QCD at nonzero chemical potential and the sign problem

INT lectures 2012

V: complex Langevin dynamics

Gert Aarts

Where are we?

complex weight:

- straightforward importance sampling not possible
- overlap problem

various possibilities:

- preserve overlap as best as possible
- use approximate methods at small μ
- do something radical:
 - rewrite partition function in other dof
 - explore field space in a different way

...

Overlap problem

- configurations differ in an essential way from those obtained at $\mu = 0$ or with $|\det M|$
- cancelation between configurations with 'positive' and 'negative' weight

dominant configurations in the path integral?

Complex integrals

consider simple integral

$$Z(a,b) = \int_{-\infty}^{\infty} dx \, e^{-S(x)} \qquad S(x) = ax^2 + ibx$$

- complete the square/saddle point approximation: into complex plane
- Iesson: don't be real(istic), be more imaginative

radically different approach:

- complexify all degrees of freedom $x \to z = x + iy$
- enlarged complexified space
- new directions to explore

Complexified field space

dominant configurations in the path integral?

real and positive distribution P(x, y): how to obtain it?

 \Rightarrow solution of stochastic process

complex Langevin dynamics

Parisi 83, Klauder 83

consider complex Gaussian integral

$$Z(a,b) = \int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}ax^2 - ibx} \qquad \left($$

$$\left(=\sqrt{\frac{2\pi}{a}}e^{-\frac{1}{2}b^2/a}\right)$$

complex action $S^*(b) = S(-b^*)$ [assume a > 0 and real]

phase quenched theory

$$Z_{\rm pq} = \int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}ax^2} = Z(a,0) = \sqrt{\frac{2\pi}{a}}$$

sign problem: average phase factor

$$\langle e^{-ibx} \rangle_{pq} = \frac{Z(a,b)}{Z(a,0)} = e^{-\frac{1}{2}b^2/a}$$

average phase factor: one degree of freedom only

$$\langle e^{-ibx} \rangle_{pq} = \frac{Z(a,b)}{Z(a,0)} = e^{-\frac{1}{2}b^2/a}$$

sign problem only bad when b gets large

• for N degrees of freedom x_j , $j = 1, \ldots, N$

$$\langle e^{-ib\sum_j x_j} \rangle_{\mathrm{pq}} = e^{-\frac{1}{2}Nb^2/a}$$

limits $b \to 0$, $N \to \infty$ do not commute

severe sign problem for all $b \neq 0$ in $N \rightarrow \infty$ limit mimicks nonzero μ problem

$$Z(a,b) = \int dx \, e^{-\frac{1}{2}ax^2 - ibx} \qquad \langle x^2 \rangle = -2\frac{\partial \ln Z}{\partial a} = \frac{a - b^2}{a^2}$$

goal: compute numerically without importance sampling

first take b = 0:

use analogy with Brownian motion

Parisi & Wu 81

particle in a fluid: friction (a) and kicks (η)

Langevin equation

$$\frac{d}{dt}x(t) = -ax(t) + \eta(t) \qquad \langle \eta(t)\eta(t') \rangle = 2\delta(t - t')$$

- **Solution** Langevin equation $\dot{x}(t) = -ax(t) + \eta(t)$
- analytical solution

$$x(t) = e^{-at}x(0) + \int_0^t ds \,\eta(s)e^{-a(t-s)}$$

• correlator [take x(0) = 0, no i.c. dependence]

$$\langle x^2(t)\rangle = \int_0^t ds \int_0^t ds' \langle \eta(s)\eta(s')\rangle e^{-a(2t-s-s')}$$

• noise averaged correlator, use $\langle \eta(s)\eta(s')\rangle = 2\delta(s-s')$

$$\lim_{t \to \infty} \langle x^2(t) \rangle = \frac{1}{a}$$

no importance sampling, solution of stochastic process

Fokker-Planck equation

associated distribution $\rho(x,t)$

$$\langle O(x(t)) \rangle_{\eta} = \int dx \, \rho(x,t) O(x)$$

noise average

distribution average

• Langevin eq for $x(t) \Leftrightarrow$ Fokker-Planck eq for $\rho(x, t)$ $\dot{\rho}(x, t) = \partial_x \left(\partial_x + S'(x)\right) \rho(x, t)$

stationary solution: $\rho(x) \sim e^{-S(x)}$

review: Damgaard & Hüffel 87

Fokker-Planck equation

stationary solution typically reached exponentially fast

$$\dot{\rho}(x,t) = \partial_x \left(\partial_x + S'(x) \right) \rho(x,t)$$

• write $\rho(x,t) = \psi(x,t)e^{-\frac{1}{2}S(x)}$

$$\dot{\psi}(x,t) = -H_{\rm FP}\psi(x,t)$$

Fokker-Planck hamiltonian:

$$H_{\rm FP} = Q^{\dagger}Q = \left[-\partial_x + \frac{1}{2}S'(x)\right] \left[\partial_x + \frac{1}{2}S'(x)\right] \ge 0$$
$$Q\psi(x) = 0 \qquad \Leftrightarrow \qquad \psi(x) \sim e^{-\frac{1}{2}S(x)}$$
$$\psi(x,t) = c_0 e^{-\frac{1}{2}S(x)} + \sum_{\lambda>0} c_\lambda e^{-\lambda t} \to c_0 e^{-\frac{1}{2}S(x)}$$

INT, August 2012 - p. 8

Complex Gaussian integral

$$Z(a,b) = \int dx \, e^{-S(x)}$$
 $S(x) = \frac{1}{2}ax^2 + ibx$

- $b \neq 0$:
 - analytically: complete the square shift in the complex plane $x \to x + i \frac{b}{a}$
 - achieve the same with Langevin equation
 "complexify" $x \to z = x + iy$

$$\dot{x} = -\operatorname{Re} \partial_z S(z) + \eta = -ax + \eta$$
$$\dot{y} = -\operatorname{Im} \partial_z S(z) = -ay - b$$

with S(z) = S(x + iy)

Complex Gaussian integral

• solution:
$$x(t) = x(0)e^{-at} + \int_0^t ds \, e^{-a(t-s)}\eta(s)$$

 $y(t) = [y(0) + b/a]e^{-at} - b/a$

correlators:

$$\langle x^{2}(t) \rangle = x^{2}(0)e^{-2at} + (1 - e^{-2at})/a \to 1/a \langle x(t)y(t) \rangle = x(0)e^{-at} ([y(0) + b/a]e^{-at} - b/a) \to 0 \langle y^{2}(t) \rangle = ([y(0) + b/a]e^{-at} - b/a)^{2} \to b^{2}/a^{2}$$

s combination $x \to x + iy$:

$$\lim_{t \to \infty} \langle [x(t) + iy(t)]^2 \rangle = \langle x^2 - y^2 + 2ixy \rangle = \frac{1}{a} - \frac{b^2}{a^2} = \frac{a - b^2}{a^2}$$

correct!

Distribution

associated distribution P(x, y; t) in complex plane

real and positive distribution (if it exists)

$$\langle O(x+iy)(t)\rangle = \int dxdy P(x,y;t)O(x+iy)$$

Langevin eq for x(t) and y(t) Fokker-Planck eq for P(x, y; t)

Fokker-Planck equation:

 $\dot{P}(x,y;t) = \left[\partial_x \left(\partial_x + \operatorname{Re} \partial_z S\right) + \partial_y \operatorname{Im} \partial_z S\right] P(x,y;t)$

- solvable in Gaussian models (like here)
- no generic solutions known no semi-positive Fokker-Planck hamiltonian (in contrast to real Langevin/action)

Distribution

distribution P(x, y) in the complex plane

shift in the complex plane: $y \rightarrow -b/a$

Langevin process "finds" distribution:

$$P(x,y) \sim e^{-ax^2/2}\delta(y+b/a)$$

More interesting Gaussian integral

final Gaussian example:

$$S = \frac{1}{2}(a+ib)x^2 \qquad \langle x^2 \rangle = \frac{1}{a+ib}$$

coupled Langevin equations

$$\dot{x} = -ax + by + \eta \qquad \qquad \dot{y} = -ay - bx$$

 \checkmark solve and find correlators when $t \to \infty$

$$\langle x^{2} \rangle = \frac{1}{2a} \frac{2a^{2} + b^{2}}{a^{2} + b^{2}} \qquad \langle y^{2} \rangle = \frac{1}{2a} \frac{b^{2}}{a^{2} + b^{2}} \qquad \langle xy \rangle = -\frac{1}{2} \frac{b}{a^{2} + b^{2}}$$

• correlator $\langle z^{2} \rangle = \langle x^{2} - y^{2} + 2ixy \rangle = \frac{a - ib}{a^{2} + b^{2}} = \frac{1}{a + ib}$

correct!

More interesting Gaussian integral

distribution P(x, y) in the complex plane

P(x, y)

Langevin process "finds" this distribution

original weight e^{-S} is complex

this distribution is real and positive

Equilibrium distributions

complex weight $\rho(x)$ real weight P(x,y)

main premise:

$$\int dx \,\rho(x)O(x) = \int dx dy \,P(x,y)O(x+iy)$$

• if equilibrium distribution P(x, y) is known analytically: shift variables

$$\int dxdy P(x,y)O(x+iy) = \int dx O(x) \int dy P(x-iy,y)$$

$$\Rightarrow \rho(x) = \int dy \, P(x - iy, y)$$

- correct in Gaussian examples
- hard to verify in numerical studies!

Discretization

most cases not analytically solvable numerical solution of Langevin equation

discretize stochastic equation (Ito calculus)

$$x_{n+1} = x_n + \epsilon K_n^{\mathbf{R}} + \sqrt{\epsilon}\eta_n$$
$$y_{n+1} = y_n + \epsilon K_n^{\mathbf{I}}$$

drift terms

$$K_n^{\rm R} = -{\rm Re} \, \frac{\partial S}{\partial z} \qquad \qquad K_n^{\rm I} = -{\rm Im} \, \frac{\partial S}{\partial z}$$

$$\langle \eta_n \eta_{n'} \rangle = \delta_{nn'}$$

use adaptive stepsize if necessary

Stochastic quantizaton

adapt to field theory

Parisi & Wu 81, Parisi, Klauder 83

- **•** path integral $Z = \int D\phi e^{-S}$
- Langevin dynamics in "fifth" time direction

$$\frac{\partial \phi(x,t)}{\partial t} = -\frac{\delta S[\phi]}{\delta \phi(x,t)} + \eta(x,t)$$

Gaussian noise

$$\langle \eta(x,t) \rangle = 0$$
 $\langle \eta(x,t)\eta(x',t') \rangle = 2\delta(x-x')\delta(t-t')$

- compute expectation values $\langle \phi(x,t)\phi(x',t) \rangle$, etc
- \checkmark study converge as $t \to \infty$

Phase transitions and the Silver Blaze

can complex Langevin dynamics handle:

- a severe sign problem?
- the thermodynamic limit?
- phase transitions?

. . .

the Silver Blaze problem?

Cohen 03

study in a model with a phase diagram with similar features as QCD at low temperature

 \Rightarrow relativistic Bose gas at nonzero μ

GA 08-09

- scalar O(2) model with global symmetry
- continuum action

$$S = \int d^4x \left[\left| \partial_{\nu} \phi \right|^2 + (m^2 - \mu^2) |\phi|^2 + \mu \left(\phi^* \partial_4 \phi - \partial_4 \phi^* \phi \right) + \lambda |\phi|^4 \right]$$

s complex scalar field, d = 4, $m^2 > 0$

•
$$S^*(\mu) = S(-\mu^*)$$
 as in QCD

scalar O(2) model with global symmetry

Iattice action

.

$$S = \sum_{x} \left[\left(2d + m^{2} \right) \phi_{x}^{*} \phi_{x} + \lambda \left(\phi_{x}^{*} \phi_{x} \right)^{2} - \sum_{\nu=1}^{4} \left(\phi_{x}^{*} e^{-\mu \delta_{\nu,4}} \phi_{x+\hat{\nu}} + \phi_{x+\hat{\nu}}^{*} e^{\mu \delta_{\nu,4}} \phi_{x} \right) \right]$$

• complex scalar field, d = 4, $m^2 > 0$

•
$$S^*(\mu) = S(-\mu^*)$$
 as in QCD

tree level potential in the continuum

$$V(\phi) = (m^{2} - \mu^{2})|\phi|^{2} + \lambda|\phi|^{4}$$

condensation when $\mu^2 > m^2$, SSB

• write
$$\phi = (\phi_1 + i\phi_2)/\sqrt{2} \Rightarrow \phi_a \ (a = 1, 2)$$

- complexification $\phi_a \rightarrow \phi_a^{\rm R} + i\phi_a^{\rm I}$
- complex Langevin equations

$$\frac{\partial \phi_a^{\mathrm{R}}}{\partial t} = -\mathrm{Re} \left. \frac{\delta S}{\delta \phi_a} \right|_{\phi_a \to \phi_a^{\mathrm{R}} + i\phi_a^{\mathrm{I}}} + \eta_a$$
$$\frac{\partial \phi_a^{\mathrm{I}}}{\partial t} = -\mathrm{Im} \left. \frac{\delta S}{\delta \phi_a} \right|_{\phi_a \to \phi_a^{\mathrm{R}} + i\phi^{\mathrm{I}}}$$

- straightforward to solve numerically, $m = \lambda = 1$
- In lattices of size N^4 , with N = 4, 6, 8, 10

field modulus squared
$$|\phi|^2 \rightarrow \frac{1}{2} \left(\phi_a^{R^2} - \phi_a^{I^2} \right) + i \phi_a^R \phi_a^I$$

second order phase transition in thermodynamic limit

second order phase transition in thermodynamic limit

Silver Blaze and the sign problem

Silver Blaze and sign problems are intimately related

 \blacksquare phase quenched theory $Z_{pq} = \int D\phi |e^{-S}|$

physics of phase quenched theory:

 chemical potential appears only in mass parameter (in continuum notation)

$$V = (m^{2} - \mu^{2})|\phi|^{2} + \lambda|\phi|^{4}$$

Just dynamics of symmetry breaking, no Silver Blaze

in QCD: phase quenched = finite isospin onset at $\mu = m_{\pi}/2$ instead of $m_B/3$

Silver Blaze and the sign problem

phase $e^{i\varphi} = e^{-S}/|e^{-S}|$ does precisely what is expected

How severe is the sign problem?

- complex action $e^{-S} = |e^{-S}|e^{i\varphi}$
- average phase factor in phase quenched theory

exponentially hard in thermodynamic limit

Lattice gauge theory

partition function

$$Z = \int DU \, e^{-S_B} \, \det M$$

- M is the fermion matrix
- fermion determinant is complex

$$[\det M(\mu)]^* = \det M(-\mu^*)$$

SU(3) lattice gauge theory

Langevin update for link variables $U_{x\nu}$:

 $U_{x\nu}(t+\epsilon) = R_{x\nu}(t) U_{x\nu}(t) \qquad R_{x\nu} = \exp\left[i\lambda_a\left(\epsilon K_{x\nu a} + \sqrt{\epsilon}\eta_{x\nu a}\right)\right]$ Gell-mann matrices λ_a ($a = 1, \dots 8$) $K_{x\nu a} = -D_{x\nu a}S_{\text{eff}}[U] \qquad S_{\text{eff}} = S_B + S_F \qquad S_F = -\ln\det M$ onoise

 $\langle \eta_{x\nu a} \rangle = 0 \qquad \qquad \langle \eta_{x\nu a} \eta_{x'\nu' a} \rangle = 2\delta_{xx'} \delta_{\nu\nu'} \delta_{aa'}$

real action: $\Rightarrow K^{\dagger} = K \Leftrightarrow R^{\dagger}R = 1 \Leftrightarrow U \in SU(3)$

complex action: $\Rightarrow K^{\dagger} \neq K \Leftrightarrow R^{\dagger}R \neq 1 \Leftrightarrow U \in SL(3, \mathbb{C})$

Heavy dense QCD

bosonic action: standard SU(3) Wilson action

$$S_B = -\beta \sum_P \left(\frac{1}{6} \left[\text{Tr } U_P + \text{Tr } U_P^{-1} \right] - 1 \right)$$

determinant det M for Wilson fermions fermion matrix:

$$M = 1 - \kappa \sum_{i=1}^{3} \operatorname{space} - \kappa \left(e^{\mu} \Gamma_{+4} U_{x,4} T_{4} + e^{-\mu} \Gamma_{-4} U_{x,4}^{-1} T_{-4} \right)$$

Heavy dense QCD

hopping expansion:

$$\det M \approx \det \left[1 - \kappa \left(e^{\mu} \Gamma_{+4} U_{x,4} T_4 + e^{-\mu} \Gamma_{-4} U_{x,4}^{-1} T_{-4} \right) \right]$$
$$= \prod_{\mathbf{x}} \det \left(1 + h e^{\mu/T} \mathcal{P}_{\mathbf{x}} \right)^2 \det \left(1 + h e^{-\mu/T} \mathcal{P}_{\mathbf{x}}^{-1} \right)^2$$

with $h = (2\kappa)^{N_{\tau}}$ and (conjugate) Polyakov loops $\mathcal{P}_{\mathbf{x}}^{(-1)}$

- static quarks propagate in temporal direction only: Polyakov loops
- full gauge dynamics included

GA & Stamatescu 08

Density

first results on 4^4 lattice at $\beta = 5.6$, $\kappa = 0.12$, $N_f = 3$

low-density phase \Rightarrow high-density phase

(conjugate) Polyakov loops

results on 4^4 lattice at $\beta = 5.6$, $\kappa = 0.12$, $N_f = 3$

low-density "confining" phase \Rightarrow high-density "deconfining" phase

$SU(3) \rightarrow SL(3,\mathbb{C})$

- complex Langevin dynamics: no longer in SU(3)
- instead $U \in SL(3, \mathbb{C})$
- in terms of gauge potentials $U = e^{i\lambda_a A_a/2}$ A_a is now complex
- how far from SU(3)?

consider

$$\frac{1}{N} \operatorname{Tr} U^{\dagger} U \begin{cases} = 1 & \text{if } U \in \mathsf{SU}(N) \\ \geq 1 & \text{if } U \in \mathsf{SL}(N,\mathbb{C}) \end{cases}$$

One-dimensional QCD

Sexactly solvable
Gibbs 86, Bilic & Demeterfi 88

• phase quenched: transition at $\mu = \mu_c$, full: no transition

severe sign problem when $|\mu| > |\mu_c|$

chiral condensate: write as integral over spectral density

$$\Sigma = \int d^2 z \, \frac{\rho(z;\mu)}{z+m} \qquad \qquad \mu_c = \operatorname{arcsinh} m$$

- $\ \ \, \ \,
 ho(z;\mu) \ \, {\rm complex \ and \ \, oscillatory} \ \ \, {\rm _{Ravagli}} \ \, {\rm _{\& \ Verbaarschot}} \ \, {\rm _{07}} \ \,$
- **s** condensate independent of μ : Silver Blaze
- solve with complex Langevin

GA & Splittorff 10

One-dimensional QCD

- exact results reproduced
- discontinuity at $\mu_c = 0$ in thermodynamic limit $n \to \infty$

- sign problem severe when $|\mu_c| < |\mu|$
- **s** condensate independent of μ : Silver Blaze

One-dimensional QCD

elegant analytical solution in thermodynamic limit:

Troubled past

- 1. numerical problems: runaways, instabilities
 - \Rightarrow adaptive stepsize

no instabilities observed, works for SU(3) gauge theory

GA, James, Seiler & Stamatescu 09

a la Ambjorn et al 86

2. theoretical status unclear

 \Rightarrow detailed analyis, identified necessary conditions

GA, FJ, ES & IOS 09-12

- 3. convergence to wrong limit
 - \Rightarrow better understood but not yet resolved

in progress

Instabilities: heavy dense QCD

adaptive time step during the evolution

occasionally *very* small stepsize required can go to longer Langevin times without problems

Analytical understanding

consider expectation values and Fokker-Planck equations

one degree of freedom x , complex action S(x) , $\rho(x) \sim e^{-S(x)}$

• wanted:
$$\langle O(x,t) \rangle_{\rho} = \int dx \ \rho(x,t) O(x)$$

 $\partial_t \rho(x,t) = \partial_x \left(\partial_x + S'(x) \right) \rho(x,t)$

solved with CLE:

$$\langle O(x+iy,t)\rangle_P = \int dxdy \ P(x,y;t)O(x+iy)$$

 $\partial_t P(x,y;t) = \left[\partial_x \left(\partial_x - K_x\right) - \partial_y K_y\right] P(x,y;t)$

with $K_x = -\text{Re}S'$, $K_y = -\text{Im}S'$

• question: $\langle O(x+iy,t)\rangle_P = \langle O(x,t)\rangle_\rho$?

Analytical understanding

question: $\langle O(x+iy,t)\rangle_P = \langle O(x,t)\rangle_\rho$ as $t \to \infty$?

answer: yes, provided some conditions are met:

- In the second secon
- partial integration without boundary terms possible
- actually O(x + iy)P(x, y) for large enough set O(x)
- \Rightarrow distribution should be sufficiently localized
 - can be tested numerically via criteria for correctness

$$\langle LO(x+iy)\rangle = 0$$

with *L* Langevin operator

0912.3360, 1101.3270

apply these ideas to 3D SU(3) spin model GA & James 11

- Searlier solved with complex Langevin Karsch & Wyld 85 Bilic, Gausterer & Sanielevici 88
- however, no detailed tests performed
- \Rightarrow test reliability of complex Langevin using developed tools
 - analyticity in μ^2 :
 - from imaginary to real μ
 - Taylor series
 - criteria for correctness
 - Comparison with flux formulation Gattringer & Mercado 12

3-dimensional SU(3) spin model: $S = S_B + S_F$

$$S_B = -\beta \sum_{\langle xy \rangle} \left[P_x P_y^* + P_x^* P_y \right]$$
$$S_F = -h \sum_x \left[e^\mu P_x + e^{-\mu} P_x^* \right]$$

- SU(3) matrices: $P_x = \operatorname{Tr} U_x$
- gauge action: nearest neighbour Polyakov loops
- (static) quarks represented by Polyakov loops
- complex action $S_F^*(\mu) = S_F(-\mu^*)$

effective model for QCD with static quarks, centre symmetry

phase structure

μ

effective model for QCD with static quarks

real and imaginary potential:

first-order transition in $\beta - \mu^2$ plane, $\langle P + P^* \rangle/2$

negative μ^2 : real Langevin — positive μ^2 : complex Langevin INT, August 2012 – p. 36

real chemical potential

immediate splitting between $\langle P \rangle$ and $\langle P^* \rangle$: no Silver Blaze

inset: lines from first-order Taylor expansion

stepsize dependence

left: $\langle P \rangle$ (top) and $\langle P^* \rangle$ (bottom) at $\mu = 3$ right: criteria for correctness $\langle LO \rangle = 0$

improved stepsize algorithm to eliminate linear dependence criteria satisfied as stepsize $\epsilon \rightarrow 0$

comparison with result obtained using flux representation

- CL: finite stepsize errors in lowest-order algorithm
- improved algorithm removes discrepancy in critical region

complex Langevin passes all the tests: why?

- Iocalized distribution: fast decay in imaginary direction
- real manifold is stable under small fluctuations
- Haar measure plays essential role
- \Rightarrow Haar measure contribution to complex drift restoring

Stabilizing drift

- Maar measure contribution to complex drift restoring
- controlled exploration of the complex field space

employ this: generate Jacobian by field redefinition

$$Z = \int dx \, e^{-S(x)} \qquad x = x(u) \qquad J(u) = \frac{\partial x(u)}{\partial u}$$
$$= \int du \, e^{-S_{\text{eff}}(u)} \qquad S_{\text{eff}}(u) = S(u) - \ln J(u)$$

drift: $K(u) = -S'_{eff}(u) = -S'(u) + J'(u)/J(u)$

which field redefinition?

singular at J(u) = 0 but restoring in complex plane

Fun with complex Langevin

Gaussian example: defined when $\operatorname{Re}(\sigma) = a > 0$

$$Z = \int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}\sigma x^2} \qquad \sigma = a + ib \qquad \langle x^2 \rangle = \frac{1}{\sigma}$$

what if a < 0? flow in complex space for a = -1, b = 1:

left: highly unstable

right: after transformation $x(u) = u^3$ attractive fixed points

Fun with complex Langevin

do CLE in the *u* formulation and compute $\langle x^2 \rangle = \langle u^6 \rangle$

CLE finds the analytically continued answer to negative *a*!

clearly needs more exploration – potential for stabilization – affects convergence

XY model

three-dimensional XY model at nonzero μ

$$S = -\beta \sum_{x} \sum_{\nu=0}^{2} \cos\left(\phi_{x} - \phi_{x+\hat{\nu}} - i\mu\delta_{\nu,0}\right)$$

• μ couples to the conserved Noether charge

• symmetry
$$S^*(\mu) = S(-\mu^*)$$

unexpectedly difficult to simulate with complex Langevin!

numerics shares many features with heavy dense QCD

GA & James 10

also studied by Banerjee & Chandrasekharan using worldline formulation hep-lat/1001.3648

- comparison with known result (world line formulation)
- analytic continuation from imaginary $\mu = i\mu_{I}$

real μ , complex action:

$$S = -\beta \sum_{x} \sum_{\nu=0}^{2} \cos\left(\phi_{x} - \phi_{x+\hat{\nu}} - i\mu\delta_{\nu,0}\right)$$

imaginary $\mu = i\mu_{\rm I}$, real action:

$$S_{\rm I} = -\beta \sum_{x} \sum_{\nu=0}^{2} \cos(\phi_x - \phi_{x+\hat{\nu}} + \mu_{\rm I} \delta_{\nu,0})$$

 $\,$ real and imag μ results analytic in μ^2

GA & James 10

- comparison with known result (world line formulation)
- analytic continuation from imaginary $\mu = i \mu_{\mathrm{I}}$

• "Roberge-Weiss" transition at $\mu_{\rm I} = \pi/N_{ au}$

- comparison with known result (world line formulation)
- analytic continuation from imaginary $\mu = i \mu_{\rm I}$

Silver Blaze feature at small β and μ

XY MODEL

comparison with known result (world line formulation)

phase diagram:

phase boundary from Banerjee & Chandrasekharan

highly correlated with ordered/disordered phase

- apparent correct results in the ordered phase
- incorrect result in the disordered/transition region

diagnostics:

- distribution $P[\phi_{\mathbf{R}}, \phi_{\mathbf{I}}]$ qualitatively different
- classical force distribution qualitatively different
- s complexified dynamics \neq real dynamics when $\mu = 0$

but:

independent of strength of the sign problem

conclusion: failure not due to sign problem

Summary

many stimulating results: examples where complex Langevin can handle

sign problem

- phase transition
- Silver Blaze problem
- thermodynamic limit

problems from the 80s:

- instabilities and runaways \rightarrow adaptive stepsize
- convergence: correct result not guaranteed

resolution in progress, important:

- failure does not depend on strength of sign problem
- distinct from all other approaches

QCD at nonzero $\mu \quad \Leftrightarrow \quad \text{sign problem}$

relevant for QCD phase diagram, heavy-ion collisions, dense objects, ...

- sign problem has been studied from many perspectives
- 'well understood' (overlap, Silver Blaze, ...)
- no solution for QCD (yet ...)

sign problem appears not only in QCD

also in many (lower-dimensional, condensed matter) theories

 \Rightarrow learn from those models as well

some approaches with limited applicability in full QCD:

- overlap preserving reweighting
- Taylor series
- imaginary μ and analytical continuation

_ ...

_

partial or full solutions in not quite QCD:

- strong coupling QCD
- flux representations in spin models (not discussed)
- complex Langevin

to do (possible):

determine QCD phase diagram for

- imaginary chemical potential
- isospin chemical potential
- \Rightarrow no sign problem
- \Rightarrow large-scale numerical project
- \Rightarrow intricate phase structure depending on quark masses

to do (possible?):

solve sign problem

don't give up!