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QCD phase diagram

extreme conditions: high temperature and/or density

early Universe

heavy-ion collisions

neutron stars

no first-principle determination at finite density :

lattice QCD and the sign problem
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Lattice QCD at nonzero chemical potential

fermion determinant is complex

[detM(µ)]∗ = detM(−µ∗) ∈ C

no positive weight in path integral

Z =

∫

DU e−SYM detM(µ)

standard lattice methods based on importance
sampling cannot be used

⇒ sign problem

INT, August 2012 – p. 3



Outline

chemical potential continuum/lattice

remarks about sign/overlap/Silver Blaze problems

standard approaches: reweighting, Taylor series,
analytical continuation

phase structure at imaginary chemical potential

strong coupling

complex Langevin dynamics
INT, August 2012 – p. 4



Quantum statistical mechanics

system at finite temperature T (= 1/β)

conserved charge N , spatial volume V

partition function: Z = Tr e−(H−µN)/T = e−F/T

charge (density): 〈N〉 = T ∂
∂µ lnZ 〈n〉 = 1

V 〈N〉

fluctuations: 〈χ〉 = 1
V

[

〈N2〉 − 〈N〉2
]

=
∂〈n〉
∂µ

. . .

compute partition function, free energy and other
thermodynamic quantities

determine phase structure
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Various conserved charges

Consider two flavours: up and down µu, µd

quark (baryon) chemical potential µu = µd = µq

µB = 3µq

quark number 〈n〉 = 〈nu〉+ 〈nd〉

isospin µu = −µd = µiso 〈niso〉 = 〈nu〉 − 〈nd〉

electrical charge µu = 2
3µ, µd = −1

3µ

〈q〉 = 2
3〈nu〉 − 1

3〈nd〉
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Chemical potential (continuum/fermions)

free fermions ⇒ global symmetry ⇒ Noether charge

S =

∫ β=1/T

0

dτ

∫

d3x ψ̄ [γν∂ν +m]ψ

ψ → eiαψ ψ̄ → ψ̄e−iα

N =

∫

d3x ψ̄γ4ψ =

∫

d3xψ†ψ ⇒ ∂τN = 0

add βµN = βµ

∫

d3x ψ̄γ4ψ =

∫ β

0

dτ

∫

d3xµψ̄γ4ψ
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Chemical potential (continuum/fermions)

action (with abelian gauge field)

S =

∫ β

0

dτ

∫

d3x ψ̄ [γν(∂ν + iAν) + µγ4 +m]ψ

=

∫

d4x ψ̄Dψ

two observations:

µ appears as iA4:
imaginary component of abelian vector field

“ complex action”: no γ5 hermiticity

γ†
ν
= γν γ

†
5 = γ5, {γµ, γν} = 2δµν , {γν , γ5} = 0, γ2

5 = 1
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Chemical potential (continuum/fermions)

at µ = 0: (γ5D)† = γ5D or D† = γ5Dγ5

detD† = det (γ5Dγ5) = detD = (detD)∗

⇒ real determinant

no longer true when µ 6= 0

instead: D†(µ) = γ5D(−µ∗)γ5

note:

real determinant for imaginary chemical potential
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Chemical potential

sign problem not specific for fermions

⇒ due to complexity of the weight/action/determinant

not due to Grassman nature of fermions

(after all, standard lattice simulations work well at zero chemical
potential)

also present in bosonic theories at nonzero density

⇒ complex action problem
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Chemical potential (continuum/bosons)

complex scalar field, global symmetry: φ→ eiαφ

action: S =
∫

d4x
(

|∂νφ|2 +m2|φ|2 + λ|φ|4
)

conserved charge: N =
∫

d3x i (φ∗∂4φ− (∂4φ
∗)φ)

back to partition function Z = Tr e−(H−µN)/T

hamiltonian ⇒ canonical momenta ⇒
integrate out momenta ⇒ euclidean path integral
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Chemical potential (continuum/bosons)

rederive path integral:

write φ = (φ1 + iφ2)/
√
2

canonical momenta π1 = ∂4φ1, π2 = ∂4φ2

N =

∫

d3x (φ2π1 − φ1π2)

partition function:

Z = Tr e−(H−µN)/T

=

∫

Dφ1Dφ2

∫

Dπ1Dπ2 exp

∫

d4x
[

iπ1∂4φ1 + iπ2∂4φ2

−H + µ(φ2π1 − φ1π2)
]

.

integrate out momenta

when all the dust settles:
INT, August 2012 – p. 12



Chemical potential (continuum/bosons)

chemical potential appears as imaginary vector
potential

S =

∫

d4x
[

(∂4 + µ)φ∗(∂4 − µ)φ+ |∂iφ|2 +m2|φ|2 + λ|φ|4
]

or

S =

∫

d4x
[

|∂νφ|2 + (m2 − µ2)|φ|2 + µ(φ∗∂4φ− ∂4φ
∗φ) + λ|φ|4

]

linear term is purely imaginary: complex action

quadratic term from integrating out momenta

same symmetry: S∗(µ) = S(−µ∗)
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Towards the Silver Blaze problem

consider massive particle with mass m at low temperature:

µ is the change in free energy when a particle carrying
the corresponding quantum number is added

i.e. energy cost for adding one particle

if µ < m: not enough energy to create a particle ⇒ no
change in groundstate

if µ > m: plenty of energy available ⇒ nonzero density

onset at µ = µc(= m) at zero temperature

generic principle of statistical mechanics

⇒ demonstrate for free fermions
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Free fermions: onset at low temperature

standard thermal field theory: free fermion gas

lnZ = 2V

∫

d3p

(2π)3

[

βωp + ln
(

1 + e−β(ωp−µ)
)

+ ln
(

1 + e−β(ωp+µ)
)]

density: ωp =
√

p2 +m2

〈n〉 = T

V

∂ lnZ

∂µ
= 2

∫

p

[

1

eβ(ωp−µ) + 1
− 1

eβ(ωp+µ) + 1

]

low-temperature limit: T → 0, β → ∞
case 1:

µ < m : 〈n〉 ∼ 2

∫

p

[

e−β(ωp−µ) − e−β(ωp+µ)
]

→ 0

(anti)particles thermally excited but Boltzmann
suppressed
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Free fermions: onset at low temperature

case 2: µ > m

Fermi-Dirac distribution become step function at T = 0

µ > m : 〈n〉 ∼ 2

∫

p

Θ(µ−ωp) =

(

µ2 −m2
)3/2

3π2
Θ(µ−m)

filled Fermi sphere:

nonzero density

onset at µ = µc = m

no µ dependence
below onset

µ/m

<n>

1
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Free bosons: onset at low temperature

same is true for Bose gas: Bose-Einstein condensation

need interaction term for stabilization

massless particle at onset (Goldstone boson)

S =

∫

d4x
[

|∂νφ|2 + (m2 − µ2)|φ|2 + µ(φ∗∂4φ− ∂4φ
∗φ) + λ|φ|4

]

important: at T = 0

thermodynamic quantities (lnZ, p, f, 〈n〉, χ, . . .) are
independent of µ as long as µ is below the mass of the
lightest particle in channel with appropriate quantum
numbers

relevant for Silver Blaze problem Cohen 04
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Chemical potential on the lattice

naively adding µψ̄γ4ψ leads to unexpected (i.e.
µ dependent) UV divergences

instead:
couple to conserved charge on the lattice
should appear as iA4

lattice action: S ∼ ψ̄xUνxγνψx+ν − ψ̄x+νU
†
νxγνψx

conserved current: jν ∼ ψ̄xUνxγνψx+ν + ψ̄x+νU
†
νxγνψx

(point-split)

modify temporal hopping terms:

forward hopping: U4x = eiA4x ⇒ eµ

backward hopping: U †
4x = e−iA4x ⇒ e−µ
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Chemical potential on the lattice

correct naive continuum limit

couples to exactly conserved charge on the lattice

no new UV divergences

Hasenfratz & Karsch 83, Kogut et al 83

non-unique: Gavai & Bilic 84

(different prescriptions should agree in continuum limit)

note:

use lattice units: µ ≡ aµ

always clear what is meant: appears in combination

(lattice) µNτ = µ/T (continuum)
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Chemical potential on the lattice

chemical potential introduces an imbalance between
forward and backward hopping

forward hopping (quark)
⇒ favoured as eµnτ

backward hopping (anti-quark)
⇒ disfavoured as e−µnτ

closed worldline
⇒ µ dependence cancels

exactly

µ dependence only remains when worldline wraps around
time direction

eµNτ = eµ/T e−µNτ = e−µ/T
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Chemical potential on the lattice

suggestion:

µ is effectively a boundary condition

make explicit:

field redefinition ψx = e−µτψ′
x ψ̄x = eµτ ψ̄′

x

µ dependence drops from all terms ψ̄xe
µψx+4 etc

(and also from spatial terms)

but appears as a boundary condition

ψNτ
= −ψ0 ⇒ ψ′

Nτ
= −eµNτψ′

0

wrapping around the temporal direction
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Bose gas on the lattice

add e±µ in temporal hopping terms

S =
∑

x

[

(

2d+m2
)

φ∗xφx + λ(φ∗xφx)
2

−
4

∑

ν=1

(

φ∗xe
−µδν,4φx+ν + φ∗x+νe

µδν,4φx
)

]

continuum limit:

second derivatives ok
first derivatives +µ ok
no derivatives −µ2 ok
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How hard is the sign problem?

partition function: Z =
∫

DUDψ̄Dψ e−S =
∫

DU e−SB detM

complex weight due to complex determinant

[detM(µ)]∗ = detM(−µ∗)

write detM = | detM |eiϕ and absorb phase in observable

〈O〉full =
∫

DU e−SB detM O
∫

DU e−SB detM
=

∫

DU e−SB | detM | eiϕO
∫

DU e−SB | detM | eiϕ

=
〈eiϕO〉pq
〈eiϕ〉pq

expectation values are taken wrt phase-quenched weight

well-defined in principle . . .
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Sign and overlap problems

what is average phase factor 〈eiϕ〉pq?

〈eiϕ〉pq =

∫

DU e−SB | detM | eiϕ
∫

DU e−SB | detM | =
Zfull

Zpq
= e−Ω∆f → 0

ratio of two partition functions! note: Zfull ≤ Zpq

Z = e−F/T = e−Ωf Ω = NτN
3
s

average phase factor → 0 in thermodynamic limit!
(unless f = fpq)

this is the overlap problem: sampling with the ‘wrong’ weight

exponentially hard
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Origin of overlap problem

phase-quenched physics is different!

consider two flavours: [detD(µ)]2 vs |detD(µ)|2

recall D†(µ) = γ5D(−µ∗)γ5

then |detD(µ)|2 = detD(−µ) detD(µ)

⇒ isospin chemical potential! up/down quark: ±µ

lightest particle with nonzero isospin: pion

lightest particle with nonzero baryon number: nucleon

INT, August 2012 – p. 25



Onset, phase-quenching and Silver Blaze

full QCD with quark chemical potential:

onset when µ equals [lightest baryon mass (nucleon) -
binding energy]/3
nuclear matter

phase-quenched QCD with isospin chemical potential:

onset when µ equals [pion mass]/2 (nonzero isospin)
pion condensation

0 < µ < mπ/2 full = phase-quenched at T = 0

no severe sign problem, but no interesting physics

mπ/2 < µ . mB/3 severe sign problem

strong cancelations required to cancel µ dependence
of phase-quenched theory
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Onset, phase-quenching and Silver Blaze

average phase
factor at T = 0

0 µ
0

1

<e
iφ>

pq

mπ/2

perform lattice simulations in phase-quenched theory

extract full QCD results

⇒ requires severe cancelations of the µ dependence in
region mπ/2 < µ . mB/3

most straightforward numerical methods will fail this test!
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Onset, phase-quenching and Silver Blaze

same happens in Bose gas

phase-quenching:

linear term ignored +µ (φ∗∂4φ− ∂4φ
∗φ)

quadratic term kept (m2 − µ2)|φ|2

⇒ theory with µ2 dependent effective potential

ordinary symmetry breaking as µ2 is increased

µ dependence immediate in phase-quenched theory

Silver Blaze region: 0 < µ < m
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Dirac eigenvalues and Silver Blaze

original formulation of Silver Blaze problem:

weight and therefore configurations and eigenvalues of
Dirac operator depend on µ

this µ dependence should cancel: sensitive test

commonly demonstrated using spectrum of Dirac
operator Cohen 04, Splittorff, Verbaarschot, Osborn 05

write D +m with D = D/+ µγ4

then Z =
∫

DU det(D +m)e−SYM = 〈det(D +m)〉YM

write det(D +m) =
∏

(λk +m) where Dψk = λkψk

since D is not γ5 hermitian, eigenvalues not real or
imaginary, instead λk ∈ C
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Dirac eigenvalues and Silver Blaze

chiral condensate

〈ψ̄ψ〉 = 1

Ω

∂ lnZ

∂m
=

〈

1

Ω

∑

k

1

λk +m

∏

j

(λj +m)

〉

YM

introduce density of eigenvalues

ρ(z;µ) =
1

Z

∫

DU det(D +m)e−SYM
1

Ω

∑

k

δ2(z − λk)

=

〈

det(D +m)
1

Ω

∑

k

δ2(z − λk)

〉

YM

then 〈ψ̄ψ〉 =
∫

d2z
ρ(z;µ)

z +m
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Dirac eigenvalues and Silver Blaze

ρ(z;µ) depends on µ since D +m does

〈ψ̄ψ〉 =
∫

d2z
ρ(z;µ)

z +m

if µ . mB/3 (below onset), all µ dependence should cancel

achieved:
ρ(z;µ) is complex, oscillating with
amplitude eΩµ and period 1/Ω

only when all oscillations are cor-
rectly integrated, µ dependence
will cancel

exp(n)
ρ

1/n
(x)

x

‘solution to Silver Blaze problem’
from viewpoint of Dirac spectral density
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Where are we?

complex weight:

straightforward importance sampling not possible

overlap problem

extreme care is needed: Silver Blaze problem

various possibilities:

preserve overlap as best as possible

use approximate methods at small chemical potential

do something radical:
rewrite partition function in other dof
explore field space in different way
. . .
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