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QCD phase diagram

extreme conditions: high temperature and/or density

Temperature T [MeV]

heavy-ion collisions

neutron stars

Nuclei

Net Baryon Density

no first-principle determination at finite density :

lattice QCD and the sign problem
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Lattice QCD at nonzero chemical potential

fermion determinant is complex
[det M (u)]" = det M(—u*) € C

no positive weight in path integral
7 = /DU e det M (1)

standard lattice methods based on importance
sampling cannot be used

= sign problem
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Outline

chemical potential continuum/lattice

remarks about sign/overlap/Silver Blaze problems

standard approaches: reweighting, Taylor series,
analytical continuation

phase structure at imaginary chemical potential

strong coupling

complex Langevin dynamics
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Quantum statistical mechanics

system at finite temperature 7'(= 1/05)
conserved charge N, spatial volume V

# partition function: Z = Tre H-pN)/T — o—F/T

o charge (density):  (N)=TZWZ  (n)=HN)
s fluctuations: () = & [(V?) — (V)?] = S
o ...

compute partition function, free energy and other
thermodynamic quantities

determine phase structure
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Various conserved charges

Consider two flavours: up and down Ly, [hd

#® quark (baryon) chemical potential Py = [bd = [bq

KB = Siiq

# quark number (n) = (ny) + (ng)

o iSOSDiﬂ Moy — —Hd = Hiso <niso> — <nu> — <nd>

® electrical charge by = 34, g = — 5[
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Chemical potential (continuum/fermions)

free fermions = global symmetry = Noether charge
B=1/T )
s= [ Var [ s o, +m
0
b — %Y b — e @

N:/d%mm:/d%ww = 9, N=0

B _
add 5uN=6,u/d3x¢M¢ :/ dT/d%MWMD
0
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Chemical potential (continuum/fermions)

# action (with abelian gauge field)

s
S:/ dT/dgxw[%(&/—l—iAy)—|—,LW4+m]¢

0
:/d4x¢sz

® two observations:

s [ appears as tAy:
Imaginary component of abelian vector field

s “complex action”. no ~5 hermiticity

in = T ’Y; — 75, {fY/,m’YV} — 25/11/7 {f}/y,f}%} — O, "}/g =1
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Chemical potential (continuum/fermions)

o atp=0: (D) =D or Df=+3Dr;
det DT = det (75D75) = det D = (det D)*

real determinant

# no longer true when p #£ 0

& instead: DT () = v D(—p*)7s
note:

# real determinant for imaginary chemical potential
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Chemical potential
# sign problem not specific for fermions
due to complexity of the weight/action/determinant

® not due to Grassman nature of fermions

(after all, standard lattice simulations work well at zero chemical
potential)

# also present in bosonic theories at nonzero density

complex action problem
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Chemical potential (continuum/bosons)

o complex scalar field, global symmetry: ¢ — e“¢
® action: S = [d*z (|0,0/> + m3|o|® + A¢|*)

» conserved charge: N = [d3zi(¢*0s¢ — (040")9)

back to partition function Z = Tre—(H—#N)/T

hamiltonian = canonical momenta =
Integrate out momenta = euclidean path integral
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Chemical potential (continuum/bosons)

rederive path integral:

® write ¢ = (¢1 +ig2)/V2

# canonical momenta 1w = 0401, Ty = 0409

N = /dgf (P21 — P172)
& partition function:

_ / Dé1 Dés / Drri Dy exp / 1 [imDas1 + imadad

—H + p(pom — ¢1m2) |
# Integrate out momenta

when all the dust settles:
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Chemical potential (continuum/bosons)

# chemical potential appears as imaginary vector
potential

S = /d4x (04 + )" (01 — )¢ + 105> + m?[8]* + A|ol"]
or
5 / diz [|0,01% + (m2 — p2)|6)? + (6" a6 — Dae*6) + No|*]

# linear term is purely imaginary: complex action
# (quadratic term from Iintegrating out momenta

same symmetry:  S*(u) = S(—u*)
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Towards the Silver Blaze problem

consider massive particle with mass m at low temperature:

# 4 Is the change in free energy when a particle carrying
the corresponding quantum number is added

l.e. energy cost for adding one particle

# |If u < m: not enough energy to create a particle = no
change in groundstate

o If u > m: plenty of energy available = nonzero density

onset at u = u.(=m) at zero temperature
generic principle of statistical mechanics
= demonstrate for free fermions
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Free fermions: onset at low temperature

standard thermal field theory: free fermion gas

InZ = 2V/ & [&up + In (1 - e_ﬁ(wp_”)> + In (1 + e_ﬁ(“PJF“))}

(27)°
# density: wp = \/P? + m?
T O0lnZ 1 1
(n) = =2 .
V. ou p LB + 1 eBloptn) 41
# |low-temperature limit: T —0,8—
case 1:

p<m ()~ 2 / [e—m%—u) _ e—mwpw)} N
P

(anti)particles thermally excited but Boltzmann
suppressed
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Free fermions: onset at low temperature

® case2: u>m
Fermi-Dirac distribution become step functionat 7 =0
2 m2)3/2

32

(1

pmm (o) ~2 [ O up) = 01— m)

filled Fermi sphere:
nonzero density

® onsetat uy = pue.=m

#$ no i dependence
below onset
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Free bosons: onset at low temperature

#® same is true for Bose gas: Bose-Einstein condensation
# need interaction term for stabilization

#® massless particle at onset (Goldstone boson)
S = / d*z |0, + (m® — 1)@ + p(¢"0s6 — 16" d) + N |"]

Important: at’ 7’ =0

# thermodynamic quantities (In Z, p, f, (n), x, ...) are

Independent of ;1 as long as . Is below the mass of the

lightest particle in channel with appropriate quantum
numbers

# relevant for Silver Blaze problem Cohen 04
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Chemical potential on the lattice

® naively adding pv41 leads to unexpected (i.e.
1 dependent) UV divergences

# Instead:
s couple to conserved charge on the lattice
s should appear as 144

o lattice action: S ~ YUz VWptr — %WU%%%

® conserved current:  j, ~ UuUpu Yooty + VotrUbsyths
(point-split)

modify temporal hopping terms:
o forward hopping: Uy = €445 = et

® backward hopping: U, = e e = e7H
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Chemical potential on the lattice

& correct naive continuum limit
#® couples to exactly conserved charge on the lattice
#® no new UV divergences

Hasenfratz & Karsch 83, Kogut et al 83
non-uni que: Gavai & Bilic 84
(different prescriptions should agree in continuum limit)

note:

# Uuse lattice units:  u=au
# always clear what is meant: appears in combination

(lattice) uN,=u/T (continuum)
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Chemical potential on the lattice

chemical potential introduces an imbalance between
forward and backward hopping

# forward hopping (quark)
= favoured as e/

# Dbackward hopping (anti-quark)
= disfavoured as e 4"~
® closed worldline

= 1 dependence cancels <
exactly

1 dependence only remains when worldline wraps around
time direction
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Chemical potential on the lattice

suggestion:

® . Is effectively a boundary condition

make explicit:
o field redefinition 1, = e AT, by = el

o . dependence drops from all terms et 4 etc
(and also from spatial terms)

# Dbut appears as a boundary condition

N, ==y = Py = —e!Vry
wrapping around the temporal direction
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Bose gas on the lattice

® add e** in temporal hopping terms

S =3 | (2d+m?) e + Nhon)?

A _
— 16y )
o Z ( ;6 MO Gy + QS;I;-H/@LL ’4€bx)

v=1

& continuum limit;

s second derivatives ok
o first derivatives +pu ok
s no derivatives — 2 ok
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How hard Is the sign problem?

partition function: Z = [ DUDYDye > = [ DU e™°% det M
complex weight due to complex determinant

det M (p)]" = det M (—p")
write det M = | det M|e*¥ and absorb phase in observable

(O — [DUe®2det MO [ DU e | det M| €O
full = [DUeSsdet M [ DUe 55| det M| et
_ (€"$O0)pq

<€w>pq

expectation values are taken wrt phase-quenched weight

well-defined in principle . ..
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Sign and overlap problems

» what is average phase factor (¢'?),4?

DU e %8|det M| Z
_f € | de e _ qu:e_QAf_>O

1 _ _
(b [ DU e=58| det M| Zoq
o ratio of two partition functions! note: Zrn < Zpq
Z = F/T = = (= N, N3

#® average phase factor — 0 in thermodynamic limit!
(unless f = f,q)

this is the overlap problem: sampling with the ‘wrong’ weight
exponentially hard
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Origin of overlap problem

phase-guenched physics is different!

consider two flavours:  [det D(p)]* vs |det D(p)|?

o recall DT(p) = y5D(—p*)vs

® then |det D(p)|* = det D(—u) det D(p)
Isospin chemical potential! up/down quark: 4pu

# lightest particle with nonzero isospin: pion

# lightest particle with nonzero baryon number: nucleon
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Onset, phase-quenching and Silver Blaze

full QCD with quark chemical potential:

#® onset when i equals [lightest baryon mass (nucleon) -
binding energy]/3
nuclear matter

phase-quenched QCD with isospin chemical potential:
# onset when p equals [pion mass]/2 (nonzero isospin)
pion condensation
0<p<mg/2 full = phase-quenched at7 =0
no severe sign problem, but no interesting physics

mr/2 < uSmp/3 severe sign problem

strong cancelations required to cancel x dependence
of phase-gquenched theory
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Onset, phase-quenching and Silver Blaze

<e'>
pg

average phase
factorat T =0

m /2 M

°

perform lattice simulations in phase-quenched theory
# extract full QCD results

requires severe cancelations of the ;. dependence In
region m;/2 < u S mp/3

most straightforward numerical methods will fail this test!
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Onset, phase-quenching and Silver Blaze

same happens in Bose gas
phase-guenching:

# linear term ignored 4+ (¢ 01 — 010" @)

& quadratic term kept  (m? — u?)|¢|?
theory with ;2 dependent effective potential

# ordinary symmetry breaking as 1? is increased

# 1 dependence immediate in phase-quenched theory

Silver Blaze region: 0 < u < m
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Dirac eigenvalues and Silver Blaze

original formulation of Silver Blaze problem:

# weight and therefore configurations and eigenvalues of
Dirac operator depend on u

# this ;. dependence should cancel: sensitive test

# commonly demonstrated using spectrum of Dirac
operator Cohen 04, Splittorff, Verbaarschot, Osborn 05

write D+m with D= D+ puy
then Z = [ DU det(D + m)e ™™ = (det(D + m))ym
write  det(D+m)=]](M\x+m) where Dy = Ay

# since D is not ~5 hermitian, eigenvalues not real or
Imaginary, instead )\, € C
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Dirac eigenvalues and Silver Blaze

® chiral condensate

_ 10InZ
6= 35 = (5 S o+ )
YM

# Introduce density of eigenvalues

1
p(z; ) = /DU det(D +m)e ~svu L 252 (z — M)

Z

<detD+m 2522— >

® then <¢¢>:/d22’p(z;u)

zZ+m

YM
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Dirac eigenvalues and Silver Blaze

p(z; ) depends on p since D 4+ m does

<¢¢> :/dQZ ,O(Z;,LL)

zZ+m

If u < mp/3 (below onset), all ;. dependence should cancel

achieved:
p(z: 1) is complex, oscillating with o exp() = ln—

amplitude ¢*** and period 1/ /\ /\ /\ A /\ /\ A /\ A /\

only when all oscillations are cor-

rectly integrated, n dependence \/\/\/ \/ \/ \/\/\/ \/ \
will cancel

‘solution to Silver Blaze problem’
from viewpoint of Dirac spectral density

X
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Where are we?

complex weight:

& straightforward importance sampling not possible
# overlap problem
#® extreme care is needed: Silver Blaze problem

various possibilities:

® preserve overlap as best as possible
# use approximate methods at small chemical potential

#® do something radical:
s rewrite partition function in other dof
s explore field space in different way

» ...
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