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Where are we?

complex weight:

straightforward importance sampling not possible

overlap problem

various possibilities:

preserve overlap as best as possible

use approximate methods at small µ

do something radical:

rewrite partition function in other dof
explore field space in a different way
. . .
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Overlap problem

configurations differ in an essential way from those
obtained at µ = 0 or with | detM |

cancelation between configurations with ‘positive’ and
‘negative’ weight

dominant configurations
in the path integral? x

 x)Reρ(  
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Complex integrals

consider simple integral

Z(a, b) =

∫ ∞

−∞

dx e−S(x) S(x) = ax2 + ibx

complete the square/saddle point approximation:

into complex plane

lesson: don’t be real(istic), be more imaginative

radically different approach:

complexify all degrees of freedom x→ z = x+ iy

enlarged complexified space

new directions to explore
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Complexified field space

dominant configurations in the path integral?

x

 x)Reρ(  

⇒

y

x

real and positive distribution P (x, y): how to obtain it?

⇒ solution of stochastic process

complex Langevin dynamics
Parisi 83, Klauder 83
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Gaussian integral

consider complex Gaussian integral

Z(a, b) =

∫ ∞

−∞

dx e−
1

2
ax2−ibx

(

=

√

2π

a
e−

1

2
b2/a

)

complex action S∗(b) = S(−b∗) [assume a > 0 and real]

phase quenched theory

Zpq =

∫ ∞

−∞

dx e−
1

2
ax2

= Z(a, 0) =

√

2π

a

sign problem: average phase factor

〈e−ibx〉pq =
Z(a, b)

Z(a, 0)
= e−

1

2
b2/a
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Gaussian integral

average phase factor: one degree of freedom only

〈e−ibx〉pq =
Z(a, b)

Z(a, 0)
= e−

1

2
b2/a

sign problem only bad when b gets large

for N degrees of freedom xj, j = 1, . . . , N

〈e−ib
∑

j xj〉pq = e−
1

2
Nb2/a

limits b→ 0, N → ∞ do not commute

severe sign problem for all b 6= 0 in N → ∞ limit

mimicks nonzero µ problem
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Gaussian integral

Z(a, b) =

∫

dx e−
1

2
ax2−ibx 〈x2〉 = −2

∂ lnZ

∂a
=
a− b2

a2

goal: compute numerically without importance sampling

first take b = 0:

use analogy with Brownian motion
Parisi & Wu 81

particle in a fluid: friction (a) and kicks (η)

Langevin equation

d

dt
x(t) = −ax(t) + η(t) 〈η(t)η(t′)〉 = 2δ(t− t′)
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Gaussian integral

Langevin equation ẋ(t) = −ax(t) + η(t)

analytical solution

x(t) = e−atx(0) +

∫ t

0

ds η(s)e−a(t−s)

correlator [take x(0) = 0, no i.c. dependence]

〈x2(t)〉 =
∫ t

0

ds

∫ t

0

ds′ 〈η(s)η(s′)〉e−a(2t−s−s′)

noise averaged correlator, use 〈η(s)η(s′)〉 = 2δ(s− s′)

lim
t→∞

〈x2(t)〉 = 1

a

no importance sampling, solution of stochastic process
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Fokker-Planck equation

associated distribution ρ(x, t)

〈O(x(t)〉η =

∫

dx ρ(x, t)O(x)

noise average distribution average

Langevin eq for x(t) ⇔ Fokker-Planck eq for ρ(x, t)

ρ̇(x, t) = ∂x
(

∂x + S′(x)
)

ρ(x, t)

stationary solution: ρ(x) ∼ e−S(x)

review: Damgaard & H üffel 87
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Fokker-Planck equation

stationary solution typically reached exponentially fast

ρ̇(x, t) = ∂x
(

∂x + S′(x)
)

ρ(x, t)

write ρ(x, t) = ψ(x, t)e−
1

2
S(x)

ψ̇(x, t) = −HFPψ(x, t)

Fokker-Planck hamiltonian:

HFP = Q†Q =

[

−∂x +
1

2
S′(x)

] [

∂x +
1

2
S′(x)

]

≥ 0

Qψ(x) = 0 ⇔ ψ(x) ∼ e−
1

2
S(x)

ψ(x, t) = c0e
− 1

2
S(x) +

∑

λ>0

cλe
−λt → c0e

− 1

2
S(x)
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Complex Gaussian integral

Z(a, b) =

∫

dx e−S(x) S(x) =
1

2
ax2 + ibx

b 6= 0:

analytically: complete the square

shift in the complex plane x→ x+ i ba

achieve the same with Langevin equation

“complexify” x→ z = x+ iy

ẋ = −Re ∂zS(z) + η = −ax+ η

ẏ = −Im ∂zS(z) = −ay − b

with S(z) = S(x+ iy)
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Complex Gaussian integral

solution: x(t) = x(0)e−at +

∫ t

0

ds e−a(t−s)η(s)

y(t) = [y(0) + b/a]e−at − b/a

correlators:

〈x2(t)〉 = x2(0)e−2at +
(

1− e−2at
)

/a→ 1/a

〈x(t)y(t)〉 = x(0)e−at
(

[y(0) + b/a]e−at − b/a
)

→ 0

〈y2(t)〉 =
(

[y(0) + b/a]e−at − b/a
)2 → b2/a2

combination x→ x+ iy:

lim
t→∞

〈[x(t) + iy(t)]2〉 = 〈x2 − y2 + 2ixy〉 = 1

a
− b2

a2
=
a− b2

a2

correct!
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Distribution

associated distribution P (x, y; t) in complex plane

real and positive distribution (if it exists)

〈O(x+ iy)(t)〉 =

∫

dxdy P (x, y; t)O(x+ iy)

Langevin eq
for x(t) and y(t)

Fokker-Planck eq
for P (x, y; t)

Fokker-Planck equation:

Ṗ (x, y; t) = [∂x (∂x +Re ∂zS) + ∂yIm ∂zS]P (x, y; t)

solvable in Gaussian models (like here)

no generic solutions known
no semi-positive Fokker-Planck hamiltonian
(in contrast to real Langevin/action)
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Distribution

distribution P (x, y) in the complex plane

b = 0 b = −2

shift in the complex plane: y → −b/a
Langevin process
“finds” distribution:

P (x, y) ∼ e−ax2/2δ(y + b/a)
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More interesting Gaussian integral

final Gaussian example:

S = 1
2(a+ ib)x2 〈x2〉 = 1

a+ib

coupled Langevin equations

ẋ = −ax+ by + η ẏ = −ay − bx

solve and find correlators when t→ ∞

〈x2〉 = 1

2a

2a2 + b2

a2 + b2
〈y2〉 = 1

2a

b2

a2 + b2
〈xy〉 = −1

2

b

a2 + b2

correlator 〈z2〉 = 〈x2 − y2 + 2ixy〉 = a− ib

a2 + b2
=

1

a+ ib

correct!
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More interesting Gaussian integral

distribution P (x, y) in the complex plane

b = 0.01 b = 1

b = 10
Langevin process “finds” this
distribution

original weight e−S is complex

this distribution is real and positive
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Equilibrium distributions

complex weight ρ(x) real weight P (x, y)

main premise:
∫

dx ρ(x)O(x) =

∫

dxdy P (x, y)O(x+ iy)

if equilibrium distribution P (x, y) is known analytically:
shift variables
∫

dxdy P (x, y)O(x+ iy) =

∫

dxO(x)

∫

dy P (x− iy, y)

⇒ ρ(x) =

∫

dy P (x− iy, y)

correct in Gaussian examples

hard to verify in numerical studies!
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Discretization

most cases not analytically solvable

numerical solution of Langevin equation

discretize stochastic equation (Ito calculus)

xn+1 = xn + ǫKR
n +

√
ǫηn

yn+1 = yn + ǫKI
n

drift terms

KR
n = −Re

∂S

∂z
KI

n = −Im
∂S

∂z

noise
〈ηnηn′〉 = δnn′

use adaptive stepsize if necessary
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Stochastic quantizaton

adapt to field theory Parisi & Wu 81, Parisi, Klauder 83

path integral Z =
∫

Dφe−S

Langevin dynamics in “fifth” time direction

∂φ(x, t)

∂t
= − δS[φ]

δφ(x, t)
+ η(x, t)

Gaussian noise

〈η(x, t)〉 = 0 〈η(x, t)η(x′, t′)〉 = 2δ(x− x′)δ(t− t′)

compute expectation values 〈φ(x, t)φ(x′, t)〉, etc

study converge as t→ ∞
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Phase transitions and the Silver Blaze

can complex Langevin dynamics handle:

a severe sign problem?

the thermodynamic limit?

phase transitions?

the Silver Blaze problem? Cohen 03

. . .

study in a model with a phase diagram with similar features
as QCD at low temperature

⇒ relativistic Bose gas at nonzero µ

GA 08-09
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Relativistic Bose gas at nonzeroµ

scalar O(2) model with global symmetry

continuum action

S =

∫

d4x
[

|∂νφ|2 + (m2 − µ2)|φ|2

+µ (φ∗∂4φ− ∂4φ
∗φ) + λ|φ|4

]

complex scalar field, d = 4, m2 > 0

S∗(µ) = S(−µ∗) as in QCD
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Relativistic Bose gas at nonzeroµ

scalar O(2) model with global symmetry

lattice action

S =
∑

x

[

(

2d+m2
)

φ∗xφx + λ (φ∗xφx)
2

−
4
∑

ν=1

(

φ∗xe
−µδν,4φx+ν̂ + φ∗x+ν̂e

µδν,4φx
)

]

complex scalar field, d = 4, m2 > 0

S∗(µ) = S(−µ∗) as in QCD
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Relativistic Bose gas at nonzeroµ

tree level potential in the continuum

V (φ) = (m2 − µ2)|φ|2 + λ|φ|4

condensation when µ2 > m2, SSB

when T = 0
and µ < µc:

µ independence

Silver Blaze
problem

<φ> = 0

T

µ

<φ> = 0

INT, August 2012 – p. 16



Relativistic Bose gas at nonzeroµ

write φ = (φ1 + iφ2)/
√
2 ⇒ φa (a = 1, 2)

complexification φa → φRa + iφIa

complex Langevin equations

∂φRa
∂t

= −Re
δS

δφa

∣

∣

∣

φa→φR
a+iφI

a

+ ηa

∂φIa
∂t

= −Im
δS

δφa

∣

∣

∣

φa→φR
a+iφI

straightforward to solve numerically, m = λ = 1

lattices of size N4, with N = 4, 6, 8, 10
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Relativistic Bose gas

field modulus squared |φ|2 → 1
2

(

φRa
2 − φIa

2
)

+ iφRa φ
I
a

0 0.5 1 1.5

µ

0

0.4

0.8
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R
e 

<
|φ|
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4
4

6
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8
4

10
4

Silver Blaze!
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Relativistic Bose gas

field modulus squared |φ|2 → 1
2

(

φRa
2 − φIa

2
)

+ iφRa φ
I
a

0 0.5 1

µ

0.1

0.2

0.3
R

e 
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|φ|
2 >

4
4

6
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second order phase transition in thermodynamic limit
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Relativistic Bose gas

density 〈n〉 = (1/Ω)∂ lnZ/∂µ

0 0.5 1 1.5

µ

0

2

4

6
R

e 
<n

>
4

4

6
4

8
4

10
4

Silver Blaze
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Relativistic Bose gas

density 〈n〉 = (1/Ω)∂ lnZ/∂µ

0 0.25 0.5 0.75 1 1.25

µ

0

0.1

0.2

0.3

R
e 

<n
>

4
4

6
4

8
4

10
4

second order phase transition in thermodynamic limit
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Silver Blaze and the sign problem

Silver Blaze and sign problems are intimately related

phase quenched theory Zpq =
∫

Dφ|e−S|

physics of phase quenched theory:

chemical potential appears only in mass parameter
(in continuum notation)

V = (m2 − µ2)|φ|2 + λ|φ|4

dynamics of symmetry breaking, no Silver Blaze

in QCD: phase quenched = finite isospin
onset at µ = mπ/2 instead of mB/3
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Silver Blaze and the sign problem

density

0 0.25 0.5 0.75 1 1.25

µ
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pq

4
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8
4
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4

complex phase quenched

phase eiϕ = e−S/|e−S | does precisely what is expected
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How severe is the sign problem?

complex action e−S = |e−S |eiϕ

average phase factor in phase quenched theory

〈eiϕ〉pq =
Zfull

Zpq

= e−Ω∆f → 0

as Ω → ∞

0 0.5 1 1.5

µ

0

0.2

0.4

0.6

0.8

1

R
e 

<
eiϕ

> pq

4
4

6
4

8
4

10
4

exponentially hard in thermodynamic limit
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Lattice gauge theory

partition function

Z =

∫

DU e−SB detM

M is the fermion matrix

fermion determinant is complex

[detM(µ)]∗ = detM(−µ∗)
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SU(3) lattice gauge theory

Langevin update for link variables Uxν :

Uxν(t+ǫ) = Rxν(t)Uxν(t) Rxν = exp
[

iλa
(

ǫKxνa +
√
ǫηxνa

)]

Gell-mann matrices λa (a = 1, . . . 8)
drift term

Kxνa = −DxνaSeff [U ] Seff = SB+SF SF = − ln detM

noise

〈ηxνa〉 = 0 〈ηxνaηx′ν′a〉 = 2δxx′δνν′δaa′

real action: ⇒ K† = K ⇔ R†R = 1 ⇔ U ∈ SU(3)

complex action: ⇒ K† 6= K ⇔ R†R 6= 1 ⇔ U ∈ SL(3,C)
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Heavy dense QCD

bosonic action: standard SU(3) Wilson action

SB = −β
∑

P

(

1

6

[

Tr UP + Tr U−1
P

]

− 1

)

determinant detM for Wilson fermions

fermion matrix:

M = 1−κ
3
∑

i=1

space−κ
(

eµΓ+4Ux,4T4 + e−µΓ−4U
−1
x,4T−4

)
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Heavy dense QCD

hopping expansion:

detM ≈ det
[

1− κ
(

eµΓ+4Ux,4T4 + e−µΓ−4U
−1
x,4T−4

)]

=
∏

x

det
(

1 + heµ/TPx

)2
det
(

1 + he−µ/TP−1
x

)2

with h = (2κ)Nτ and (conjugate) Polyakov loops P(−1)
x

static quarks propagate in temporal direction only:
Polyakov loops

full gauge dynamics included

GA & Stamatescu 08
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Density

0.4 0.5 0.6 0.7 0.8 0.9 1

µ
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first results on 44 lattice at β = 5.6, κ = 0.12, Nf = 3

low-density phase ⇒ high-density phase

INT, August 2012 – p. 25



(conjugate) Polyakov loops

results on 44 lattice at β = 5.6, κ = 0.12, Nf = 3

0.4 0.5 0.6 0.7 0.8 0.9 1

µ

0
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low-density “confining” phase ⇒ high-density “deconfining” phase
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SU(3)→ SL(3,C)

complex Langevin dynamics: no longer in SU(3)

instead U ∈ SL(3,C)

in terms of gauge potentials U = eiλaAa/2

Aa is now complex

how far from SU(3)?

consider

1

N
Tr U †U











= 1 if U ∈ SU(N )

≥ 1 if U ∈ SL(N ,C)
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SU(3)→ SL(3,C)
1

3
Tr U †U ≥ 1 = 1 if U ∈ SU(3)
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One-dimensional QCD

exactly solvable Gibbs 86, Bilic & Demeterfi 88

phase quenched: transition at µ = µc, full: no transition

severe sign problem when |µ| > |µc|

chiral condensate:
write as integral over spectral density

Σ =

∫

d2z
ρ(z;µ)

z +m
µc = arcsinhm

ρ(z;µ) complex and oscillatory Ravagli & Verbaarschot 07

condensate independent of µ: Silver Blaze

solve with complex Langevin GA & Splittorff 10
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One-dimensional QCD

exact results reproduced

discontinuity at µc = 0 in thermodynamic limit n→ ∞

-2 -1 0 1 2

µ
c
 = arcsinh m

-1

-0.5

0

0.5

1

Σ
n=4
n=10

µ=1

sign problem severe when |µc| < |µ|
condensate independent of µ: Silver Blaze
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One-dimensional QCD

elegant analytical solution in thermodynamic limit:

original distribution:

ρ(x) ∼ en(µ−µc)einx

when n→ ∞

real distribution
sampled by
complex
Langevin:

exp(n)

c

µ−µc

µ

(x)ρ
1/n

µ+µ

1

y

x

P(x,y)

P (x, y) =

{

1 µ− µc < y < µ+ µc

0 elsewhere
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Troubled past

1. numerical problems: runaways, instabilities

⇒ adaptive stepsize

no instabilities observed, works for SU(3) gauge theory
GA, James, Seiler & Stamatescu 09

a la Ambjorn et al 86

2. theoretical status unclear

⇒ detailed analyis, identified necessary conditions
GA, FJ, ES & IOS 09-12

3. convergence to wrong limit

⇒ better understood but not yet resolved
in progress
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Instabilities: heavy dense QCD

adaptive time step during the evolution

0 100000 200000 300000

Langevin iteration

10
-8

10
-7

10
-6

10
-5

10
-4

st
ep

si
ze

occasionally very small stepsize required
can go to longer Langevin times without problems

INT, August 2012 – p. 31



Analytical understanding

consider expectation values and Fokker-Planck equations

one degree of freedom x, complex action S(x), ρ(x) ∼ e−S(x)

wanted: 〈O(x, t)〉ρ =
∫

dx ρ(x, t)O(x)

∂tρ(x, t) = ∂x
(

∂x + S′(x)
)

ρ(x, t)

solved with CLE:

〈O(x+ iy, t)〉P =

∫

dxdy P (x, y; t)O(x+ iy)

∂tP (x, y; t) = [∂x (∂x −Kx)− ∂yKy]P (x, y; t)

with Kx = −ReS′, Ky = −ImS′

question: 〈O(x+ iy, t)〉P = 〈O(x, t)〉ρ ?
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Analytical understanding

question: 〈O(x+ iy, t)〉P = 〈O(x, t)〉ρ as t→ ∞ ?

answer: yes, provided some conditions are met:

distribution P (x, y) should drop off fast enough in y
direction

partial integration without boundary terms possible

actually O(x+ iy)P (x, y) for large enough set O(x)

⇒ distribution should be sufficiently localized

can be tested numerically via criteria for correctness

〈LO(x+ iy)〉 = 0

with L Langevin operator 0912.3360, 1101.3270
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SU(3) spin model

apply these ideas to 3D SU(3) spin model GA & James 11

earlier solved with complex Langevin Karsch & Wyld 85

Bilic, Gausterer & Sanielevici 88

however, no detailed tests performed

⇒ test reliability of complex Langevin using developed tools

analyticity in µ2:
from imaginary to real µ
Taylor series

criteria for correctness

comparison with flux formulation Gattringer & Mercado 12
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SU(3) spin model

3-dimensional SU(3) spin model: S = SB + SF

SB = −β
∑

<xy>

[

PxP
∗
y + P ∗

xPy

]

SF = −h
∑

x

[

eµPx + e−µP ∗
x

]

SU(3) matrices: Px = TrUx

gauge action: nearest neighbour Polyakov loops

(static) quarks represented by Polyakov loops

complex action S∗
F (µ) = SF (−µ∗)

effective model for QCD with static quarks, centre symmetry
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SU(3) spin model

phase structure

effective model for QCD with static quarks
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SU(3) spin model

real and imaginary potential:

first-order transition in β − µ2 plane, 〈P + P ∗〉/2
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h=0.02, 10
3

negative µ2: real Langevin — positive µ2: complex Langevin
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SU(3) spin model

real chemical potential

immediate splitting between 〈P 〉 and 〈P ∗〉: no Silver Blaze
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inset: lines from first-order Taylor expansion
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SU(3) spin model

stepsize dependence

left: 〈P 〉 (top) and 〈P ∗〉 (bottom) at µ = 3

right: criteria for correctness 〈LO〉 = 0
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improved stepsize algorithm to eliminate linear dependence

criteria satisfied as stepsize ǫ→ 0
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SU(3) spin model

comparison with result obtained using flux representation

0.0 0.5 1.0
µ2

0.0

0.5

1.0

1.5

<
P

 +
 P

* >
 / 

2V

τ = 0.135
τ = 0.134
τ = 0.132
τ = 0.130
τ = 0.128
τ = 0.126
τ = 0.120

Filled symbols

Empty symbols

   = flux

   = c. Langevin

Asterisks = spin

X = improved 
   c. Langevin

CL: finite stepsize errors in lowest-order algorithm

improved algorithm removes discrepancy in critical
region
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SU(3) spin model

complex Langevin passes all the tests: why?

localized distribution: fast decay in imaginary direction

real manifold is stable under small fluctuations

Haar measure plays essential role

⇒ Haar measure contribution to complex drift restoring
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Stabilizing drift

Haar measure contribution to complex drift restoring

controlled exploration of the complex field space

employ this: generate Jacobian by field redefinition

Z =

∫

dx e−S(x) x = x(u) J(u) =
∂x(u)

∂u

=

∫

du e−Seff(u) Seff(u) = S(u)− ln J(u)

drift: K(u) = −S′
eff(u) = −S′(u) + J ′(u)/J(u)

which field redefinition?

singular at J(u) = 0 but restoring in complex plane
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Fun with complex Langevin

Gaussian example: defined when Re(σ) = a > 0

Z =

∫ ∞

−∞

dx e−
1

2
σx2

σ = a+ ib 〈x2〉 = 1

σ

what if a < 0? flow in complex space for a = −1, b = 1:

-2 -1 0 1 2
-2

-1

0

1

2

x

y

-2 -1 0 1 2
-2

-1

0

1

2

u

v

left: highly unstable right: after transformation x(u) = u3

attractive fixed points
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Fun with complex Langevin

do CLE in the u formulation and compute 〈x2〉 = 〈u6〉

-1 -0.5 0 0.5 1
a

-1

-0.5

0

0.5

<
x2 >

Re <x
2
>

Im <x
2
>

a+ib, b=1, x=u
3

〈x2〉 = 1

σ
=

a− ib

a2 + b2

take also negative a

CLE finds the analytically continued answer to negative a!

clearly needs more exploration − potential for stabilization
− affects convergence
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XY model

three-dimensional XY model at nonzero µ

S = −β
∑

x

2
∑

ν=0

cos (φx − φx+ν̂ − iµδν,0)

µ couples to the conserved Noether charge

symmetry S∗(µ) = S(−µ∗)

unexpectedly difficult to simulate with complex Langevin!

numerics shares many features with heavy dense QCD
GA & James 10

also studied by Banerjee & Chandrasekharan using worldline formulation
hep-lat/1001.3648
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Convergence: XY model

comparison with known result (world line formulation)

analytic continuation from imaginary µ = iµI

real µ, complex action:

S = −β
∑

x

2
∑

ν=0

cos (φx − φx+ν̂ − iµδν,0)

imaginary µ = iµI, real action:

SI = −β
∑

x

2
∑

ν=0

cos (φx − φx+ν̂ + µIδν,0)

real and imag µ results analytic in µ2

GA & James 10
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Convergence: XY model

comparison with known result (world line formulation)

analytic continuation from imaginary µ = iµI

-0.2 -0.1 0 0.1 0.2

µ2
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-1.55
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-1.45
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<
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>
/Ω

complex Langevin
real Langevin
world line

β=0.7, 83

action density
versus µ2

β = 0.7

ordered phase

“Roberge-Weiss” transition at µI = π/Nτ
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Convergence: XY model

comparison with known result (world line formulation)

analytic continuation from imaginary µ = iµI

-0.2 -0.1 0 0.1 0.2

µ2

-0.2

-0.18

-0.16

-0.14

<
S

>
/Ω

complex Langevin
real Langevin
world line

β=0.3, 83

action density
versus µ2

β = 0.3

disordered
phase

Silver Blaze feature at small β and µ
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Convergence: XY model

XY MODEL

comparison with known result (world line formulation)

phase diagram:

 0  0.5  1  1.5  2  2.5  3  3.5  4

µ

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

β

 0

 1

 2

 3

 4

 5

 6

 7 relative deviation:

∆S =
〈S〉cl − 〈S〉wl

〈S〉wl

high β: ordered

low β: disordered

phase boundary from Banerjee & Chandrasekharan

highly correlated with ordered/disordered phase
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Convergence: XY model

apparent correct results in the ordered phase

incorrect result in the disordered/transition region

diagnostics:

distribution P [φR, φI] qualitatively different

classical force distribution qualitatively different

complexified dynamics 6= real dynamics when µ = 0

but:

independent of strength of the sign problem

conclusion: failure not due to sign problem
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Summary

many stimulating results: examples where
complex Langevin can handle

sign problem

Silver Blaze problem

phase transition

thermodynamic limit

problems from the 80s:

instabilities and runaways → adaptive stepsize

convergence: correct result not guaranteed

resolution in progress, important:

failure does not depend on strength of sign problem

distinct from all other approaches
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Outlook

QCD at nonzero µ ⇔ sign problem

relevant for QCD phase diagram, heavy-ion collisions,
dense objects, . . .

sign problem has been studied from many perspectives

‘well understood’ (overlap, Silver Blaze, . . .)

no solution for QCD (yet . . .)

sign problem appears not only in QCD

also in many (lower-dimensional, condensed matter)
theories

⇒ learn from those models as well
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Outlook

some approaches with limited applicability in full QCD:

overlap preserving reweighting

Taylor series

imaginary µ and analytical continuation

. . .

partial or full solutions in not quite QCD:

strong coupling QCD

flux representations in spin models (not discussed)

complex Langevin

. . .
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Outlook

to do (possible):

determine QCD phase diagram for

imaginary chemical potential

isospin chemical potential

⇒ no sign problem

⇒ large-scale numerical project

⇒ intricate phase structure depending on quark masses
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Outlook

to do (possible?):

solve sign problem

don’t give up!

INT, August 2012 – p. 46
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