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Reminder: physics goal

determine

phase boundary between confined and deconfined
phase at small µ

critical endpoint (if it exists)

endpoint (second order)

T

µ

confined

crossover

QGP

first order

“standard conjectured” phase diagram
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Imaginaryµ

recall: D†(µ) = γ5D(−µ∗)γ5

if µ = iµI, detD(iµI) is real: importance sampling ok

⇒ perform ordinary simulations

analytical continuation to real µ: +µ2I → −µ2

determine phase boundary
at µ2 < 0

fit Tc(−µ2)

obtain phase boundary
at µ2 > 0

extrapolate

T

2µ0

simulate

here

to here
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Imaginaryµ

in fact: much richer than just analytical continuation

intricate phase structure

interplay with centre symmetry

quark mass dependence of phase transition
Columbia plot

pure gauge theory

with quarks and chemical potential

Roberge-Weiss symmetry

3D Columbia plot

critical properties de Forcrand & Philipsen 02-now

d’Elia & Lombardo 02

d’Elia et al 02-now

INT, August 2012 – p. 4



Columbia plot

quark mass dependence of thermal deconfinement
transition

phys.
point
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Gauge

 m   , mu

1st
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O(4) ?

chiral
2nd order
Z(2)

deconfined
2nd order
Z(2)

crossover

1st

 d 

tric

∞

∞
Pure

massless quarks: chiral symmetry ⇒ chiral condensate

pure gauge: centre symmetry ⇒ Polyakov loop
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Pure gauge: centre symmetry

multiply each temporal link in a fixed time slice with
phase factor zk

U4(τ,x) → zkU4(τ,x)

zk = e2πik/N (k = 0, . . . , N − 1)

zk11 ∈ ZN , element of the centre of SU(N ): det(zk11) = 1

transformation leaves action and measure invariant:
symmetry of pure gauge theory

gauge invariant order
parameter: Polyakov loop P (x) = tr

Nτ−1
∏

τ=0

U4(τ,x)

under transformation: P (x) → zkP (x)
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Pure gauge: centre symmetry

under transformation: P (x) → zP (x)

if 〈P 〉 = 0: centre symmetry unbroken

if 〈P 〉 6= 0: centre symmetry broken: N equivalent
vacua

N = 3:

z = 1 e±2πi/3

P
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Pure gauge: centre symmetry

interpretation: 〈P 〉 = 0: confined phase

〈P 〉 6= 0: deconfined phase

why? P worldline of a massive (static) quark

free energy between static quark/anti-quark pair: Fqq̄(r)

〈P (x)P †(y)〉 = e−Fqq̄(r)/T r = |x− y|

lim
r→∞

〈P (x)P †(y)〉 = 〈P (x)〉〈P †(y)〉 = |〈P 〉|2

confined: Fqq̄(∞) → ∞ ⇔ 〈P 〉 = 0

deconfined: Fqq̄(∞) finite ⇔ 〈P 〉 6= 0

⇒ order parameter for (de)confinement
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Centre symmetry with quarks

centre symmetry explicitly broken: ψ̄xU4ψx+4 not invariant

pure gauge: all Z(N) vacua equivalent

with quarks: trivial vacuum preferred 〈P 〉 ∼ 1
‘external magnetization’

add imaginary chemical potential: U4 → eiµIU4

centre transformation can be undone by shift in µI !

move all µI dependence to final time slice: eiµI/T

perform Z(N) transformation on final time slice

combination

zkeiµI/T = exp i

(

µI
T

+
2πk

N

)
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Roberge-Weiss symmetry

shift in µI can be undone by centre transformation

new symmetry: Roberge & Weiss 86

Z
(µ

T

)

= Z

(

µ

T
+

2πik

N

)

Z(µ) = Z(−µ)

periodicity in the µI direction with period 2π/N × T

⇒ range of µI/T limited by π/N

Polyakov loop not invariant ⇒ preferred vacuum:

at µI/T ∼ 0: trivial vacuum 〈P 〉 ∼ 1

at µI/T ∼ 2π/N : rotated vacuum 〈P 〉 ∼ z

at µI/T ∼ 4π/N : rotated vacuum 〈P 〉 ∼ z2

. . .
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Periodicity inµI

Z
(µ

T

)

= Z

(

µ

T
+

2πik

N

)

low T : confinement 〈P 〉 = 0 ⇒ smooth transition

high T : deconfinement 〈P 〉 6= 0 ⇒ sharp transitions

in deconfined phase:

1st order phase transitions
at µI/T = π/N

Polyakov loop is proper
order parameter
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Roberge & Weiss 86

de Forcrand & Philipsen 10
INT, August 2012 – p. 11



Phase structure at imaginaryµ

high T : 1st order Roberge-Weiss lines at
µI/T = (2r + 1)π/N

include thermal (de)confinement line

Tc(µ)

Tc(0)
= 1−#

(

µ

Tc(0)

)2

+ . . .

<P> = 0

µ
T(

2π
3( )

2

T

0 )

RW endpoint

<P> = 0 determine deconfinement line
at µ2 > 0 from phase structure
at µ2 < 0

rich phase structure: strong
quark mass dependence
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Phase structure at imaginaryµ

recall Columbia plot: depending on quark mass

thermal transition 1st order or crossover at µ = 0

heavy or light quarks: 1st order at µ = 0 and all imaginary µ

RW endpoint

µ
T(

2π
3( )

2

T

0 )

1st order

Roberge-Weiss endpoint: triple point
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Phase structure at imaginaryµ

recall Columbia plot: depending on quark mass

thermal transition 1st order or crossover at µ = 0

intermediate quarks: crossover at µ = 0

CEP (2nd order)

µ
T(

2π
3( )

2

T

0 )

RW endpoint

1st order

crossover

2nd order critical endpoints at µ > 0 and µI > 0
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Phase structure at imaginaryµ

recall Columbia plot: depending on quark mass

thermal transition 1st order or crossover at µ = 0

change quark mass even more

CEP (2nd order)

µ
T(

2π
3( )

2

T

0 )

crossover

1st order

Roberge-Weiss endpoint = critical endpoint!
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Phase structure at imaginaryµ

Roberge-Weiss endpoint is either

first order triple point (heavy and light quarks)

2nd order critical endpoint (intermediate mass)

redraw Columbia plot
at µI/T = π/N

whole plane is critical

tricritical lines when quark
mass is varied

tricritical

s

mud

first
order

second
order

first
order

m

no sign problem: can be determined numerically
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Phase structure at imaginaryµ

detailed study of properties of RW endpoint

(at fixed µI/T = π/3)

tricritical

m

RWT

first

order

order
second

order
first

d’Elia & Sanfilippo 09 (Nf = 2)

de Forcrand & Philipsen 10 (Nf = 3)
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Enlarged Columbia plot

extend Columbia plot with third direction

−(π/3)2 ≤ (µ/T )2 <∞
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Bonati, de Forcrand, d’Elia & Philipsen 12
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Enlarged Columbia plot

fix to Nf = 3 flavours: cut through 3D Columbia plot

m

π
3( )

2

µ
T(

2
)

0

crossover

first order fir
st

 o
rd

er

second order

tricritical
0 oo
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Critical properties

in all known cases:
the first order regions shrink as (µ/T )2 is increased

made very precise for heavy quarks: rotate graph

line

π
3( )

2 µ
T(

2
)0

mc first order

crossover

point
tricritical 

second order

tricritial point determines scaling of 2nd order line!
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Critical properties

tricritical scaling:

denote x = (µ/T )2 x∗ = −(π/3)2

then
mc(x) = mc(x∗) +K (x− x∗)

2/5

K is free parameter, exponent 2/5 fixed by universality

line

π
3( )

2 µ
T(

2
)0

mc first order

crossover

point
tricritical 

second order

de Forcrand & Philipsen 10
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Critical properties

how well does it work? (how large is the scaling region?)

test in models where the sign problem is mild:
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c/
T
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3D Potts model strong coupling QCD

works much better than (naively) expected

scaling region extends well into µ2 > 0 domain
INT, August 2012 – p. 22



Tricritical scaling

conclusion

Roberge-Weiss endpoint is triple or critical endpoint

quark mass dependence: tricritical point

tricritical scaling in scaling region

for heavy quarks

presence of RW endpoint at imaginary µ determines
phase structure at real µ

goes beyond Taylor series and analytical continuation

open questions

continuum limit?

light quarks?
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Critical endpoint

first order regions shrink?

* QCD critical point

crossover 1rst
0

∞

Real world

X

mu,d
ms

µ

  QCD critical point DISAPPEARED

crossover 1rst
0

∞

Real world

X

Heavy quarks

mu,d
ms

µ

µ

crossover

mu,d

ms

X 1rst
0

∞

Real world

Nf=3

nontrivial curvature?

caveat: most studies so far
on coarse lattices Nτ = 4
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Summary

imaginary chemical potential: no sign problem

intricate phase structure: 3D Columbia plot

can/should be determined (so far Nτ = 4 only)

implications for real µ
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