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1. Relativistic Bose gas at nonzero chemical potential

Consider a self-interacting complex scalar field in the presence of a chemical
potential µ, with the continuum action

S =

∫

d4x
[

|∂νφ|2 + (m2 − µ2)|φ|2 + µ (φ∗∂4φ− ∂4φ
∗φ) + λ|φ|4

]

. (1.1)

The euclidean action is complex and satisfies S∗(µ) = S(−µ∗). Take m2 > 0, so
that at vanishing and small µ the theory is in its symmetric phase.

The lattice action, with lattice spacing alat ≡ 1, is

S =
∑

x

[

(

2d+m2
)

φ∗
xφx + λ (φ∗

xφx)
2 −

4
∑

ν=1

(

φ∗
xe

−µδν,4φx+ν̂ + φ∗
x+ν̂e

µδν,4φx

)

]

,

(1.2)
where the number of euclidean dimensions is d = 4.

i) Show that this action reduces to (1.1) in the continuum limit.

ii) The complex field is written in terms of two real fields φa (a = 1, 2) as φ =
1√
2
(φ1 + iφ2). Show that the lattice action then reads

S =
∑

x

[

1

2

(

2d+m2
)

φ2
a,x +

λ

4

(

φ2
a,x

)2 −
3

∑

i=1

φa,xφa,x+î

− cosh µφa,xφa,x+4̂ + i sinhµ εabφa,xφb,x+4̂

]

, (1.3)

where εab is the antisymmetric tensor, and summation over repeated indices is
implied. Note that the ‘sinh µ’ term is complex.

From now on the self-interaction is ignored and we take λ = 0. After going
to momentum space, the action (1.3) reads

S =
∑

p

1

2
φa,−p (δabAp − εabBp)φb,p =

∑

p

1

2
φa,−pMab,pφb,p, (1.4)

where

Mp =

(

Ap −Bp

Bp Ap

)

, (1.5)
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and

Ap = m2 + 4

3
∑

i=1

sin2 pi
2
+ 2 (1− cosh µ cos p4) , Bp = 2 sinhµ sin p4. (1.6)

iii) Show that the propagator corresponding to the action (1.4) is

Gab,p =
δabAp + εabBp

A2
p +B2

p

. (1.7)

iv) Demonstrate that the dispersion relation that follows from the poles of the
propagator, taking p4 = iEp, reads

coshEp(µ) = coshµ

(

1 +
1

2
ω̂2
p

)

± sinh µ

√

1 +
1

4
ω̂2
p, (1.8)

where
ω̂2
p = m2 + 4

∑

i

sin2 pi
2
. (1.9)

v) Show that this can be written as

coshEp(µ) = cosh [Ep(0)± µ] , (1.10)

such that the (positive energy) solutions are

Ep(µ) = Ep(0)± µ. (1.11)

Sketch the spectrum. Note that the critical µ value for onset is µc = E0(0), so
that one mode becomes exactly massless at the transition (Goldstone boson).

vi) The phase-quenched theory corresponds to sinhµ = Bp = 0. Show that the
dispersion relation in the phase-quenched theory is

coshEp(µ) =
1

coshµ

(

1 +
1

2
ω̂2
p

)

, (1.12)

which corresponds to E2
p(µ) = m2 − µ2 + p2 in the continuum limit.

vii) Compare the spectrum of the full and the phase-quenched theory, when
µ < µc. At larger µ, it is necessary to include the self-interaction to stabilize the
theory. Based on what you know about symmetry breaking, sketch the spectrum
in the full and the phase-quenched theory at larger µ as well.

Although the spectrum depends on µ, thermodynamic quantities do not. Up
to an irrelevant constant, the logarithm of the partition function is

lnZ = −1

2

∑

p

ln detM = −1

2

∑

p

ln(A2
p +B2

p), (1.13)
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and some observables are given by

〈|φ|2〉 = − 1

Ω

∂ lnZ

∂m2
=

1

Ω

∑

p

Ap

A2
p +B2

p

, (1.14)

and

〈n〉 = 1

Ω

∂ lnZ

∂µ
= − 1

Ω

∑

p

ApA
′
p +BpB

′
p

A2
p +B2

p

, (1.15)

where Ω = N3
σNτ and A′

p = ∂Ap/∂µ, B
′
p = ∂Bp/∂µ.

viii) Evaluate the sums (e.g. numerically) to demonstrate that thermodynamic
quantities are independent of µ in the thermodynamic limit at vanishing temper-
ature.

[1] G. Aarts, JHEP 0905 (2009) 052 [arXiv:0902.4686 [hep-lat]].

2. One-dimensional QCD

Consider QCD in one (temporal) dimension, with the staggered fermion action

S =
∑

χ̄(D +m)χ

=

n
∑

x=1

[

1

2
χ̄xe

µUx,x+1χx+1 −
1

2
χ̄x+1e

−µU †
x,x+1χx +mχ̄xχx

]

. (2.1)

Here n denotes the number of points in the time direction and is taken to be
even. The quarks obey anti-periodic boundary conditions. The links Ux,x+1 are
elements of U(N) or SU(N).

Via a unitary transformation, all links but one can be transformed away
(“temporal gauge”), i.e. Un,1 ≡ U , all other U ’s are unity. The determinant
can then be written, up to an overall constant, as [1,2]

det(D +m) = detC
(

enµc + e−nµc + enµU + e−nµU †) . (2.2)

The remaining determinant is in colour space and µc is related to the mass m as

m = sinhµc. (2.3)

The reason for introducing µc will become clear below.

i) Show that the determinant has the usual symmetry under complex conjugation.

In one dimension, the partition function is simply

ZNf
=

∫

dU detNf (D +m) , (2.4)
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since there is no Yang-Mills action. From now on we take as gauge group U(1):
this captures all the essential characteristics in one dimension but also allows one
to do the group integral without any effort. We hence write

U = eiφ
∫

dU =

∫ 2π

0

dφ

2π
. (2.5)

ii) Show that the partition function for Nf = 2 is independent of µ and equal to

ZNf=2 = 4 + 2 cosh(2nµc). (2.6)

Note that the µ independence is generic in U(N) theories, since µ can be absorbed
in the U(1) phase (take µ to be imaginary for this). This is of course not possible
in SU(N) theories, where there is no such freedom.

iii) Show that the phase-quenched Nf = 2 partition function depends on µ and
equals

ZNf=1+1∗ =

∫

dU |det(D +m)|2 =
∫

dU det(D(µ) +m) det(D(−µ) +m)

= 2 + 2 cosh(2nµc) + 2 cosh(2nµ). (2.7)

The chiral condensate and the number density are defined by

Σ =
1

n

∂ lnZ

∂m
〈nB〉 =

1

n

∂ lnZ

∂µ
. (2.8)

iv) Show that in the full theory one finds

Σ =
2 sinh(2nµc)

2 + cosh(2nµc)

1

cosh µc
→ 2sgn(µc)

cosh µc
, 〈nB〉 = 0. (2.9)

The arrow denotes the thermodynamic limit. The µ independence is obvious.

v) Show that in the phase-quenched theory one finds on the other hand

Σ =
2 sinh(2nµc)

1 + cosh(2nµc) + cosh(2nµ)

1

coshµc
→

{

2sgn(µc)
coshµc

|µ| < |µc|
0 |µ| > |µc|

, (2.10)

and

〈nB〉 =
2 sinh(2nµ)

1 + cosh(2nµc) + cosh(2nµ)
→

{

0 |µ| < |µc|
2sgn(µ) |µ| > |µc|

. (2.11)

The full and phase-quenched theories agree when µ < µc (no µ dependence).
The phase-quenched theory undergoes a phase transition at µ = µc, where the
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density jumps to 2. The interesting region in view of the Silver Blaze problem
is therefore this large µ region, where the sign problem is severe and the average
phase factor vanishes in the thermodynamic limit:

〈e2iϕ〉pq =
ZNf=2

ZNf=1+1∗
→ 0 det(D +m) = eiϕ| det(D +m)|. (2.12)

The eigenvalues of D are

λk =
1

2
ei(2π(k+

1

2
)+φ)/n+µ − 1

2
e−i(2π(k+ 1

2
)+φ)/n−µ k = 1, . . . , n. (2.13)

The k + 1
2
arises from the antiperiodic boundary conditions and the φ/n from

uniformly distributing the link U over all links as U1/n.

vi) Demonstrate that the eigenvalues lie on an ellipse in the complex plane, de-
termined by

(

Reλk

sinh(µ)

)2

+

(

Imλk

cosh(µ)

)2

= 1. (2.14)

The transition in the phase-quenched theory occurs when the quark mass gets
inside this ellipse.

To compute the eigenvalue density,

ρ(z;µ) =
1

ZNf

∫

dU detNf (D +m)
∑

k

δ2(z − λk), (2.15)

we therefore parametrize

z =
1

2

(

eiα+µ − e−iα−µ
)

, (2.16)

such that

Σ =

∫ 2π

0

dα

2π

ρ(α;µ)

z(α) +m
. (2.17)

One then finds, for Nf = 2,

ρ(α;µ) =
4 [cosh(nµc) + cosh(n(µ+ iα))]2

2 + cosh(2nµc)
. (2.18)

vii) Show that in the thermodynamic limit, the eigenvalue density behaves as

ρ(α;µ) =

{

2 |µ| < |µc|
2e2n(|µ|−|µc|+iα) |µ| > |µc|

, (2.19)
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i.e. it is well-behaved when the full and phase-quenched theories agree, but it is
complex and oscillating with a divergent amplitude in the Silver Blaze region.

viii) Show that these oscillations are necessary to find a µ independent chiral
condensate by evaluating Eq. (2.17) explicitly. Hint: write eiα = w and use
contour integration.

[1] N. Bilic and K. Demeterfi, Phys. Lett. B 212 (1988) 83.
[2] L. Ravagli and J. J. M. Verbaarschot, Phys. Rev. D 76 (2007) 054506
[arXiv:0704.1111 [hep-th]].
[3] G. Aarts and K. Splittorff, JHEP 1008 (2010) 017 [arXiv:1006.0332 [hep-lat]].

3. Strong coupling

The one-link partition function is

z(x, y) =

∫

dU eχ̄xUχy−χ̄yU†χx. (3.1)

The (single flavour) staggered quark field χix has a colour index i = 1, . . . , N
and U ∈ SU(N). This partition function can be written in terms of meson and
(anti)-baryon fields,

Mx = χ̄xχx = χ̄ixχix,

Bx =
1

N !
ǫi1...iNχi1x . . . χiNx, (3.2)

B̄x =
1

N !
ǫi1...iN χ̄iNx . . . χ̄i1x,

as

z(x, y) =

N
∑

k=0

αk (MxMy)
k + α̃

(

B̄xBy + (−1)NB̄yBx

)

. (3.3)

Here we want to determine the coefficients α, α̃.

i) For the baryon terms quark fields of all colours are needed. Expanding the
exponential, show that one finds

∫

dU eχ̄xUχy → 1

N !

∫

dU (χ̄xUχy)
N

=
1

N !
χ̄i1xχj1y . . . χ̄iNxχjNy

∫

dU Ui1j1 . . . UiN jN . (3.4)

ii) Using the result for the group integral
∫

dU Ui1j1 . . . UiN jN =
1

N !
ǫi1...iN ǫj1...jN , (3.5)
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show that Eq. (3.4) can be written as B̄xBy.

iii) Repeat this for the e−χ̄yU†χx term to conclude that α̃ = 1.

iv) To determine the coefficients of the meson terms, show first that

∫

dχdχ̄ eαχ̄χ (χ̄χ)k =

N
∑

n=0

αn

n!

∫

dχdχ̄ (χ̄χ)k+n =
N !

(N − k)!
αN−k. (3.6)

Note that the only term in the sum that contributes satisfies k + n = N .

v) By completing the square, prove the identity
∫

dχxdχ̄x

∫

dU eχ̄xχx+χ̄xUχy−χ̄yU†χx = eχ̄yχy . (3.7)

vi) Consider now
∫

dχxdχ̄x e
χ̄xχxz(x, y). (3.8)

Substitute Eq. (3.1) as well as

z(x, y) =
N
∑

k=0

αk (MxMy)
k , (3.9)

and use the identities derived above to show that this yields

αk =
(N − k)!

N !k!
. (3.10)

[1] I. Montvay and G. Münster, Quantum Fields on a Lattice (1994) CUP.
[2] F. Karsch and K. H. Mütter, Nucl. Phys. B 313 (1989) 541.

4. Fokker-Planck equation

Consider the Langevin process

ẋ(t) = K(x(t))+η(t), K = −S ′(x), 〈η(t)η(t′)〉η = 2λδ(t−t′), (4.1)

where λ normalizes the noise and the subscript η denotes noise averaging.
We want to derive the associated Fokker-Planck equation

ρ̇(x, t) = ∂x (λ∂x −K) ρ(x, t), (4.2)

for the distribution ρ(x, t), defined via (the subscript η will be dropped from now
on)

〈O(x(t))〉 =
∫

dx ρ(x, t)O(x). (4.3)
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We consider the discretized process

δn ≡ xn+1 − xn = ǫKn +
√
ǫηn, 〈ηnηn′〉 = 2λδnn′. (4.4)

ii) Show that

〈O(xn+1)〉 − 〈O(xn)〉 = 〈O′(xn)δn +
1

2
O

′′

(xn)δ
2
n + . . .〉

= ǫ〈O′(xn)Kn + λO
′′

(xn)〉+O(ǫ3/2). (4.5)

In the ǫ → 0 limit, this gives

∂

∂t
〈O(x)〉 = 〈O′(x)K(x) + λO

′′

(x)〉. (4.6)

iii) Using Eq. (4.3), demonstrate that this yields the Fokker-Planck equation (4.2)
for ρ(x, t). What should λ be to obtain the desired equilibrium distribution?

[1] P. H. Damgaard and H. Hüffel, Phys. Rept. 152 (1987) 227.

5. Gaussian model

Consider the complex integral

Z =

∫ ∞

−∞
dx ρ(x), ρ(x) = e−S, S =

1

2
σx2, σ = a+ ib. (5.1)

i) Show that the corresponding complex Langevin equations are given by

ẋ = Kx + η, Kx = −ax+ by, (5.2)

ẏ = Ky, Ky = −ay − bx, (5.3)

where 〈η(t)η(t′)〉 = 2δ(t− t′).

ii) Demonstrate that these Langevin equations are solved by

x(t) = e−at [cos(bt)x(0) + sin(bt)y(0)] +

∫ t

0

ds e−a(t−s) cos[b(t− s))]η(s),(5.4)

y(t) = e−at [cos(bt)y(0)− sin(bt)x(0)]−
∫ t

0

ds e−a(t−s) sin[b(t− s)]η(s). (5.5)

iii) Show that the expectation values in the infinite time limit are given by

〈x2〉 = 1

2a

2a2 + b2

a2 + b2
, 〈y2〉 = 1

2a

b2

a2 + b2
, 〈xy〉 = −1

2

b

a2 + b2
. (5.6)
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iv) Demonstrate this yields the desired result

〈x2〉 → 〈(x+ iy)2〉 = a− ib

a2 + b2
=

1

a + ib
=

1

σ
. (5.7)

The Fokker-Planck equation for the (real and positive) weight P (x, y; t), defined
via

〈O(x(t) + iy(t))〉 =
∫

dxdy P (x, y; t)O(x+ iy), (5.8)

is given by
Ṗ (x, y; t) = [∂x (∂x −Kx)− ∂yKy]P (x, y; t) (5.9)

Since the original integral is Gaussian, the equilibrium distribution P (x, y) is also
Gaussian and can be written as

P (x, y) = N exp
[

−αx2 − βy2 − 2γxy
]

, (5.10)

where N is a normalization constant.

v) Using the Fokker-Planck equation, show that the coefficients are given by

α = a, β = a

(

1 +
2a2

b2

)

, γ =
a2

b
, (5.11)

and demonstrate that this gives the previously computed expectation values

〈x2〉 =
∫

dxdy P (x, y)x2

∫

dxdy P (x, y)
, (5.12)

etc.

vi) From the equivalence

∫

dx ρ(x)O(x) =

∫

dxdy P (x, y)O(x+ iy), (5.13)

it follows that the real distribution is related to the original complex one via

ρ(x) =

∫

dy P (x− iy, y). (5.14)

Verify this explicitly (up to the undetermined normalization).
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