QCD at nonzero chemical potentialand the sign problem

INT lectures 2012

II: standard approaches

Gert Aarts

Where are we?

complex weight:

- straightforward importance sampling not possible
- \bullet overlap problem

various possibilities:

- preserve overlap as best as possible
- use approximate methods at small μ
- do something radical:
	- **•** rewrite partition function in other dof
	- **explore field space in a different way**

. . .

discuss first two approaches

Reminder: physics goal

determine

- phase boundary between confined and deconfinedphase at small μ
- critical endpoint (if it exists)

"standard conjectured" phase diagram

Reminder: physics goal

phase boundary at small μ :

C determine curvature of the phase boundary

$$
\frac{T_c(\mu)}{T_c(0)} = 1 + \# \left(\frac{\mu}{T_c(0)}\right)^2 + \# \left(\frac{\mu}{T_c(0)}\right)^4 + \dots
$$

(if crossover: this may depend on observable)

determine critical endpoint

- **o** from this expansion
- **o** directly

experimental search for critical endpoint is planned at FAI R(GSI, Darmstadt, Germany) in coming years

general strategy: $\quad Z_w=$ $\int DU w(U)$ $w(U) \in \mathbf{C}$ $\,$ observable: $\,\,\langle$ $\, O \,$ \rangle_w = $\int DU \, O$ $\Big($ $\, U \,$) $w\,$ $\Big($ $\, U \,$ $\frac{D U\, O(U) w(U)}{\int D U\, w(U)}$

introduce new weight $r(U)$ (r for 'reweighting' or 'real'), chosen at will

$$
\langle O \rangle_w = \frac{\int D U \, O(U) \frac{w(U)}{r(U)} r(U)}{\int D U \, \frac{w(U)}{r(U)} r(U)} = \frac{\langle O \frac{w}{r} \rangle_r}{\langle \frac{w}{r} \rangle_r}
$$

reweighting factor, average sign:

$$
\left\langle \frac{w}{r} \right\rangle_r = \frac{Z_w}{Z_r} = e^{-\Omega \Delta f} \qquad \Delta f = f_w - f_r \ge 0
$$

choose weight r to adapt to problem:

Glasgow reweighting: fix β (or $T)$

doomed to fail ...

choose weight r to adapt to problem:

- **C** Fodor-Katz reweighting or multi-parameter/overlap preserving reweighting
- \Rightarrow adapt β as well

$$
\frac{w}{r} \sim \frac{\det M(\mu)}{\det M(0)} e^{-\Delta\beta S_{\text{YM}}}
$$

stay onpseudo-critical line $T_c(\mu)$

improved (ensured?) overlap: sample from both phases

Fodor-Katz reweighting: multi-parameter/overlap preserving

never repeated

breakdown of method, (un)expected role of pions?

Splittorff ⁰⁷

 $Z(\mu)$ is even in μ (charge conjugation invariance) $\langle n(\mu)\rangle \sim \frac{\partial}{\partial \mu}$ $\frac{\partial}{\partial \mu} \ln Z$ is odd in μ

 \Rightarrow Taylor series around $\mu=0$

Bielefeld-Swansea, Gavai-Gupta 02/05

MILC, hotOCD 10

grand-canonical ensemble $\quad p=\frac{T}{V}$ $\,V\,$ $\frac{1}{V} \ln Z$

$$
\Delta p(\mu) = p(\mu) - p(0) = \frac{\mu^2}{2!} \frac{\partial^2 p}{\partial \mu^2} \Big|_{\mu=0} + \frac{\mu^4}{4!} \frac{\partial^4 p}{\partial \mu^4} \Big|_{\mu=0} + \dots
$$

determine coefficients $\,c_{2n}\,$

explicit expressions:

$$
Z = \int DU \left(\det M\right)^{N_f} e^{-S_{\text{YM}}} = \int DU e^{-S_{\text{YM}} + N_f \ln \det M(\mu)}
$$

straightforward:

$$
\frac{\partial \ln Z}{\partial \mu} = \left\langle N_f \frac{\partial}{\partial \mu} \ln \det M \right\rangle
$$

$$
\frac{\partial^2 \ln Z}{\partial \mu^2} = \left\langle N_f \frac{\partial^2}{\partial \mu^2} \ln \det M \right\rangle + \left\langle \left(N_f \frac{\partial}{\partial \mu} \ln \det M \right)^2 \right\rangle
$$

$$
- \left\langle N_f \frac{\partial}{\partial \mu} \ln \det M \right\rangle^2
$$

explicit expressions:

 $M = \text{Tr} \, \ln M$

$$
\frac{\partial}{\partial \mu} \ln \det M = \text{Tr} M^{-1} \frac{\partial M}{\partial \mu}
$$

$$
\frac{\partial^2}{\partial \mu^2} \ln \det M = \text{Tr} M^{-1} \frac{\partial^2 M}{\partial \mu^2} - \text{Tr} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu}
$$

etc.

straightforward to work out to higher order, but:

- number of terms increases rapidly, $c_n \sim 6^n$ terms \bullet
- huge cancelations required: p is intensive, c_n $_n$ are finite, \bullet but individual contributions may scale differently(generalized susceptibilities)

current standard:

- most groups: $\;\;\#\mu$ $^{2} + \# \mu$ $^4 + \#\mu$ 6
- $\ldots + \#\mu$ 8

Gavai-Gupta ⁰⁸

coarse lattices: $N_{\tau} = 4, 6$

only continuumextrapolatedresult:

equation of stateto $\mathcal{O}(\mu$ 2 $^{2})$

Borsanyi, Fodor

& Katz et al ¹²

Method III: imaginary μ

recall: $D^{\dagger}(\mu) = \gamma_5 D($ $-\mu^*$ * $)$ γ_{5}

- if $\mu=i\mu_{\rm I}$, $\det D(i\mu_{\rm I})$ is real: perform ordinary
simulations simulations
- analytical continuation to real μ : $\quad + \mu$
- **o** determine phase boundary at μ 2 $^2 < 0$
- fit $T_c(\cal$ $-\mu$ 2 $^{2})$
- obtain phase boundaryat μ 2 $^2>0$

de Forcrand & Philipsen 02-now d'Elia & Lombardo ⁰² d'Elia et al 02-now

2

2

Method III: imaginary μ

- in fact: much richer than just analytical continuation
- intricate phase structure at imaginary μ \bullet
- **See below**

other methods (not discussed here):

- **canonical ensemble**
- histograms \bullet

Summary

agreement between methods at small $\mu/T \lesssim 1$

phase boundary:

sign problem under control, fixed $N_\tau=4$

indications for existence of critical endpoint?

- imaginary chemical potential: not obvious (see below)
- Taylor series: number of terms is really small estimate radius of convergence?

crossover at small μ :

- **•** transition temperature not uniquely defined
- depends on observable
- no non-analyticity

study transition using

- Polyakov loop susceptibility
- **chiral condensate**

. . .

strange quark number susceptibility

do not have to agree: crossover region loosely defined

two scenarios

- if crossover region shrinks with increasing μ : CEP
- if crossover region extends with increasing μ : no CEP

study crossover region using

- chiral condensate $\langle\bar{\psi}\psi\rangle$
- strange quark number susceptibility χ_s \bullet

using Taylor series expansion

Endrodi et al ¹¹

conclusion: no indication for scenario I

Summary

standard approaches . . .

- **...** can be used for some questions
- **C** are limited in applicability
- do not solve the sign problem. . .