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L ecture content

Nuclear physics and the role of LQCD

Scattering theory and bound states

General forms of potentials

Potentials for infinitely heavy hadrons
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temperature and density (see lectures of
DeTar and Aarts)

® Nuclear astrophysics (see Haxton
lectures)

® Big-bang and Stellar Nucleosynthesis
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® Energy production: fission and fusion




The nuclear landscape

Protons

Known nuclei

Stable nuclei

incognita

Neutron stars

Neutrons




What do we know about nucler?

Masses and binding energies

c; National Nuclear Data Center

Sizes and shapes

Electromagnetic properties; multipole NSR || XUNDL | ENSDF
moments NuDat Databases MIRD

® Magnetic moments

® (Quadrupole moments
Nuclear Tools and
Wallet Publications

Nuclear Data
Cards Sheets

Excrtation spectra

National Nuclear Data Center
http//www.nndc.bnl.gov/
(the PDG of nuclear physics)



http://www.nndc.bnl.gov
http://www.nndc.bnl.gov

Nuclear binding

Stable isotopes are bound systems of nucleons, so by definrtion their mass is less

than the sum of the masses of the constituents

The (positive) binding energy Is defined as
B(Z,N)=Zmyzg+ Nm, — M(Z,N)

and the binding energy per nucleon is B/A (shown in figure)
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Semi-empirical mass formula

Weiszacker mass formula:
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Nuclear radi

Rutherford's experiments in the early 1900s showed that the nucleus was very
much smaller than the atom

Nucleons are about ~0.8 fm in radius, and If we think of them as hard spheres and
pack them into a spherical configuration then

47 47
?Ri =V, = AVy = ?A r

or equivalently

RA ~ T0A1/3
(ro Is a bit larger than proton radius to account for packing fraction)

Charge distribution can be measured in elastic electron scattering just as for proton
form factors (also muonic atoms)

Matter distribution probed by elastic hadron-nucleus scattering

Charge and matter distributions will agree only if protons and neutrons are
arranged similarly



Nuclear charge distributions

Charge density probed
In elastic eA—eA 0.10}-

Definitive experiments

by Hofstadter (1950s) L+ gy

For large nuclel, core of 0.05 -
constant density Inside a '
diffuse surface with e
rapidly decreasing density Pb
For A>20, distribution
0.0 =

described by a Fermi
distribution

. Po
o 1+ G(T—Rl/Q)/a

p(r)
a controls the thickness of the surface and R/, the size of the central region

Fits give

Z
po =017 fm 1, a = 0.54 fm, Ry = 0.218AY3 fm



Neutron skin

® PV electron scattering sees neutrons predominantly over electrons

t )
QP o 1 — 4sin® Oy ~ 0.076, QIeutron o —1

® Provides a theoretically cleaner measurement as EVW probe

ot —o~  GEQ? Fn(Q2)]

Apy = = 1 —4sin®fy —
ST b o 47ra\/2_[ Y R(Q?)

® Parity Radius EXperiment (PREX)

| PREX Asymmetry : Data vs 8 Models

JLab 2010 ]
0.8 Rn=R_p
® Neutron radius of 2%8Pb from PREX A fppm) |
0.75— DATA ?
R, — Rp =0.34+0.15—-0.17 fm C _ e O
- o slyd  nl3p06
® Neutron skin outside protons : o © o -
oes- @ -
® (Constrains Eq of State for r o LR L
neutron stars aal




Nuclear theory

® Much disparate phenomenology explored over many years
® |ots of data

® Proliferation of models cooked up to describe
various different aspects

® |iquid drop model
® Shell models

® Vibrational and rotational models

® “Ab-intio’ methods

® Jo some level of approximation nucleus = a bunch of nucleons with predominantly
pairwise interactions



Exotic nuclel

® [Not all nuclides are so easlily dealt with in these simple models

® One example is halo nuclei in which some
nucleons spend significant fractions of time
are large distances from the COM

® [Ex!lLiisas large as *%Pb

® NB: neither of the two subsystems
(nn, 'OLi) are bound

® |sotopes of helium are even more strange:
four-neutron halo

® Also there are super-deformed nuclel (around
N=80, Z=60) that don't fit observed patterns
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ypernuclel

Chart of nuclides ) \.

One plane in chart of hypernuclel

Hypernuclel = nuclel which contain
strangeness

® Decay weakly but stable under
strong interactions

Significant experimental programs at
JLab & KEK and soon at JPARC &
FAIR

Much less data to constrain models

20



The EMC effect

(T Tp)ss

Nuclel are not just a collection of nucleons

1983 deep Inelastic scattering on Fe target [EMC]
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Proton structure modified in a nuclear environment



Three body physics

® [hree body Interactions

® [Necessary for accurate
description of nuclel in

GFMC

® Unlike 2 body, not much
data to constrain 3-body
interactions

® Higher body!
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LQCD In nuclear physics

® Nuclear physics: an emergent phenomenon of the Standard Model

® Nuclel are on equal footing to protons,
neutrons, pions and kaons

® Should be describable from the SM
® Nuclear physics is a new frontier in LQCD

® Pyt NP on firm theoretical foundation

® [Enabled by growth in HPC
® | ots of challenges

® | ots of recent progress




LQCD In nuclear physics
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Nuclear physics from LQCD

Can we compute the mass of 208Pb in QCD?

Yes, consider

OITq1(t) - - - 4624 (1)1 (0) - - - G524(0)[0)

Long time behaviour gives ground state energy
up to EWV effects

t— 00

— #exp(—Mppt)
But...
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® Complexity: number of
Wick contractions = (A+2)(2A-2)!

('l:[(tl )(Ij-(tl )(Ilvj(tl.)(l.,i(tl)(l-]: (tg)(l}(tg)(lj(tg)(ll-,'(t-_g)



An (exponentially hard)? problem?

Complexity: number of GeV
Wick contractions = (A+2)(2A-2)!
l I | 200 Mpp
al (t, Jal(ty)a;(tr)a;(ty)al (tz)al (t2)a;(t2)ai(t2)
Dynamical range of scales
(numerical precision) M
3 I/
094 M,
0.25 AqQcp
0.005 Mg




An (exponentially hard)? problem?

Complexity: number of

Wick contractions = (A+2)(2A-2)!

| |

az(tl)a';((tl)aj(tl)ai(tl)a'I(t‘z)
Dynamical range of scales
(numerical precision)

Small energy splittings

{
a;

(t-z)aj(tz)flz(t

2

)

O/+

1/2-,3/2

994 keV

904

aA1/2+

868
820

3/2+,5/2+

777.6

9/2+ =
S/2-,7/2-

+—658.9

297.8

G/ 213/ D+ -t

7{2+ =

251
499.1 2.2 PS

112 ey

364.1

66.7 0.499S |

9/2+ —‘lJ

e .
0STABLE



An (exponentially hard)? problem?

Complexity: number of
Wick contractions = (A+2)(2A-2)!

|
al (ty)al(tr)a;(ty)ai(ty)al (t2)ak(ts)a;(to)ai(t
Dynamical range of scales
(numerical precision)

Small energy splittings

Importance sampling: statistical
noise exponentially increases with A

2

)

©/ )+ 994
keV
1/2-,3/2 204
A1/ D+ 868
820
3/2+,5/2+ 777.6
9/2+ —T-« +—658.9
S/2-,742- 597.8
6;213{3+-~l---"-~551
7/2+ — 4991 2.2 PS
3/2- —F 364.1

1 o 2 ey

66.7 0.499S |
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The trouble with baryons

Importance sampling of QCD functional integrals
» correlators determined stochastically

Variance in single nucleon correlator (C) determined by

0*(C) = (CCT) = [{CO)F

For nucleon:

sgnal | oxp [—(Mnx — 3/2m.)t]

noise

For nucleus A:

signal exp [—A(MN — 3/2m7r)t]

noise

[Lepage '89]
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LQCD In nuclear physics

® \Very difficult to explore all of
NP from QCD

® A possible path to ab initio
nuclear physics:

e (QCD forms a foundation -
determines few body
interactions

® Match existing many body
techniques onto QCD

Shell model,
coupled cluster,

configuration-interaction
® Hierarchy of methods

o (QCD:focus on small A
Exact many body:

GFMC, NCSM,

% attice EFT
Ae QCD

® .. fornow ..



Few nucleon systems

® /oom in on few nucleon systems
® Nucleons are |=1/2,1=1/2 state

® [wo body:l) =0,

® sosinglet, spin triplet: deuteron Jhe | A
U. 000134% .4.4 9995662
® sotriplet, spin singlet: nn, np, pp

2H 4H
unbound STABLE STABLE 5.7 MeV

00115%

N:100.00% = 2N: 100.00%

® Three body: *He stable, triton (°H) almost
stable

Neutron
10183 M

g-: 100.00%

® Four body: alpha particle (*He)

® No stable 5,8 body systems

| HW: what would happen to the above chart if |
lﬁ we turned off EM and weak interactions!?

=




LQCD In nuclear physics

® \What is to be gained from ab initio nuclear physics (ie from QCD)?
e QCD on the same footing as QED: known physics, just calculate!
® Nuclear physics: lots of puzzles to be solved

® Many things that current nuclear theory gets wrong or cant constrain:
eg A, YN scattering, high density matter

® Standard Model predictions
® (Comparison to experiment: in principle test QCD (or expt!)

® Predictions without experiment: reliably calculate quantities where
experiments are unavailable ortoo expensive

® Beyond the Standard Model

® Better constrain test of the SM: eg.Vq from superallowed nuclear 3-decays

® [xploration of alternate universes where quark masses, charges etc differ



Basic scattering theory

Two particles scattering described by one-body potential in relative coordinate
(consider simplest case whereV depends only on positions but not gradients)

1 . 1 . _ MAT A + MpBrp
L= §mAr?4+§mBr2B —V(jra —rp|) R ma+ mg
L_lMR2 1 y r=ry—rg

) +§M: ~ Vi) M =ma +mp
j; = mamp
Hipe = IQ’—M —V(|r|) ma -+ mp

Consider a wave packet localised at X=-% at t=-% incident on a scattering centre
at x=0

Aim to determine what outgoing state Is at t—0o0 (probability that the wave packet
ends up traveling at some angle w.rt. incoming direction

Simplest approach is to decompose the wave packet into plane-waves, study plane-
wave scattering and then convolve with wave-packet amplitudes at the end (if

needed)

Hopefully a review |
K




Scattering in a central potential

Incident wave function is then
wk(r) _ ezkz _ ezkr cos 6

Decompose In angular momentum modes
)

Yr(r) =Y (20 + 1)i'ji(kr)Pi(cos 0)
=0
Spherical Bessel functions | and Legendre polynomials P,

Satisfies the non-relativistic Schrodinger equation with no potential
Now consider a central potential (no angular dependence) V(r)

Schrodinger equation for a given E

Hi = Ev

[_%vz " vm] $(x) = —Ey(r)

NB: wf depends on E



Scattering in a central potential

Since potential Is central, we can separate the radial and angular dependence of the

wi (sum over |) (r)
up\r

h(r) =

Now V? can be written in spherical coords as (we knew this already to write Y™(Q)
above)

Y ()

VQ—ig r2g + L 9 sim@2 + ! o
- r290r or r2sin 6 00 06 r2 sin? § O¢2
The radial function satisfies
d? (141
Eats

dr? r2

+2uV (1) — k2] u(r) =0

where k* = 2uF
General solution In terms of spherical Bessel (ji) and Neumann (n)) functions

Finite solution everywhere requires u; (17 — 0) — 0

wy(r) = r[Ayji(kr) + Bing(kr)]



Scattering in a central potential

General solution

u(r) =r[Ai(kr) + Biny(kr)]
Boundary condition at the origin implies that B¢=0 if V=0
ForV#0, we can define tandy = ——

ug(r) = rA; [je(kr) — tan §; ny(kr)]

Normalising to unit coefficient, the asymptotic form is

k 2
So the outgoing scattered solution is a linear combinations of the solutions

1 4
ug(r > ) ~ — sin (kr Ty &q)

sin (kr — 6w /2 + dy)

w—l— = 622% CLng(COS 6’) (27 (T) T Z ay Py (COS (9) .

r
£=0

for unknown coefficients ag and phases (phase shifts) oy




Scattering in a central potential

® \We match this onto the expectation of incoming plane waves and outgoing
scattered plane waves at large distance

ikr o0 . ikr
+  dkrcos@ € L 4 Slﬂ(k?“ o lﬂ-/2) €

vt =e +1(0)— = ;(zu 1)i = Py(cos0) + f(6)—

® Thisleads to — (20 + )l i
® and hence
- y in(kr — Im/2 + &)
T = 20 + 1)ite® P 0 Sm(
Y ez:;( + 1)i"e** Py(cos 0) =

® Finally matching the outgoing plane wave components gives the angular
dependence

f(cos ) =57 Z (20 +1 27“52 — 1)Py(cos )
7

?v |

Z (2¢ + 1)e** sin 6, Py(cos 0)
(=0



Scattering flux and cross section

Probability current density (QM)
.1 ;
J= ;Im (v V)

Ingoing and outgoing components

1 g, d
jin — “Im <€—zkz_€zkz>
7 dz

e—z'lm“ eik'r 2 v
o = 1 (105 | r0) | ) = MEIE
v r Or r

Differential cross section

do _ 14N
dQ)  n® dQ

where dN Is the number of observed scatterings into solid angle
d€2 from n scattering centres with incident flux @

Thus this Is given in terms of f = the scattering amplitude

= £ ()

do B Jout™

d_Q B jin




Scattering cross section

Differential cross section

do
-q = |/ (cosO) 2
_ % (20 + 1) sin 6, Py(cos )
£=0

Legendre polynomials are orthogonal

1
2
P P/ p— /
/_16133 0(2) Py () 2£_|_15££

Thus the total cross section is

4
o = kZ (2€—|— sin 5@ ZJg

¢=0
Partial waves bounded above

47
¢ < ﬁ(zént 1)



Low energy s-wave scattering

At very low energy, can focus on s-wave (£=0)

A
O = 0pg = ﬁ SlIl2 50 [Vve(é)(’l“) — V(T) +
For finite range potential, cross section must be bounded for all k so the phase shift
must vanish at least as fast as 09 — —k a (where a is a constant)

£+ 1)
2,:7:2 ]

So for small energy, a0 ,

o — 4ma
where a Is called the scattering length

In this limit, the radial wave function behaves as

sin(kr + do) k-0

- ;
So the scattering length Is interpreted as the radius at which the solution vanishes
for low energy

2
[duo(r):O forr>RV]

r—a dr

ug(r) =

The only information learnt from low energy scattering Is the scattering length



Fffective range expansion

If the momentum of the scattering plane wave Is small compared to the inverse
radius on the potential, we can preform a Taylor expansion of the phase shift

® (oefficients will encode information about the potential/wave-function

The scattering amplitude

1 . 1 sin 0 1
9 _ — 10 5:— —
1(0) ke St k cosd —1sinod k coto —1 k

Taylor expand phase shift

I 1
k cotd(k) = - + 57“()]62 +rikt 4.

where rp Is the effective range and ry Is called the first shape parameter

Radius of convergence set by the inverse range of the potential

Reproduces the definition of the scattering length for vanishing k



General two-body potentials

The most general form of a potential is non-local: the action of the interaction at a
point r depends on all other points

(AT |6) = / &3 (FAD|7) (7 |4) = / Br V(7 7)o (F)

Separable potentials satisfy: V' (7, 7") = f*(7) f ()

Local potentials depend only a single point
V() = V(F)§® (7 — )
What can the general structure of a two-body potential be?

® Bullt from available degrees of freedom: positions, momenta, spins and Isospins
of the two particles: r, pi, 0, T for i=1,2

V = V(’F;,ﬁz, Oi, 7-7,77’ — 17 2)
® (onstrained by appropriate symmetries

® Should be a scalar (i.e. no free indices)



General two-body potentials

® \Work in terms of relative and centre of mass coordinates

—
— —

r=r1—r2, R= %(Tl_r2)a p= %(pl — P2), ﬁ:p1+p2.
V:V('F ﬁ)R,P,O’j,TZ’;’I;:l,Q)

® [ranslations and boost

o

7 td=7—7 R—R+a
pi—pi+b=p—p, P—P+3b
Invariance requires
V(...,BR+a,P+2b,..)=V(....,R,P,..) Vab

SO

V=V p,o;,7;i=1,2)

® Should be invariant under parity, time-reversal and particle interchange | <=2

® (reatly restricts allowed structures



General two-nucleon potentials

The most general form of the potential between two spin /2, isospin /2 fermions
is (eachV is a function of r?,p?L?)

V = Vl —|_V7-7'1 * T2 _|_V001 * 02 _|_V0T01 0271 - T2
—|—VL5L - S -+ VLSTL ¥ S7'1 *T9

+VrSio + Vr:S1971 - T2

Vo(L-S)? + Vor(L-S)*rm - 7

where S1s

p p
L pT512 - VpTTS127'1 " T2

:30’1 "]20'2 '72_0-1 09 and 52172 :Slz(,ﬁﬁp)

Five rows correspond to central, spin-orbit, tensor; quadratic LS, momentum-tensor
(usually dropped as not accessible in elastic scattering) potentials

® spin-orbit, quadratic LS, and momentum-tensor potentials are non-local

® NB:spin-orbit term only connects states of the same L



Example: Reid soft core potential

® A simple phenomenological successful potential is the Reid soft-core potential

® Up to a few minor detalls, for each total spin, isospin, L<3, take

V =Ve(ur) + Vig(pur)Siz + Vis(ur)L - S

where
nma,a: J— m _
e na
— E (7% , VLS E
€T
’n,:]_ :

by 1 1\ _, bo 1N\ _pwl e
V12(£U) . [<3+ZC+ZE2) —<;—|—?> b ]

® (Contains many parameters that can be determined by performmg fits to the NN
scattering data (about 4000 data points)




Example: AV g potential

Probably the "best’ available potential - but takes 4 journal pages and 40 parameters to definell
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Accurate nucleon-nucleon potential with charge-independence breaking
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We present a now high quality necleon-nucloca potential with explicit charge depeadence and
charge mymmetry, which we designate Argoune w0, The model bas & charge-independest past
with 14 operator compoments that s an updated version of the Argonne vyq potential. Three
additional charge-dependent and ene charge-asymmetrnic operators are sdded, along with a complete
electromagnetic isteraction. The potential bas been Kt directly to the Nipmegen pp and np scattering
database, low-energy mn scattering parameters, and desteron binding cncrgy. With 40 adjusabile
parameters it gives & x° per datum of 1.00 for 4301 pp and np data in the range 0350 MeV.

PACS number(s): 13.75.Cs, 1239 Pn, 21.30.+y

L INTRODUCTION

Traditionally, nucleon-nucleon (NN) potentials are
constracted by fitting np data for T = 0 states and either
np or pp data for T « 1 states, Examples of potentials fit
to np data in all states are the Argonne viq (1], Urbana
vis (2, and most of the Bonn potentials [3.4). In contrast,
the Reid [5], Nijmegen (6], and Paris |7) potentials were fit
to pp data for T' = 1 channels. Unfortunately, potential
models which have been fit only 1o the np data often give
a poor description of the pp data [8], even after applying
the necessary corrections for the Coulomb interaction.
By the same token, potentials Gt toppdatain T = |
states give only a mediocre description of np data. Fun.
damentally, this problem is due to charge-independence
breaking in the strong interaction.

10 the present work we construict an updated version of
the Argonne potential that fita both pp and np data, s
well as low.energy nn scattering parameters and deuteron
properties. The strong interaction potential is written in
an operator format that depends on the values of §. T,
and T, of the NN pair. We then project the potential
into & charge-independent (CI) part that has 14 operator
components (s in the older Argonne vy model) and a
charge-independence breaking (C1B) part that has three
charge-dependent (CD) and one charge-asymmetric (CA)
operators. We ako include a complete electromagnetic
potential, containing Coulomb, Darwin-Foldy, wacuum
polarization, and magnetic moment terms with finite-size
effects. We designate the new model Argonne vis.

1o a number of applications it is important for a VN
potestial to reproduce correct np and pp scattering pa
rameters. For example, in thermal neutron radiative cap-
ture on the proton, *H(n,v)*H, it is crocial to have the
correct singlet np scattering length in the initlal state

Q356-2813/95/311/3B(14)/306.00 1 »

10 grt the cross section. However, in low-energy proton
weak capture, "H(p, ¢ "4, )7H, it is equally important that
the correct pp scattering length be provided by the intes-
action. Clearly, a complete potential model should meet
both requirensents.

Anothor important application is in the formulation
of three-macleon (NNN) petentials, In general, muclei
are underbound using only NN potentials fit to the scat-
terieg data. Nomtrivial many-mucleon interactions are
expected to make up a portion of the missing binding
encrgy. Phesomenslogically we may choose to construct
a many-body Hamiltonian, such as

"'z;gv:’z'u‘ Z "-;nn (1)

) cpeh

and constrain the strength parameters of the NNN po-
tential by requiring that M gives the correct trinucleon
binding energy. Similar considerations apply if we choose
a relativistic formulation. Clearly, such constraints are
ambigeous or even meaningless if the NN potential used
in the calculations does not adequately describe the two-
nucleon data. For "He (*H), in which the NV interaction
underbinds by ~1 MeV, there are two np pairs and one
P (nn) pair. To a good approximation, the two np pairs
will be in the § = 1, 7' = 0 state 75% of the time, and
inthe § =0, T = 1 state 25% of the time, while the pp
(nm) pair will be pure § « 0, T = 1, If the chosen NN
potential fits only the more repulsive pp (nn) data in the
T = 1 state, we would get a smaller VN contribation to
the binding energy and thus overestimate the NNN po-
tential strength required. By the same token, a model fit
1o np data in the T = | state would be too attractive and
we would underestimate the NNN potential. The differ-
ence can be as much as 0.4 MeV, leading to variations in
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the NNN potential strength of order £20%. This would
have significant effects in larger many-body systems.
Because we include a complete cloectromagsetic po-
tential and fit low.energy nn scattering parameters, the
present model also can be used to study charge-symmetry
breaking, as in the "H-"He mass difforence (9], or more
generally the Nolen-Schiffer anomaly [10]. The electro
magnetic potential is o principle well knows asd is the
Jongeat-range part of the isteraction. Potential models
commonly fit the deuteron energy to better than 1 keV
accuracy., Since we fnd that the electromaguetic terms
give a non-pegligible 18 keV repulsion in the deuterom
and moderate shifts in the np and nn scattering lengths,
we deem it desirable 1o include these terms explicitly.
The major goal of the present work is to constract &
nonrelativistic potential that can be wed easily in nuclear
many-body calculations and that accurately fits both pp
and np data. We adept the Jocal operator structure of
the older Argonne vy and Urbana vyq potentials, which
have been used extensively in caleulations of finite nucke,
nuclear matter, and neutron stars [11-13). The assump-
tion of an underlying operator structure relatos all par-
tial waves in & simple manner, without imposing » one
boson-exchasge (OBE) form which might be too restric.
tive at short distances. Recently, the Nijmegen group
bas shown [14] that it is feasible to constract potential
models which fit the NN data with the almost perfect
x? per datum of 1. However, these models differ in each
partinl wave and thus implicitly introduce nonlocalities
from one partial wave to the next that may be difficalt
to characterize and treat accurately in many-body calcu-
Iations. When they limit the potential to an OBE form,
which has a Jocal operator strecture (save for & nonlocal
part in the central potential) describing all partial waves
simultancously, the 37 per datum increases to 1,87, albeit
with a much smaller number of parameters. The present
model is a compromise between these two approaches,

adopting a phenomenclogical form (unrestricted by an
OBE picture) at short distances, but maintaining a Jocal
operator stracture, The potential was dizectly fit to the
Nijmegen NN scattering database [15,16], which contains
1787 pp and 2514 np data in the range 0 350 MeV, and
b an excellest x? per datum of 1.09,

In Sec. Il we present the analytical form of the po-
tential in the various spin and isospin states. Special
attemtion is given to the electromagnetic part of the ia-
toraction. The free parameters are fit to the NN scatter-
ing data and deuteron bindiag energy in Sec. 11, where
we also present the phase shifts. Section IV discusses the
projection of the potential into operator format. Static
deuteron properties and electromagnetic form factors,
with relativiaitic and exchange current comtributions, are
presented in Sec. V. Conclusions and an outlook are
given in Sec, VI

1I. FORM OF THE POTENTIAL
IN S,T.T, STATES

The NN potential is written as a sum of an electro-
mageetic (EM) part, a ose-plon-exchange (OPE) part,
and an intermediate: and short-range phenomenological
part:

v{NN) = v®M(NN) 4 " (NN) 4+ v®(NN) . (2)

The EM interaction ks the same as that used in the
Nijmegen partial-wave analysis, with the addition of
short-range terms and finite-size effocts [17-19]. (Values
for the masses and other physical comstants wsed in the
following formulae are given in Table L) For pp scatter-
ing we loclade omes and two-photon Coulomb terms, the
Darwin-Foldy term, vacumm polarization, and the mag-
nethe moment interaction, each with an approprinte form
factor:

™ (np) = Vous(pp) + Voa + Vor + Vep + Vauaelpp) . 3

Here

Verlpp) = o F"'(') ;

(%)

= 'z.Lv; [(vt -p)['—'r—'('—) - ﬁ"—('—)cw + pp] = Ji": [F"""l’ ; (5)
or = -‘%',Fo('l . (6)
Vop= 5 280 [ar et 1y ,%] e, @
Vaewtrm) =~ giad S Fuirtece + 0| < om0 Bl (#)



Example: AV g potential

Probably the “best” available potential
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TABLE . Values of fusdamental constants adopted is this
L —
he 197 32705 MeV fm
m.e 1349739 MeV/e?
"y 1395675 MeV /e
M, 93827231 MeV /&
M., 929 56563 MeV/e*
o™t 137 03599
oy 279245 P

(11N “1.91304 "

The Coulomb interaction includes an energy dependence
through the o' = 2ka/(Myn.,) (20, which is signifi-
cantly different from a at even moderate epergies (~ 20%
difference at Ty = 250 MeV). The vacuum polariza-
tion and two-photon Coulomb interaction are important
for Ktting the high precision low.cnergy scattering data.
The Fe, Fy, F,, avd Fj, are short-range functions that
represent the Bnite aize of the nucleon charge distribe-
tioms. They have been obtained under the assumption
that the nucleon form factors are well represented by a
dipole form

gy =3
G% = 5 R (l+'—) . ()
Py Bw L

where b w 4.27 fn ™', The functions are given by

Pc(r)--l—(lo;:—‘:#»x r‘)

SESORT R ,)_,
Fulr) b(mvmxf“x . e

(10)
1

=l _'_ 2 ! 3 = ol .__'_ L] o
Fi(r) =1 (l+:+2: #‘: +,“: + l«: ): .
Fi(r) =1 -(l radie’s 12'0 ‘:‘)c"

- 2 8 I '
with & = br. The derivation of Fc is given in [21],
while the others are related by Fu » ~V3(Feo/r), Fy =
(Felr)' — (Fe/r)[r, and Fy, = (Fo/rY [r. 1n the limit
of point nucleons, Fo = F, = Fy, » | and F; » 428%(r).
These form factors are illustrated in Fig, 1. The use of
Fo in Vy p is an approximsate method of remaving the 1/r
singalarity (the Jogarithamic singulasity remaing) which is
Justified by its short range and the overall smallness of
the term. Similarly. thudFém‘c;unw
mate method of removing the 1/r? singularity. We note
that because we use the Sachs nucleon form factors, there
are no additional magnetic Darwin-Foldy terms [22).

For the np system we include a Coulomb term at-
tributable to the neutron charge distribution in addition
10 the interaction between magnetic moments,

o™ (np) = Vei(np) + Vaear(np) . (1)
Here
Ver(np) = ad, 222(0) (12)
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FIG. 1. Form factors in the eclectromagnetic interaction.

where the function F,, is obtained assuming the peutron
electric form factor 22

t]
Gy = A’ loz,) : (13)

Here 8, = |[dGR/dq’lqua = 0.0189 fm?, the experimen-
tally measured slope (23] We have checked this form fac-
tor in a self-consstent calculation of the deuteron strue-
ture function A(g?) weed to extract G} [24] and find
gives a fairly good fit to the dats. This simple form Jeads
to

Foplr) =8 (152 4+ 1527 + 627 & x‘) . (14)

The F,, is also shown in Fig. 1. The magnetic moment
interaction is given by

VMM(N') . ‘-“"” Vi bip [?FJ("WV'; F'(')s.,]
niiy
a Fu(r)
~-:“~“'u. = (LS+LA), (15)

where M, s the nucleon reduced mass. The term pro-
portional to A = e, — @;) s a “class IV charge
msymmetric force [25‘, which mixes spin-singlet and spin-
triplet states. Ita comtribution is very small, and we only
include it when we construct the magnetic moment seat-
tering amplitude [19).

Finally, for nn scattering, we neglect the Coulomb in-
teraction between the neutron form factors, so there is
oaly & magnetic moment term

™™ (nn) = Vi(nn)

2 Fe(r
-‘:ii“: iP‘(r)o.-o, —.(5—’50; . (16)

The charge-dependent structure of the OPE potential
Is the same as that used in the Nijmegen partial-wave
asalysis and reads

but takes 4 journal pages and 40 parameters to definell
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v (pp) = fpve(mes) ,
e"(np) = fppSanvelmee) + ()72 20, (m,2) . (17)
vT(nn) « f2 ee(mee) |

where T is the isospin and

2
ve(m) = (%) {me? Yo (r)o, o, + T,(r)S,;] . (18)

(Strictly speaking, the neutron-proton mass differeace
gives rise to an OPE “class IV™ force as well, which again
we only explicitly include when we construct the OPE
scattering amplitisde [19].) Here Y (r) and 7, (r) are the
usual Yukawa and temsor functions with the exponential
cutoffl of the Urbana and Argonne vy moclels

Yu(r) = c;:' (l - t'"') ’

3 3 e et
Tuir) ™ (l + ;; + (""—'-') —;" (. -e ) sy (19)

where j = me/A. The scaling mass m,, introduced in
Eq. (18) to make the coupling constant dimensionless, is
taken to be the charged pion mass, m, i . The Nijmegen
partial-wave analysis of NN scattering data below 350
MeV finds very little difference between the coupling con-
stants [26], so we choose them to be charge independent,
12, fop = =fan = Je = [, with the recommended value
J* = 0.075. Thus all charge dependence in Eqs. (17) is
due simply to the difference in the charged- and neutral-
plon masses.

The remaining intermodiate: and short-range phe-
nomenological part of the potential is expressed, as in
the Argonne vy, model, as a sum of central, L?, tensor,
spinoebit, and quadratic spin-orbit terms (abbeeviated
as c 02,0 18 152, respectively) in different S, T, and T,
states:

VAP (NN) = ooy anlr) + v8r v (P)L? + vhp an()S12 + Vi n (r)L-8 + oF an(r)(L-8)? . (20)

Each of these terms ks given the general form

wsrav(?) = Dep s TR(r) + [P sow + 507 Qler oo + (07 ) Rigr s | Wir) | (21)

where g = {(mee 4 2mga)e/h is the average of the
pion masses and T, (r) is given by Eq. (19). Thus the

T2(r) term has the range of a two-pion-exchange force,
The W(r) is a Woods-Saxon function which provides the
shost-range core:

Wir) = [l 4 0""'"‘]_' . (22)

The four sets of constants iy vvs Pir aws Qsr v, and
Rsr pn are parameters to be fit to data. However, we
also impose a regularization condition at the origin which
reduces the pumber of free parameters by one for each
vy ane We require that
viran(r=0)=

&’;!;NN

S = =0, (23)

-l

Since the tensor part of the OPE potential already van-
ishes at r = 0, the fint condition is satiafied by setting
Pir wn = 0. The second condition is equivalent to fixing,
for e £¢,

Qsr.vw ™ W(O) [P‘ TN 0' ‘u—n] v (24)

where we only have to evaluate the derivative of the spin.
spin part of the OPE potential,

f

1L DATA FITTING

An initial nunvz of possible potential forms was made
by fitting to the x* hypersurface of the Nijmegen partial-
wave apalysis of pp and mp data [16]. These studies
belped select the final form of the potential (~10 vari-
ations were tried) and the values of the function shape
parameters ¢, ry, and a. Eventually, the cutofl param-
eter in the OPE functions Y, (r) and T,(r) was set at
¢ = 2.1 fm~?, while the parameters in the short-range
Woods-Saxon W(r) were set at rg = 05 fin ased a =~ 0.2
fm. This value of c s slightly different from the 2.0 fm ™7
wsed in the Urbana and Argonne vy, models, while rg
and a are the same.  Attempis to make a softer.core
model led 10 a poorer ft. Semsitivity to the OPE cou-
pling comstant was also checked before the recommended
value [26], /7 = 0,075, was adopted as satisfactory.

Ounce these four parameters were set, a preliminary
£t of the remaining parameters Iy v, PE7 v @iy s
and Ryr pn 0 the phase shifts was made. The final
values were obtained by a direct fit to the Nijmegen pp
and np scattering data base and the deuteron binding en-
ergy. We use noarelativistic kinematics, i.e, the deuteron
binding energy is taken as By = &*/2M,. In practice, we
found ne benefit to including an Ry o in spinsinglet
states, 5o these values were set to 2ero. Also, we found
o indication of a need for charge dependence in the phe-
nomenological part of spin-triplet states, In the final it



adron potentials

Encode of information about scattering amplitude

o < D
e p—

® Useful phenomenologically BIAN

. . . 0 T -
Not uniquely defined: many phase equivalent potentials / SN N S e L
Defined up to unitary transformations E;2 _{ i

Local potentials are energy dependent: only guaranteed to  _, \ f
reproduce phase shift at a given energy |

Presence of inelastic channels (all QFT

contexts)automatically renders a potential non-local

[Feshbach non-locality — see eg Balentikin et al nucl-th/ -8

9709007] or equivalently local and energy dependent [V Bargmann, RMP 21, (1949) 488]
Phase equivalent potentials



Static BB potentials

® Static limit for heavy quark (mp — ): B meson (bd) mass is infinite
My = my —I—K—I— O(l/mb)

® [Momentum excitations are degenerate
® Heavy quark spin decouples: B and B* degenerate

® [wo static hadrons: defined, observable potential
Vi, (I‘, L) = by (I‘, L) — 2L (L)

® Potential Is local (momentum excitations degenerate)
e | DOF quantum numbers D NN (has central and tensor interactions)

® EFT:potential has same form as NN for large distance

— || 2 ,—mzr|r|

9128B*7r € ga €
VBB(|I'| =>> AX) >+ VNN(|I'| =>> AX) — #

f2

® Short range very different: 1/|r| Coulomb



Static BB potentials

1.15

. _ |=1=0
® Two types of contractions N )
> >
1.05 s ¥ . J
bE 1| ' + 4
]
0.95 T
> > 09
® (Compute correlators for given || and for each r I e e
® [xtract lattice potential from correlator ratios
I =1 |:J:|
® Perturbatively correct for lattice distortion of Coulomb et
interaction (one gluon exchange) 1 1 |

bE

® Subtract lattice PT and add back in continuum PT 09

0.8
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b

[WD, K Orginos and M Savage,
&9% PRD.76.1 14503 ]
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Unquenched

® Previous quenched study: Michael & Pennanen 99
® Recent unquenched studies

o [TMC [Wagner, 1008.1538]

o QCDSF [Bali & Hetzenegger | | | 1.2227]

® /ac Brown [forthcoming]

e Qualitatively similar
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Periodic lattice
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Finrte volume effects

® Periodicity of lattice modifies potentials:

1.2 £

V(r,L):V(r)+ZV(r+nL) 1
n#0 05
assuming single particle exchange VoL 06
® Strictly: V from VY impossible 04
® |ong range potential from EFT "

® Short range: FV effects smallest : o 2 4 & 3

— = e ——— - — = T = =0 p———

f HVV: assuming a simple Yukawa interaction| \|/vith the physical pion mass
“ e~ Mx|r

| V(rl) = Vo

r|
and a 3 fm side length of the lattice volume, calculate the ratio of the lattice |
potential to the infinite volume potential at a separation of | fm.

= = —————— — e ——————
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Finrte volume effects

® Periodicity of lattice modifies potentials:

12 1
V(r,L):V(r)+ZV(r+nL) 1
n#0 0s
assuming single particle exchange VL) 06
® Strictly: V from VY impossible 04
® | ong range potential from EFT o

® Short range: FV effects smallest : o 2 4 & 3

— = e ——— — = T = =0 p———

f HVV: assuming a simple Yukawa interaction| \|/vith the physical pion mass
“ e~ Mx|r

| V() =W

r| |
and a 3 fm side length of the lattice volume, calculate the ratio of the lattice |
potential to the infinite volume potential at a separation of | fm. |

= = e —_— — _— e ——————




Away from the static limit: the derivative expansion

® The general non-local potential U(rr') can formally be written in terms of a local,
energy (momentum) dependent potential

Ulr,r') =V (r,V)6® (r — 1)
® [nergy dependent potential can be expanded (can have linear terms if has spin)
V(r,V)=V(r)+0O(V?
® [Expansion parameteris V /M essentially a velocity expansion |p|/Mgg ~ v

® |[nteresting study of quarkonium potential using LQCD [lkeda&lidal
Kawanai&Sasaki]

o v~ 0.1, 0.3 for bottomonium, charmonium

® For nucleon-nucleon expansion parameter is Agop /My so expansion is marginal



