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1. Relativistic Bose gas at nonzero chemical potential

Consider a self-interacting complex scalar field in the presence of a chemical
potential u, with the continuum action

S= [ 0.0 + (= Do + 1 (6706~ 05°0) + Nol] . (1)

The euclidean action is complex and satisfies S*(u) = S(—u*). Take m?* > 0, so
that at vanishing and small p the theory is in its symmetric phase.

The lattice action, with lattice spacing aj,y = 1, is

4

S = Z [ 2d +m?) $rds + A (50:)" — Y (She " b + Gl s )
v=1
(1.2)
where the number of euclidean dimensions is d = 4.
i) Show that this action reduces to (1.1) in the continuum limit.

i1) The complex field is written in terms of two real fields ¢, (a = 1,2) as ¢ =
%((lﬁl + i¢y). Show that the lattice action then reads

S = Z[ 2d+m (bam_'_ Z(bam(bam_m

— cosh PaaPypyq T sinh p z—:abgba,xgbb,ﬁgl} , (1.3)

where €4, is the antisymmetric tensor, and summation over repeated indices is
implied. Note that the ‘sinh 4’ term is complex.

From now on the self-interaction is ignored and we take A = 0. After going
to momentum space, the action (1.3) reads

1
S = Z §¢0«7*p <5abAp - gabB (bbp Z (ba —p abp(bbp, (14)
p

M, = ( g” _AB" ) : (1.5)

where



and

3
A, =m?+ 4Zsin2 % + 2 (1 — cosh pcospy), B, =2sinh usinpy.  (1.6)
i=1

i11) Show that the propagator corresponding to the action (1.4) is

5abAp + EGbe

Gavp =
MRS

(1.7)

iv) Demonstrate that the dispersion relation that follows from the poles of the
propagator, taking ps = 1Fp, reads

1 1
cosh Ey, () = cosh p (1 + idji) + sinh py /1 + Zdjg, (1.8)
where D
@2 :m2+4Zsin2§z. (1.9)
v) Show that this can be written as
cosh By, () = cosh [Ep(0) £ p], (1.10)

such that the (positive energy) solutions are

Epl) = Ep(0) £ 1. (1.11)

Sketch the spectrum. Note that the critical p value for onset is p. = FEp(0), so
that one mode becomes exactly massless at the transition (Goldstone boson).

vi) The phase-quenched theory corresponds to sinh = B, = 0. Show that the
dispersion relation in the phase-quenched theory is

1 1.
cosh B, (p) = cosh i (1 + éwf,) : (1.12)

which corresponds to E2(u) = m?® — p* + p* in the continuum limit.

vii) Compare the spectrum of the full and the phase-quenched theory, when
1< pe. At larger p, it is necessary to include the self-interaction to stabilize the
theory. Based on what you know about symmetry breaking, sketch the spectrum
in the full and the phase-quenched theory at larger p as well.

Although the spectrum depends on p, thermodynamic quantities do not. Up
to an irrelevant constant, the logarithm of the partition function is

1 1
InZ=->) Indet M =—23% In(A+ By), (1.13)
p p
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and some observables are given by

10lnZz 1 A
2y . _ — S § S 1.14
o Q Om? Q . A]%Jng’ ( )
and 01 Z A, A B, B
10In L+ !
=9 o Q Z A2 +B2 (1.15)

where Q = N3N, and A} = 0A,/0u, B), = 8Bp/8u.

viii) Evaluate the sums (e.g. numerically) to demonstrate that thermodynamic
quantities are independent of i in the thermodynamic limit at vanishing temper-
ature.

[1] G. Aarts, JHEP 0905 (2009) 052 [arXiv:0902.4686 [hep-lat]].

2. One-dimensional QCD

Consider QCD in one (temporal) dimension, with the staggered fermion action
S = Z X(D +m)x

1 _
= Z [ Xz€ U z41Xz+1 — §Xx+1€ UmT,mHXm +MXaXe| - (2.1)

Here n denotes the number of points in the time direction and is taken to be
even. The quarks obey anti-periodic boundary conditions. The links U, ;4 are
elements of U(N) or SU(N).

Via a unitary transformation, all links but one can be transformed away
(“temporal gauge”), i.e. U, = U, all other U’s are unity. The determinant
can then be written, up to an overall constant, as [1,2]

det(D +m) = detc (e + e " + U + e "UT).. (2.2)
The remaining determinant is in colour space and g, is related to the mass m as
m = sinh /.. (2.3)

The reason for introducing u,. will become clear below.

i) Show that the determinant has the usual symmetry under complex conjugation.

In one dimension, the partition function is simply
ZN, = /dU det™7 (D +m) , (2.4)
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since there is no Yang-Mills action. From now on we take as gauge group U(1):
this captures all the essential characteristics in one dimension but also allows one
to do the group integral without any effort. We hence write

U =e" /dU = /Ozﬂ %. (2.5)

i1) Show that the partition function for N; = 2 is independent of ;¢ and equal to
ZN;=2 = 4+ 2 cosh(2np.). (2.6)

Note that the p independence is generic in U(NN) theories, since p can be absorbed
in the U(1) phase (take p to be imaginary for this). This is of course not possible
in SU(N) theories, where there is no such freedom.

i1) Show that the phase-quenched Ny = 2 partition function depends on p and
equals

INj=141+ = /dU |det(D +m)|* = /dU det(D () +m) det(D(—u) + m)
= 2+ 2 cosh(2np.) + 2 cosh(2npu). (2.7)

The chiral condensate and the number density are defined by

10lnZz 10lnZz
Y=- == . 2.
n om (nz) n Ou (28)
iv) Show that in the full theory one finds
2 sinh(2nu,) 1 2sgn(pe)

= =0. 2.9
2 4 cosh(2np.) cosh p, cosh p,. ’ () (2.9)

The arrow denotes the thermodynamic limit. The p independence is obvious.

v) Show that in the phase-quenched theory one finds on the other hand

. 2sgn(pic)
_ 2 sinh(2ny) L e <l o )
1 + cosh(2ny.) + cosh(2nu) cosh p. 0 L] > |l
and
2 sinh(2 0 < e
(n5) = b LA TCED
1 + cosh(2n.) + cosh(2nu) 2sgn(p) |pl > |1l

The full and phase-quenched theories agree when p < p. (no p dependence).
The phase-quenched theory undergoes a phase transition at g = p., where the
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density jumps to 2. The interesting region in view of the Silver Blaze problem
is therefore this large p region, where the sign problem is severe and the average
phase factor vanishes in the thermodynamic limit:

Zn,—

<€2w>pq = — 0 det(D + m) = ei<P| det<D + m)‘ <2'12)

ZNf=1+1*

The eigenvalues of D are

\p = lei(2ﬂ(k+%)+¢)/n+u _ %ei(Qw(kJr%)er))/nu k= 1’ . (213)

The k + 4 arises from the antiperiodic boundary conditions and the ¢/n from
uniformly distributing the link U over all links as U/".

vi) Demonstrate that the eigenvalues lie on an ellipse in the complex plane, de-

termined by
N\ Imy
ReAe \°, (dmAe \™ (2.14)
sinh () cosh ()

The transition in the phase-quenched theory occurs when the quark mass gets
inside this ellipse.

To compute the eigenvalue density;,

plzp) = % dU det™7(D + m) Z 62(z — M), (2.15)
1 k

we therefore parametrize

1, . .
=3 (ehrth — et H) (2.16)
such that )
T d .
g:/_EJ&ﬂL, (2.17)
o 271 z(a)+m

One then finds, for Ny = 2,

4 [cosh(npe) + cosh(n(p + i)
2 + cosh(2nu,) '

plas p) = (2.18)

vii) Show that in the thermodynamic limit, the eigenvalue density behaves as

2 1l < Jpel
p(Oz,,M) _ {2€2n(u—|uc|+ia) ‘,U| > |,Uc‘ ) (219)



i.e. it is well-behaved when the full and phase-quenched theories agree, but it is
complex and oscillating with a divergent amplitude in the Silver Blaze region.

vidi) Show that these oscillations are necessary to find a g independent chiral
condensate by evaluating Eq. (2.17) explicitly. Hint: write ¢’ = w and use
contour integration.

[1] N. Bilic and K. Demeterfi, Phys. Lett. B 212 (1988) 83.

2] L. Ravagli and J. J. M. Verbaarschot, Phys. Rev. D 76 (2007) 054506
larXiv:0704.1111 [hep-th]].

[3] G. Aarts and K. Splittorff, JHEP 1008 (2010) 017 [arXiv:1006.0332 [hep-lat]].

3. Strong coupling

The one-link partition function is
2(x,y) = /dU eXeUXy=XuUTxa (3.1)

The (single flavour) staggered quark field x;, has a colour index i = 1,..., N
and U € SU(N). This partition function can be written in terms of meson and
(anti)-baryon fields,

1
B, = N v Xin -+ Xiwas (3.2)

_ 1 B B
r — ﬁel’l---iNXiNl' e Xilzva

as

2z,y) =Y o (MM,)" +a (BB, + (-1)"B,B,) . (3.3)

Here we want to determine the coefficients «, a.

i) For the baryon terms quark fields of all colours are needed. Expanding the
exponential, show that one finds

_ 1 3 N
/dUeX”UXy o ﬁ/dU (X=Uxy)
1 _
= thmXﬁy e XiN$XjNy / dU Ui1j1 e UiNjN' (34)
i1) Using the result for the group integral
1
/dU Uiljl s UiNjN = ﬁeil---iNejl---jN7 (35)
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show that Eq. (3.4) can be written as B, B,.
iii) Repeat this for the e "X+ term to conclude that & = 1.

iv) To determine the coefficients of the meson terms, show first that

N
. a” N!
dydy e (xx)" =Y — [ dxdy (30" = V7R, 6
/ XAy € (xx) %n,/ Xdx (Xx) T (3.6)
Note that the only term in the sum that contributes satisfies k +n = N.

v) By completing the square, prove the identity

/ dX2d s / dU XX XUV Mo — oy, (3.7)

vi) Consider now
[ s sty (3.8)

Substitute Eq. (3.1) as well as

N

2(ey) =) on (MaMy)*, (3.9)

and use the identities derived above to show that this yields

(N — k)|

NI (3.10)

A =

[1] I. Montvay and G. Miinster, Quantum Fields on a Lattice (1994) CUP.
2] F. Karsch and K. H. Miitter, Nucl. Phys. B 313 (1989) 541.
4. Fokker-Planck equation
Consider the Langevin process
#(t) = K(2(t)) +n(t), K = =5'(x), (n(O)n(t))y = 206(t—1), (4.1)

where A normalizes the noise and the subscript 1 denotes noise averaging.
We want to derive the associated Fokker-Planck equation

plx,t) = 0, (N0, — K) p(x, t), (4.2)

for the distribution p(z,t), defined via (the subscript n will be dropped from now
on)

(O((t))) = / dz p(,1)0(z). (4.3)
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We consider the discretized process

On = Tyt — Ty, = €Ky, + Ven,, (M) = 22X (4.4)
i) Show that

(O(@n41)) = (O(zn)) = (O'(wn)bn + %OH(%)@L o)

= €(O'(2,) K,y + MO () + O(¥/2). (4.5)
In the ¢ — 0 limit, this gives
%(O(az)) = (O'(2)K(z) + \O" (z)). (4.6)

ii1) Using Eq. (4.3), demonstrate that this yields the Fokker-Planck equation (4.2)
for p(x,t). What should A be to obtain the desired equilibrium distribution?

[1] P. H. Damgaard and H. Hiiffel, Phys. Rept. 152 (1987) 227.

5. Gaussian model

Consider the complex integral

> 1
Z = / dx p(z), p(z) =e™", S = aaxZ, o=a-+ib. (5.1)

—00

i) Show that the corresponding complex Langevin equations are given by

=K, +n, K, = —ax + by, .
Y= Ky, Ky = —ay — b, (5.3)

where (n(t)n(t")) = 25(t — ).

i1) Demonstrate that these Langevin equations are solved by

t

x(t) = e [cos(bt)x(0) + sin(bt)y(0)] + /0 ds e=t=s) cos[b(t — s))|n(s),(5.4)

y(t) = e " [cos(bt)y(0) — sin(bt)x(0)] — /0 ds e~ t=9) sin[b(t — s)|n(s). (5.5)

i11) Show that the expectation values in the infinite time limit are given by

1 v 1 b

1 2a? + b? ()
= — i = ——
2a a? + b?’ y 2 a2 + b?

(2*) = a2 (v*) (5.6)
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iv) Demonstrate this yields the desired result

, e a—ib 11
@)= et = o T o o (5.7)

The Fokker-Planck equation for the (real and positive) weight P(z,y;t), defined
via

(O(x(t) +iy(t))) = [ dedy P(x,y; t)O(x + iy), (5.8)

is given by

P(z,y;t) = [0, (0, — K;) — 0,K,] P(x,y;1t) (5.9)

Since the original integral is Gaussian, the equilibrium distribution P(z,y) is also
Gaussian and can be written as

P(z,y) = Nexp [—az® — By* — 2vyay] (5.10)
where NN is a normalization constant.

v) Using the Fokker-Planck equation, show that the coefficients are given by

2a? a®
a=o o=a(1+35). =% (511)
and demonstrate that this gives the previously computed expectation values

B [ dzdy P(x,y)a?
N fd:pdyP(x,y) ’

(x*) (5.12)

ete.

vi) From the equivalence

/d:c p(z)O(x) = /da:dy P(z,y)O(x + iy), (5.13)

it follows that the real distribution is related to the original complex one via

olz) = / dy Pz — iy, y). (5.14)

Verify this explicitly (up to the undetermined normalization).



