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Lecture content

• Nuclear physics and the role of LQCD

• Scattering theory and bound states

• General forms of potentials

• Potentials for infinitely heavy hadrons
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What do we know about nuclei?

• Masses and binding energies

• Sizes and shapes

• Electromagnetic properties; multipole 
moments

• Magnetic moments

• Quadrupole moments

• Excitation spectra

• National Nuclear Data Center 
http://www.nndc.bnl.gov/
(the PDG of nuclear physics)

http://www.nndc.bnl.gov
http://www.nndc.bnl.gov


Nuclear binding 

• Stable isotopes are bound systems of nucleons, so by definition their mass is less 
than the sum of the masses of the constituents

• The (positive) binding energy is defined as

and the binding energy per nucleon is B/A (shown in figure)

• Sharp rise and spiky for
small A

• Maximum at A=58

• Slow decrease above
A=60, B/A~8 MeV

• Very important curve
for fusion and fission

B(Z,N) = ZmH + Nmn �M(Z,N)



Semi-empirical mass formula

•  Weiszacker mass formula:

• Parameters are fit to data

• Gives a good description
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Nuclear radii

• Rutherford’s experiments in the early 1900s showed that the nucleus was very 
much smaller than the atom

• Nucleons are about ~0.8 fm in radius, and if we think of them as hard spheres and 
pack them into  a spherical configuration then

or equivalently 

(r0 is a bit larger than proton radius to account for packing fraction)

• Charge distribution can be measured in elastic electron scattering just as for proton 
form factors (also muonic atoms)

• Matter distribution probed by elastic hadron-nucleus scattering 

• Charge and matter distributions will agree only if protons and neutrons are 
arranged similarly
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Nuclear charge distributions

• Charge density probed
in elastic eA→eA

• Definitive experiments 
by Hofstadter (1950s)

• For large nuclei, core of 
constant density inside a 
diffuse surface with 
rapidly decreasing density

• For A>20, distribution 
described by a Fermi 
distribution

• a controls the thickness of the surface and R1/2 the size of the central region

• Fits give 

⇢(r) =
⇢0

1 + e(r�R1/2)/a

⇢0 = 0.17
Z

A
fm�1, a = 0.54 fm, R1/2 = 0.218A1/3 fm



Neutron skin

• PV electron scattering sees neutrons predominantly over electrons

• Provides a theoretically cleaner measurement as EW probe

• Parity Radius EXperiment (PREX)
JLab 2010

• Neutron radius of 208Pb from PREX 

• Neutron skin outside protons

• Constrains Eq of State for 
neutron stars



Nuclear theory 

• Much disparate phenomenology explored over many years

• Lots of data 

• Proliferation of models cooked up to describe 
various different aspects

• Liquid drop model

• Shell models

• Vibrational and rotational models

• “Ab-initio” methods

• To some level of approximation nucleus = a bunch of nucleons with predominantly 
pairwise interactions



Exotic nuclei

• Not all nuclides are so easily dealt with in these simple models

• One example is halo nuclei in which some 
nucleons spend significant fractions of time 
are large distances from the COM 

• Ex 11Li is as large as 208Pb 

• NB: neither of the two subsystems 
(nn, 10Li) are bound

• Isotopes of helium are even more strange: 
four-neutron halo

• Also there are super-deformed nuclei (around 
N=80, Z=60) that don’t fit observed patterns

11Li 208Pb
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• Significant experimental programs at 
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The EMC effect

• Nuclei are not just a collection of nucleons

• 1983: deep inelastic scattering on Fe target [EMC]

• Proton structure modified in a nuclear environment 

F

A
2 (x) 6= AF

N
2 (x)



Three body physics

• Three body interactions

• Necessary for accurate 
description of nuclei in 
GFMC

• Unlike 2 body, not much 
data to constrain 3-body 
interactions

• Higher body?
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LQCD in nuclear physics

• Nuclear physics: an emergent phenomenon of the Standard Model

• Nuclei are on equal footing to protons, 
neutrons, pions and kaons

• Should be describable from the  SM

• Nuclear physics is a new frontier in LQCD

• Put NP on firm theoretical foundation

• Enabled by growth in HPC 

• Lots of challenges

• Lots of recent progress



LQCD in nuclear physics

[compiled by Tom Luu, LLNL]
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• Can we compute the mass of 208Pb in QCD?

• Yes, consider

• Long time behaviour gives ground state energy 
up to EW effects

• But...

h0|Tq1(t) . . . q624(t)q1(0) . . . q624(0)|0i

t!1�! # exp(�MPbt)

Nuclear physics from LQCD
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• Complexity:  number of
Wick contractions = (A+Z)!(2A-Z)!

• Dynamical range of scales 
(numerical precision)

ΛQCD
Mp

1/a

MPb

0.25

0.94

3

200

GeV

0.005 mq
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An (exponentially hard)2 problem?

• Complexity:  number of
Wick contractions = (A+Z)!(2A-Z)!

• Dynamical range of scales 
(numerical precision)

• Small energy splittings

• Importance sampling: statistical 
noise exponentially increases with A

keV

73Ge



The trouble with baryons

• Importance sampling of QCD functional integrals 
➤ correlators determined stochastically 

• Variance in single nucleon correlator (C) determined by 

• For nucleon: 

• For nucleus A:

[Lepage ’89]

�2(C) = hCC†i � |hCi|2

signal

noise

⇠ exp [�(MN � 3/2m⇡)t]

signal

noise

⇠ exp [�A(MN � 3/2m⇡)t]

N
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• For nucleus A:

N
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The trouble with baryons

• Importance sampling of QCD functional integrals 
➤ correlators determined stochastically 

• Variance in single nucleon correlator (C) determined by 

• For nucleon: 

• For nucleus A:

π
π
π

[Lepage ’89]

�2(C) = hCC†i � |hCi|2

signal

noise

⇠ exp [�(MN � 3/2m⇡)t]

signal

noise

⇠ exp [�A(MN � 3/2m⇡)t]
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LQCD in nuclear physics

• Very difficult to explore all of 
NP from QCD

• A possible path to ab initio 
nuclear physics:

• QCD forms a foundation - 
determines few body 
interactions

• Match existing many body 
techniques onto QCD

• Hierarchy of methods

• QCD: focus on small A 

• ... for now ...

3
3

3

3
Lattice QCD

Exact many body:
GFMC, NCSM,

lattice EFT

Shell model, 
coupled cluster, 

configuration-interaction

Density 
Functional,
Mean field



Few nucleon systems

• Zoom in on few nucleon systems

• Nucleons are J=1/2, I=1/2 state

• Two body: I,J =0,1

• isosinglet, spin triplet: deuteron

• isotriplet, spin singlet: nn, np, pp 
unbound

• Three body: 3He stable, triton (3H) almost 
stable

• Four body: alpha particle (4He)

• No stable 5,8 body systems

Z

N

HW: what would happen to the above chart if 
we turned off EM and weak interactions?



LQCD in nuclear physics

• What is to be gained from ab initio nuclear physics (ie from QCD)?

• QCD on the same footing as QED: known physics, just calculate!

• Nuclear physics: lots of puzzles to be solved

• Many things that current nuclear theory gets wrong or can’t constrain: 
eg Ay, YN scattering, high density matter

• Standard Model predictions 

• Comparison to experiment: in principle test QCD (or expt!)

• Predictions without experiment: reliably calculate quantities where 
experiments are unavailable ortoo  expensive

• Beyond the Standard Model

• Better constrain test of the SM: eg. Vud from superallowed nuclear β-decays

• Exploration of alternate universes where quark masses, charges etc differ



Basic scattering theory

• Two particles scattering described by one-body potential in relative coordinate 
(consider simplest case where V depends only on positions but not gradients)

• Consider a wave packet localised at x=-∞ at t=-∞ incident on a scattering centre 
at x=0

• Aim to determine what outgoing state is at t→∞ (probability that the wave packet 
ends up traveling at some angle w.r.t. incoming direction

• Simplest approach is to decompose the wave packet into plane-waves, study plane-
wave scattering and then convolve with wave-packet amplitudes at the end (if 
needed)

• Hopefully a review
k

k’

θ

L =
1
2
mAṙ2

A +
1
2
mB ṙ2

B � V (|rA � rB |)

L =
1
2
MṘ

2
+

1
2
µṙ2 � V (|r|)

R =
mArA + mBrB

mA + mB

r = rA � rB

M = mA + mB

µ =
mAmB

mA + mBHint =
p2

2µ
� V (|r|)

3



Scattering in a central potential

• Incident wave function is then 

• Decompose in angular momentum modes 

• Spherical Bessel functions jl and Legendre polynomials Pl

• Satisfies the non-relativistic Schrödinger equation with no potential

• Now consider a central potential (no angular dependence) V(r)

• Schrödinger equation for a given E

• NB: wf depends on E

 k(r) = eikz = eikr cos ✓

 k(r) =

1X

l=0

(2l + 1)iljl(kr)Pl(cos ✓)

Ĥ = E 

� 1

2µ
r2 + V (r)

�
 (r) = �E (r)



• Since potential is central, we can separate the radial and angular dependence of the 
wf (sum over l)

• Now ∇2 can be written in spherical coords as (we knew this already to write Ylm(Ω) 
above)

• The radial function satisfies 

where 

• General solution in terms of spherical Bessel (jl) and Neumann (nl) functions

• Finite solution everywhere requires 

 (r) =
ul(r)

r
Y m

l (⌦)

r2 =
1
r2

@

@r

✓
r2 @

@r

◆
+

1
r2 sin ✓

@

@✓

✓
sin ✓

@

@✓

◆
+

1
r2 sin2 ✓

@2

@�2


� d2

dr2
+

l(l + 1)
r2

+ 2µV (r)� k2

�
ul(r) = 0

k2 = 2µE

Scattering in a central potential

ul(r ! 0)! 0

ul(r) = r [Aljl(kr) + Blnl(kr)]



• General solution

• Boundary condition at the origin implies that Bl=0 if  V=0

• For V≠0, we can define

• Normalising to unit coefficient, the asymptotic form is 

• So the outgoing scattered solution is a linear combinations of the solutions

for unknown coefficients al and phases (phase shifts) δl 

Scattering in a central potential

ul(r) = r [Aljl(kr) + Blnl(kr)]

tan �` = �B`

A`

u`(r) = rAl [j`(kr)� tan �l nl(kr)]

u`(r � `) ⇠ 1
k

sin
✓

kr � `⇡

2
+ �`

◆

 +
=

1X

`=0

a`P`(cos ✓)
u`(r)

r
r!1�!

1X

`=0

a`P`(cos ✓)
sin (kr � `⇡/2 + �`)

kr



• We match this onto the expectation of incoming plane waves and outgoing 
scattered plane waves at large distance

• This leads to 

• and hence

• Finally matching the outgoing plane wave components gives the angular 
dependence

 +

= eikr cos ✓
+ f(✓)

eikr

r
=

1X

`=0

(2`+ 1)i`
sin(kr � l⇡/2)

kr
P`(cos ✓) + f(✓)

eikr

r

a` = (2` + 1)ilei�`

 +
=

1X

`=0

(2`+ 1)i`ei�`P`(cos ✓)
sin(kr � l⇡/2 + �`)

kr

f(cos ✓) =

1

2ik

1X

`=0

(2` + 1)(e2i�` � 1)P`(cos ✓) =

1

k

1X

`=0

(2` + 1)ei�`
sin �

`(cos ✓)

Scattering in a central potential

f(cos ✓) =

1

2ik

1X

`=0

(2` + 1)(e2i�` � 1)P`(cos ✓) =

1

k

1X

`=0

(2` + 1)ei�`
sin �

`(cos ✓)



• Probability current density (QM)

• Ingoing and outgoing components

• Differential cross section

where dN is the number of observed scatterings into solid angle
dΩ from n scattering centres with incident flux Φ 

• Thus this is given in terms of f = the scattering amplitude

Scattering flux and cross section

j =
1
µ

Im ( ⇤r )

jin =
1
µ

Im
✓

e�ikz d

dz
eikz

◆
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k
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✓
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e�ikr

r
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eikr

r
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r2µ
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dθ dΩ
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1
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dN
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d�
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j
out
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Scattering cross section

• Differential cross section

• Legendre polynomials are orthogonal

• Thus the total cross section is 

• Partial waves bounded above 

d�

d⌦

= |f(cos ✓)|2

=

1

k2

�����

1X

`=0

(2` + 1)ei�`
sin �`P`(cos ✓)

�����

2

� =
4⇡

k2

1X

`=0

(2` + 1) sin2 �` =
1X

`=0

�`

�` 
4⇡

k2
(2` + 1)

Z 1

�1
dxP`(x)P`0(x) =

2
2` + 1

�``0



Low energy s-wave scattering

• At very low energy, can focus on s-wave (l=0)

• For finite range potential, cross section must be bounded for all k so the phase shift 
must vanish at least as fast as                        (where a is a constant)

• So for small energy,

where a is called the scattering length 

• In this limit, the radial wave function behaves as

• So the scattering length is interpreted as the radius at which the solution vanishes 
for low energy

• The only information learnt from low energy scattering is the scattering length

� = �0 =
4⇡

k2
sin2 �0

�0 ! �k a

�
k!0! 4⇡a2

u0(r) =
sin(kr + �0)

k
k!0�! r � a

d2u0(r)
dr

= 0 for r > RV[                      ]

V (`)
e↵ (r) = V (r) +

`(` + 1)
2µr2[                      ]



Effective range expansion

• If the momentum of the scattering plane wave is small compared to the inverse 
radius on the potential, we can preform a Taylor expansion of the phase shift

• Coefficients will encode information about the potential/wave-function

• The scattering amplitude

• Taylor expand phase shift

where r0 is the effective range and r1 is called the first shape parameter

• Radius of convergence set by the inverse range of the potential

• Reproduces the definition of the scattering length for vanishing k

k cot �(k) = �1

a
+

1

2

r0k
2

+ r1k
4

+ . . .

f(✓) =

1

l
ei�

sin � =

1

k

sin �

cos � � i sin �
=

1

k cot � � i k
f(✓) =

1

l
ei�

sin � =

1

k

sin �

cos � � i sin �
=

1

k cot � � i k



General two-body potentials

• The most general form of a potential is non-local: the action of the interaction at a 
point r depends on all other points

• Separable potentials satisfy:

• Local potentials depend only a single point

• What can the general structure of a two-body potential be?

• Built from available degrees of freedom: positions, momenta, spins and isospins 
of the two particles: ri, pi, σi, τi for i=1,2

• Constrained by appropriate symmetries

• Should be a scalar (i.e. no free indices)

h~r|bV | i =
Z

d3r0h~r|bV |~r0ih~r0| i =
Z

d3r V (~r,~r0) (~r0)

V (~r,~r0) = V (~r)�(3)(~r � ~r0)

V (~r,~r0) = f⇤(~r)f(~r0)

V = V (~ri, ~pi,�i, ⌧i; i = 1, 2)



General two-body potentials

• Work in terms of relative and centre of mass coordinates

• Translations and boost

invariance requires

so 

• Should be invariant under parity, time-reversal and particle interchange 1↔2

• Greatly restricts allowed structures

~r = ~r1 � ~r2, ~R = 1
2 (~r1 � ~r2), ~p = 1

2 (~p1 � ~p2), ~P = ~p1 + ~p2.

V = V (~r, ~p, ~R, ~P ,�i, ⌧i; i = 1, 2)

~ri ! ~ri + ~a =) ~r ! ~r, ~R! ~R + ~a

~pi ! ~pi +~b =) ~p! ~p, ~P ! ~P +~2b

V (. . . , ~R + ~a, ~P + 2~b, . . .) = V (. . . , ~R, ~P , . . .) 8 ~a,~b

V = V (~r, ~p, �i, ⌧i; i = 1, 2)



General two-nucleon potentials

• The most general form of the potential between two spin 1/2, isospin 1/2 fermions 
is (each V is a function of r2,p2,L2)

where                                                   and

• Five rows correspond to central, spin-orbit, tensor, quadratic LS, momentum-tensor 
(usually dropped as not accessible in elastic scattering) potentials

• spin-orbit, quadratic LS, and momentum-tensor potentials are non-local

• NB: spin-orbit term only connects states of the same L

V = V1 + V⌧⌧⌧1 · ⌧⌧2 + V���1 · ��2 + V�⌧��1 · ��2⌧⌧1 · ⌧⌧2

+VpT Sp
12 + VpT⌧Sp

12⌧⌧1 · ⌧⌧2

+VLSL · S + VLS⌧L · S⌧⌧1 · ⌧⌧2

+VT S12 + VT⌧S12⌧⌧1 · ⌧⌧2

+VQ(L · S)2 + VQ⌧ (L · S)2⌧⌧1 · ⌧⌧2

S12 = 3��1 · r̂��2 · r̂ � ��1 · ��2 Sp
12 = S12(r̂ ! p̂)



Example: Reid soft core potential

• A simple phenomenological successful potential is the Reid soft-core potential

• Up to a few minor details, for each total spin, isospin, L<3, take

where

• Contains many parameters that can be determined by performing fits to the NN 
scattering data (about 4000 data points)

V = VC(µr) + V12(µr)S12 + VLS(µr)L · S

V

C
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a

n
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�nx
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e
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x
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x

✓
1
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1
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Example: AV18 potential
Probably the “best” available potential - but takes 4 journal pages and 40 parameters to define!!
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Hadron potentials

• Encode of information about scattering amplitude

• Useful phenomenologically

• Not uniquely defined: many phase equivalent potentials

• Defined up to unitary transformations

• Local potentials are energy dependent: only guaranteed to 
reproduce phase shift at a given energy

• Presence of inelastic channels (all QFT 
contexts)automatically renders a potential non-local 
[Feshbach non-locality – see eg Balentikin et al nucl-th/
9709007] or equivalently local and energy dependent

PHASE SHIFTS AND St AYTERING POTENTIAL

For real non-vanishing k, f(k, r) and f( k—, r) are com-
plex conjugate, continuous in k and r, f(k)NO, and
limi „f(k)= 1.In case (1.8) holds, f(k, r) is also continu-
ous at k=0. The function

@=(1/2ilf(k) l) {f(k)f(—k, r)—f(—k)f(k, r)I (1.3)
vanishes at the origin (r=0), and is therefore, apart
from a constant factor, the only admissible solution of
(1.1) for a given wave number k. Asymptotically,

p-sin(kr+ rf(k)) (1.4)
where the phase shift tf(k) is determined by
e'pi"' =f(k)/l f(k) l

or e'"«"' '= S(k) =f(k)/f( —k). (1.5)
Since f(k)—+1 as k~ ~, we may set ii( po ) =0. Then the

following de6nition may be shown to be equivalent to
(1.5). Let, for a fixed k, p„(k)be the nth zero of g (cf.
(1.3)) on the interval 0&r& ~, and set

. x(k, r) x(k, o)
f(k r) = e "" f(k) =

x(k, ~) x(k, ~)
(2.2)

We now impose the condition that the x(k, r) be
polynomials in k, and we shall construct the corre-
sponding potentials V(r) By .(2.2), f(k) will be rational,
and it will be possible to 6nd phase equivalent potentials.
Potentials of linear tyPe y(k, r). is assumed to have the

form

2. POTENTIALS OF LINEAR TYPE

The potentials to be considered will be so chosen that
the corresponding functions f(k) are rational. Set
y=e '""g. From (1.1),

x"—»kx'= V(r) x (2.1)
Let x(k, r) be a family of solutions of (2.1) for which
y(k, po ) = lim„„x(k,r) exists and is different from zero.
Then

rf(k) =lim(nm —kp (k)). (1 6) y(k, r) =2k+ ~a(r). (2 3)

The definition of f(k, r) by its asymptotic behavior
may be extended to complex k with negative imaginary
parts (see Jost'), andf(k, r) is a regular analytic function
in the lower half plane. By analytic continuation it may
also be defined in the upper half plane, but will, in
general, have singularities. Consider, in particular, an
imaginary value of k, k= —i~(lr&0). The corresponding
energy (E=k') is negative, and E is a stationary energy
value if and only if the exponentially decreasing solution
f(k, r) vanishes at the origin, i.e., if

Inserting x in (2.1), we find V= a', and Va= a", or
u'u= u"; V= a'. (2.4)

With a„=lim„„a(r),and ap——u(o), we obtain from (2.2)

2k+ia(r)
f(k, r)=e '"' f(k) =

2k+ '

2k+iap

2k+~a„
(2 5)

It is easily shown that, for a non-vanishing potential V,
the function a(r) must be real. Integrating the first
Eq. (2.4), we 6nd

f(-i')=0, La&0, 8= -lr'j. (1.7) a' ——,'u'=2c (c=const. ) (2 6)

In addition, there may be a bound state of energy E=O
which is not determined by the equation f(0) =0. Such
a bound state cannot occur, however, if for large r, V(r)
decreases rapidly enough, so that

(, t"w(r)=c' expl ——', ~
a(r')dr'

l (2.7)

To solve this equation it is convenient to introduce

lv()ld &
0

(1 8)
where c' is an arbitrary positive constant, so that

w(r)&0 for all r. (2.8)

(For a proof, see the appendix. ) If (1.8) holds, we may
therefore conclude that two potentials with the same
f(k) are phase equivalent and have the same bound
states.
The phase shift if(k) determines S(k) l see (1.5)$ but

not f(k). The vanishing of S(k), on the other hand, does
not imply the vanishing off(k), because it may be due to
an infinity of f(—k). For this reason, two phase equiva-
lent potentials may have bound states of diferent
energy values. The number m of bound states, however,
is determined by the phase shifts if Jp"r'l V(r) l

dr& po.
Then f(k) is a differentiable function of k (including
k=0),' and it can be shown that

rnir if f(o)~0
(~+-',)~ if f(.)=0.

~ I ow'e this remark to N. Levinson.

Fzo. 1. Yvro phase
equivalent potentials
of the form Vr (p =2,
p = tg with parame-
ters 8=0.5 ( )
and 0=5 (---).

-2

8-

2

2x 4 ~' 6
II
I

I
I
I

I
I
fij

8

[V Bargmann, RMP 21, (1949) 488]
Phase equivalent potentials



• Static limit for heavy quark (mb → ∞): B meson (bd) mass is infinite

• Momentum excitations are degenerate

• Heavy quark spin decouples: B and B* degenerate

• Two static hadrons: defined, observable potential

• Potential is local (momentum excitations degenerate)

• LDOF quantum numbers ⊃ NN (has central and tensor interactions)

• EFT: potential has same form as NN for large distance

• Short range very different:         Coulomb

Static BB potentials

Mb = mb + ⇤ +O(1/mb)

VBB(|r|� ⇤�) �! #
g2

BB⇤⇡

f2

e�m⇡|r|

|r| VNN (|r|� ⇤�) �! #
g2

A

f2

e�m⇡|r|

|r|

1/|r|

VI,sl(r, L) = EI,sl(r, L)� 2EB(L)



• Two types of contractions

• Compute correlators for given I,J and for each r

• Extract lattice potential from correlator ratios

• Perturbatively correct for lattice distortion of Coulomb 
interaction (one gluon exchange)

• Subtract lattice PT and add back in continuum PT

Static BB potentials

I, sl

|~r| = 1

2 4 6 8 10 12
t!b0.85

0.9

0.95

1

1.05

1.1

1.15

b E

"r!" " 1 I=J=0

2 4 6 8 10 12 14
t!b

0.8

0.9

1

1.1

b E

"r!" " 1 I=J=1

[WD, K Orginos and M Savage, 
PRD.76.114503 ]

http://dx.doi.org/10.1103/PhysRevD.76.114503
http://dx.doi.org/10.1103/PhysRevD.76.114503
http://dx.doi.org/10.1103/PhysRevD.76.114503
http://dx.doi.org/10.1103/PhysRevD.76.114503


“Continuum” potentials
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Unquenched

• Previous quenched study: Michael & Pennanen 99

• Recent unquenched studies

• ETMC: [Wagner, 1008.1538]

• QCDSF [Bali & Hetzenegger 1111.2222]

• Zac Brown [forthcoming]

• Qualitatively similar

Forces between static-light mesons Marc Wagner

4. Numerical results

The BB potentials presented and discussed in the following have been obtained by fitting con-
stants to effective mass plateaus obtained from temporal correlation functions of trial states (2.1).
In twisted mass lattice QCD there are 24 independent Iz = 0 trial states (i.e. trial states not related
by symmetries) and 12 independent Iz = ±1 trial states, i.e. 36 resulting potentials, which are not
related by symmetries (cf. Table 1). Some of these potentials are quite similar, while others are
not. In total there are four significantly different types of potentials: two of them are attractive, the
other two are repulsive; two have have asymptotic values for large separations R, which are larger
by around 400MeV compared to the other two (cf. the “result” columns of Table 1). For each of
the four types an example is plotted in Figure 2.

2m(S)−800MeV

2m(S)−400MeV

2m(S)

m(S)+m(P−)

2m(S)+800MeV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

BB
po
te
nt
ia
li
n
M
eV

B meson separation R in fm

ψ(1)ψ(2) = uu, Γ= 1
ψ(1)ψ(2) = uu, Γ= γ0
ψ(1)ψ(2) = uu, Γ= γ5
ψ(1)ψ(2) = uu, Γ= γ3

Figure 2: examples of BB potentials as functions of the separation R.

To understand the asymptotic behavior, it is convenient to express the BB creation operators
appearing in (2.1) in terms of static-light meson creation operators. For the potentials shown in
Figure 2 one finds after some linear algebra

(C 1)AB
(

Q̄C(r1)uA(r1)
)(

Q̄C(r2)uB(r2)
)

=

= −S↑(r1)P−↓(r2)+S↓(r1)P−↑(r2)−P−↑(r1)S↓(r2)+P−↓(r1)S↑(r2) (4.1)

(C γ0)AB
(

Q̄C(r1)uA(r1)
)(

Q̄C(r2)uB(r2)
)

=

= −S↑(r1)P−↓(r2)+S↓(r1)P−↑(r2)+P−↑(r1)S↓(r2)−P−↓(r1)S↑(r2) (4.2)

(C γ5)AB
(

Q̄C(r1)uA(r1)
)(

Q̄C(r2)uB(r2)
)

=

= −S↑(r1)S↓(r2)+S↓(r1)S↑(r2)−P−↑(r1)P−↓(r2)+P−↓(r1)P−↑(r2) (4.3)

(C γ3)AB
(

Q̄C(r1)uA(r1)
)(

Q̄C(r2)uB(r2)
)

=

= −iS↑(r1)S↓(r2)− iS↓(r1)S↑(r2)+ iP−↑(r1)P−↓(r2)+ iP−↓(r1)P−↑(r2). (4.4)

5

[Wagner]
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Finite volume effects

• Periodicity of lattice modifies potentials:

assuming single particle exchange

• Strictly: V from V(L) impossible

• Long range potential from EFT 

• Short range: FV effects smallest 0 2 4 6 8
r

0

0.2

0.4

0.6

0.8

1

1.2

V!r,L"

HW: assuming a simple Yukawa interaction with the physical pion mass 

and a 3 fm side length of the lattice volume, calculate the ratio of the lattice 
potential to the infinite volume potential at a separation of 1 fm.

V (|r|) = V0
e�m⇡|r|

|r|

V (r, L) = V (r) +
X

n 6=0

V (r + n L)
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Away from the static limit: the derivative expansion

• The general non-local potential U(r,r’) can formally be written in terms of a local, 
energy (momentum) dependent potential

• Energy dependent potential can be expanded (can have linear terms if has spin)

• Expansion parameter is          essentially a velocity expansion

• Interesting study of quarkonium potential using LQCD [Ikeda&Iidal 
Kawanai&Sasaki]

•                   for bottomonium, charmonium

• For nucleon-nucleon expansion parameter is                  so expansion is marginal

U(r, r0) = V (r,r)�(3)(r� r0)

V (r,r) = V (r) +O(r2)

|p|/MQ̄Q ⇠ v

v ⇠ 0.1, 0.3

r/M

⇤QCD/MN


