# QCD at nonzero chemical potential and the sign problem

INT lectures 2012

#### III: imaginary chemical potential

Gert Aarts



## Reminder: physics goal

determine

- phase boundary between confined and deconfined phase at small  $\mu$
- critical endpoint (if it exists)



"standard conjectured" phase diagram

## Imaginary $\mu$

recall:  $D^{\dagger}(\mu) = \gamma_5 D(-\mu^*) \gamma_5$ 

■ if  $\mu = i\mu_{I}$ , det  $D(i\mu_{I})$  is real: importance sampling ok

 $\Rightarrow$  perform ordinary simulations

• analytical continuation to real  $\mu$ :

$$+\mu_{\mathrm{I}}^2 \rightarrow -\mu^2$$

• determine phase boundary at  $\mu^2 < 0$ 

• fit  $T_c(-\mu^2)$ 

• obtain phase boundary at  $\mu^2 > 0$ 



# Imaginary $\mu$

in fact: much richer than just analytical continuation intricate phase structure interplay with centre symmetry

- quark mass dependence of phase transition Columbia plot
- pure gauge theory
- with quarks and chemical potential
- Roberge-Weiss symmetry
- 3D Columbia plot
- critical properties

de Forcrand & Philipsen 02-now d'Elia & Lombardo 02 d'Elia et al 02-now

## Columbia plot

# quark mass dependence of thermal deconfinement transition



massless quarks: chiral symmetry  $\Rightarrow$  chiral condensate pure gauge: centre symmetry  $\Rightarrow$  Polyakov loop

#### Pure gauge: centre symmetry

multiply each temporal link in a fixed time slice with phase factor  $z^k$ 

$$U_4(\tau, \mathbf{x}) \rightarrow z^k U_4(\tau, \mathbf{x})$$
$$z^k = e^{2\pi i k/N} \qquad (k = 0, \dots, N-1)$$

■  $z^k \mathbb{1} \in Z_N$ , element of the centre of SU(N):  $det(z^k \mathbb{1}) = 1$ 

Itransformation leaves action and measure invariant: symmetry of pure gauge theory

gauge invariant order parameter: Polyakov loop

under transformation:

$$P(\mathbf{x}) = \operatorname{tr} \prod_{\tau=0}^{N_{\tau}-1} U_4(\tau, \mathbf{x})$$
$$P(\mathbf{x}) \to z^k P(\mathbf{x})$$

#### Pure gauge: centre symmetry

under transformation:  $P(\mathbf{x}) \rightarrow zP(\mathbf{x})$ 

- if  $\langle P \rangle = 0$ : centre symmetry unbroken
- If  $\langle P \rangle \neq 0$ : centre symmetry broken: N equivalent vacua



#### Pure gauge: centre symmetry

interpretation:

⟨P⟩ = 0: confined phase
⟨P⟩ ≠ 0: deconfined phase

why? *P* worldline of a massive (static) quark free energy between static quark/anti-quark pair:  $F_{q\bar{q}}(r)$ 

$$\langle P(\mathbf{x})P^{\dagger}(\mathbf{y})\rangle = e^{-F_{q\bar{q}}(r)/T} \qquad r = |\mathbf{x} - \mathbf{y}|$$
$$\lim_{r \to \infty} \langle P(\mathbf{x})P^{\dagger}(\mathbf{y})\rangle = \langle P(\mathbf{x})\rangle \langle P^{\dagger}(\mathbf{y})\rangle = |\langle P\rangle|^{2}$$

confined:  $F_{q\bar{q}}(\infty) \to \infty$   $\Leftrightarrow$   $\langle P \rangle = 0$ deconfined:  $F_{q\bar{q}}(\infty)$  finite  $\Leftrightarrow$   $\langle P \rangle \neq 0$ 

 $\Rightarrow$  order parameter for (de)confinement

#### Centre symmetry with quarks

centre symmetry explicitly broken:  $\bar{\psi}_x U_4 \psi_{x+4}$  not invariant

- **•** pure gauge: all Z(N) vacua equivalent
- with quarks: trivial vacuum preferred  $\langle P \rangle \sim 1$ 'external magnetization'

add imaginary chemical potential:  $U_4 \rightarrow e^{i\mu_I}U_4$ centre transformation can be undone by shift in  $\mu_I$ !

- move all  $\mu_I$  dependence to final time slice:  $e^{i\mu_I/T}$
- perform Z(N) transformation on final time slice
- combination

$$z^k e^{i\mu_I/T} = \exp i\left(\frac{\mu_I}{T} + \frac{2\pi k}{N}\right)$$

## Roberge-Weiss symmetry

shift in  $\mu_I$  can be undone by centre transformation new symmetry: Roberge & Weiss 86

$$Z\left(\frac{\mu}{T}\right) = Z\left(\frac{\mu}{T} + \frac{2\pi ik}{N}\right) \qquad \qquad Z(\mu) = Z(-\mu)$$

periodicity in the  $\mu_I$  direction with period  $2\pi/N \times T$  $\Rightarrow$  range of  $\mu_I/T$  limited by  $\pi/N$ 

Polyakov loop not invariant  $\Rightarrow$  preferred vacuum:

• at  $\mu_I/T \sim 0$ : trivial vacuum  $\langle P \rangle \sim 1$ 

**\_**\_\_\_.

- at  $\mu_I/T \sim 2\pi/N$ : rotated vacuum  $\langle P \rangle \sim z$
- at  $\mu_I/T \sim 4\pi/N$ : rotated vacuum  $\langle P \rangle \sim z^2$

Periodicity in  $\mu_I$ 

$$Z\left(\frac{\mu}{T}\right) = Z\left(\frac{\mu}{T} + \frac{2\pi ik}{N}\right)$$

- Iow T: confinement  $\langle P \rangle = 0 \Rightarrow$  smooth transition
- In high T: deconfinement  $\langle P \rangle \neq 0 \Rightarrow$  sharp transitions

#### in deconfined phase:

 $1^{\rm st}$  order phase transitions at  $\mu_I/T=\pi/N$ 

# Polyakov loop is proper order parameter



Roberge & Weiss 86

de Forcrand & Philipsen 10

- include thermal (de)confinement line

$$\frac{T_c(\mu)}{T_c(0)} = 1 - \# \left(\frac{\mu}{T_c(0)}\right)^2 + \dots$$



determine deconfinement line at  $\mu^2>0$  from phase structure at  $\mu^2<0$ 

rich phase structure: strong quark mass dependence

recall Columbia plot: depending on quark mass

• thermal transition  $1^{st}$  order or crossover at  $\mu = 0$ 

heavy or light quarks:  $1^{st}$  order at  $\mu = 0$  and all imaginary  $\mu$ 



Roberge-Weiss endpoint: triple point

recall Columbia plot: depending on quark mass

• thermal transition  $1^{st}$  order or crossover at  $\mu = 0$ 

intermediate quarks: crossover at  $\mu = 0$ 



 $2^{nd}$  order critical endpoints at  $\mu > 0$  and  $\mu_I > 0$ 

recall Columbia plot: depending on quark mass

• thermal transition  $1^{st}$  order or crossover at  $\mu = 0$ 

change quark mass even more



Roberge-Weiss endpoint = critical endpoint!

Roberge-Weiss endpoint is either

- first order triple point (heavy and light quarks)
- $\checkmark$  2<sup>nd</sup> order critical endpoint (intermediate mass)

redraw Columbia plot at  $\mu_I/T = \pi/N$ 

whole plane is critical

tricritical lines when quark mass is varied



mud

no sign problem: can be determined numerically

## detailed study of properties of RW endpoint (at fixed $\mu_I/T = \pi/3$ )



d'Elia & Sanfilippo 09 (
$$N_f=2$$
)  
de Forcrand & Philipsen 10 ( $N_f=3$ )

### Enlarged Columbia plot

extend Columbia plot with third direction



Bonati, de Forcrand, d'Elia & Philipsen 12

## Enlarged Columbia plot

fix to  $N_f = 3$  flavours: cut through 3D Columbia plot



## Critical properties

in all known cases: the first order regions shrink as  $(\mu/T)^2$  is increased made very precise for heavy quarks: rotate graph



tricritial point determines scaling of 2<sup>nd</sup> order line!

## **Critical properties**

tricritical scaling:

• denote 
$$x = (\mu/T)^2$$
  $x_* = -(\pi/3)^2$ 

then

$$m_c(x) = m_c(x_*) + K (x - x_*)^{2/5}$$

• K is free parameter, exponent 2/5 fixed by universality



de Forcrand & Philipsen 10

## **Critical properties**

how well does it work? (how large is the scaling region?)

test in models where the sign problem is mild:



#### 3D Potts model

strong coupling QCD

- works much better than (naively) expected
- scaling region extends well into  $\mu^2 > 0$  domain

## **Tricritical scaling**

conclusion

- Soberge-Weiss endpoint is triple or critical endpoint
- quark mass dependence: tricritical point
- tricritical scaling in scaling region

for heavy quarks

- presence of RW endpoint at imaginary  $\mu$  determines phase structure at real  $\mu$
- goes beyond Taylor series and analytical continuation

open questions

- continuum limit?
- Iight quarks?

## Critical endpoint

#### first order regions shrink?



## Summary

- imaginary chemical potential: no sign problem
- intricate phase structure: 3D Columbia plot
- can/should be determined (so far  $N_{\tau} = 4$  only)
- $\checkmark$  implications for real  $\mu$