 (2010) 014511 ]



Multi-source systems

• To get beyond n=12, need to consider multi-source systems

• Consider two sources first

• C(2,1)(t) contains contractions like (sink position summed over timeslice, so no 
exclusion problem until n=12L3)

C(n1⇡+
1 , n2⇡+

2 )(t) =

*  
X

x

⇡+(x, t)

!n1+n2  
⇡�(y

1

, 0)

!n1  
⇡�(y

2

, 0)

!n2 +

x, t

y1

y2



Multi-source systems

• Multiple types of blocks needed 

• Two species case has a simple recursion relation:
First define

Then Q(n1,n2) (generalisations of the Rn) satisfy

Q(n1+1,n2) = h Q(n1,n2) i P1 � (n1 + n2) Q(n1,n2) P1

+h Q(n1+1,n2�1) i P2 � (n1 + n2) Q(n1+1,n2�1) P2

Aab =
X

x

Su(x, t;xa)S†
d(x, t;xb)

xa

xb

P1 =
✓

A11(t) A12(t)
0 0

◆
, P2 =

✓
0 0

A21(t) A22(t)

◆



Extensions

• Recursions also constructed for 

• m-source systems 

• k-species systems: π‘s, K’s, D’s, B’s, ...

• m-source, k-species systems

where subscripts are matrices 

• Implemented as matrix multiplications - computationally tractable

• Each iteration involves essentially two-body contractions

• Without tracking which source a given pion came from, cost is ~n3

Tn+1rs =
kX

i=1

mX

j=1

h Tn+1rs�1ij i Pij � N Tn+1rs�1ij Pij



Improved meson contraction methods

• Enlarge matrix Π to 12Nx12N using N source locations 

                                                           where

• New approaches based on determinantal nature: ~n3  scaling

• Vandermonde system

• Fourier analysis

• Combination method

• Implement contractions in momentum space

[WD, K Orginos, Z Shi, 1205.4224 ]

with 12⇥ 12 sub-blocks

Pk,i(t) =
⌥

x

S(x, t;yi, 0)S
†(x, t;yk, 0), (3)

where S(x, t;y, 0) is a quark propagator between two points. Each Pk,i is an uncontracted
correlator describing a quark propagating from source i to source k through the sink at x
with the quantum number of a ⇥+.

As shown in Ref. [12], a recursion relation for the Cn1,..,nN (t) can be derived by studying
the properties of the expansion of the above determinant. The Cn1,...,nN (t)’s have the same
energy spectrum for all combinations of ni’s as long as n is fixed, so separately computing
correlation functions of all possible combinations of ni’s is redundant. We can thus iden-
tify a combined correlator Cn⇥(t) as the term having prefactor �n from the expansion of
det[1 + �A], with

A = P1 + P2 + . . .+ PN =

�

⇧⇧⇧⇧⇧⇧⇤

P1,1 P1,2 . . . P1,N
... . . . . . . . . .

Pk,1 Pk,2 . . . Pk,N
... . . . . . . . . .

PN,1 PN,2 . . . PN,N

⇥

⌃⌃⌃⌃⌃⌃⌅
. (4)

Cn⇥(t) is a complicated summation of all possible Cn1,n2,...,nN (t) with fixed n, in which we
do not identify which pions originate at which source. For multiple source contractions, even
terms representing more than 12 ⇥+’s located in a single source are included, however such
terms vanish identically and so do not produce additional noise in numerical calculations. As
fewer correlation functions are needed, computing Cn⇥(t) is a computationally simpler task
than recursively computing all Cn1,n2,...,nN (t). In the following subsections, we will construct
four algorithms to further speed up the calculation of Cn̄⇥(t) and compare each algorithm
in terms of precision requirement and numerical cost.

A. Vandermonde Matrix method (VMm)

As described above, a correlation function of an n-⇥+ system (Cn⇥) can be identified as
the coe⇤cient of �n from the power series expansion of det[1 + �A]

det[1 + �A] = 1 + �C1⇥ + �2C2⇥ + . . .+ �12NC12N⇥, (5)

where A is a 12N⇥12N matrix constructed from uncontracted correlators following Eq. (4).
A simple way to get Cn⇥ is by computing Eq. (5) for 12N di�erent choices of � (�1, . . . ,�12N).
The resulting system of equations can be written in the following matrix form

�

⇧⇧⇧⇧⇤

det[1+�1A]�1
�1

det[1+�2A]�1
�2
...

det[1+�12NA]�1
�12N

⇥

⌃⌃⌃⌃⌅
=

�

⇧⇧⇧⇤

1 �1 �2
1 . . . �12N�1

1

1 �2 �2
2 . . . �12N�1

2
...
1 �n �2

n . . . �12N�1
n

⇥

⌃⌃⌃⌅
·

�

⇧⇧⇧⇤

C1⇥

C2⇥
...

C12N⇥

⇥

⌃⌃⌃⌅
. (6)

The matrix on the RHS of Eq. (6) is a 12N ⇥ 12N Vandermonde matrix, for which there
exist analytical forms for the determinant and inverse (see for example Ref. [15]). The
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Many baryon systems

• Many baryon correlator construction is messier

• Interpolating fields – minimal expression as weighted sums

• Generation of weights can be automated (symbolic code) for given quantum 
numbers

• Specify final quantum numbers (spin, isospin, strangeness etc)

• Build up from states of smaller quantum numbers just by using rules of eg 
angular momentum addition

• Similar ideas by Doi and Endres [1205.0585]

• Contraction just reads in weights and can be implemented independent of the 
particular process being considered

N̄ h =
NwX

k=1

w̃
(a1,a2···anq ),k

h

X

i

✏i1,i2,···,inq q̄(ai1)q̄(ai2) · · · q̄(ainq
)

[WD, K Orginos,  1207.1452 ]

color/spin/flavour/spatial indices



Many baryon systems

• Given a complex many baryon system to perform contractions for, always possible 
to group colour singlets at one end (sink)

• Contractions can be written in terms of baryon blocks (objects that are contracted 
at sink)

• A particular set of quantum numbers b for the block is select by a weighted sum of 
components of quark propagators

• Can be generalised to multi-baryon blocks if desired although storage requirements  
rapidly increase
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X
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ip·x
NB(b)X
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Many baryon systems
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Many baryon systems

• Contractions

• Make a particular choice of correlation function (momentum projection at sink) 
and express in terms of blocks (quark-hadron level contraction)
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We can generalise these blocks to allow the quark propagators to originate from di↵erent source locations,

x

(1)
0 , x

(2)
0 , . . ., as necessary, using

Ba1,a2,a3

b (p, t; s1, s2, s3) =
X

x

e

ip·x
NB(b)X

k=1

w̃

(c1,c2,c3),k
b

X

i
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i1,i2,i3
S(ci1 ,x; a1, x

(s1)
0 )S(ci2 ,x; a2, x

(s2)
0 )S(ci3 ,x; a3, x

(s3)
0 ) ,

(10)

where the x(k)
0 label the source locations. These blocks can be further generalised to allow for non-trivial single hadron

spatial wave-function at the sink, but we will not consider this case further. It may also be advantageous to consider
more complicated multi-hadron blocks similar to those implemented in Ref. [2] although the storage requirements
grow rapidly with number of baryons in the block.

B. Quark-hadron contractions

Using the building blocks described above, we can consider correlation functions in which quark level interpolating
fields are used at the source and their hadronic counterparts are used at the sink. The contractions are performed by
iterating over all combinations of source and sink interpolating field terms and connecting the source and sink with
the appropriate sets of quark propagators. For a given pair of source and sink interpolating field terms, this amounts
to selecting the components dictated by the source quark interpolating field from the product of blocks dictated by
the hadronic sink interpolating field. The Wick contractions are implemented by performing this selection in all
possible ways. This proceeds by taking the first hadron in the hadronic wave-function at the sink, replacing it by the
appropriate hadron block and selecting the three free indices in all possible ways from the pool of indices dictated
by the source quark interpolating field, keeping track of the appropriate permutation sign. Following this, the second
baryon component in the hadronic (sink) interpolating field term is replaced with the appropriate block and the free
indices are contracted with the remaining free indices in the source quark interpolating field term in all possible ways.
These first steps are illustrated in Fig. 1 and the procedure continues until all hadrons in the sink interpolating field
term have been contracted, necessarily using all available quark indices at the source. The result is then multiplied by

(a) (b)

FIG. 1: Illustration of steps one and two of the quark–hadron contraction method. The small circles in the left hand of
the figures correspond to the quarks in the source interpolating field while the large squares and lines extending from them
correspond to the hadronic blocks.

the weights of the source and sink terms under consideration and added to the correlation function. The contraction
is complete after all combinations of source and sink interpolating field terms have been considered. The process
described here is independent of the the source and sink interpolating fields and can be applied to any correlation
function. Further reductions of the total cost of the algorithm may be possible by studying the symmetry properties
of a particular pair of source-sink interpolating fields. However, such reductions are not generic, hence we do not

...

Stage 1 Stage 2
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• Contractions
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Many baryon systems

• Contractions

• Or write as determinant (quark-quark level contraction)
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Many baryon systems

• Contractions

• Or write as determinant (quark-quark level contraction)

where

• Determinant can be evaluated in polynomial number of operations
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