QCD at nonzero chemical potentialand the sign problem

INT lectures 2012

I: introduction

Gert Aarts

QCD phase diagram

extreme conditions: high temperature and/or density

no first-principle determination at finite density :

lattice QCD and the sign problem

Lattice QCD at nonzero chemical potential

Fig. 4 fermion determinant is complex

$$
[\det M(\mu)]^* = \det M(-\mu^*) \in \mathbb{C}
$$

o no positive weight in path integral

$$
Z = \int DU e^{-S_{\rm YM}} \det M(\mu)
$$

Standard lattice methods based on importance sampling cannot be used

 \Rightarrow sign problem

Outline

- chemical potential continuum/lattice
- **•** remarks about sign/overlap/Silver Blaze problems

standard approaches: reweighting, Taylor series, analytical continuation

phase structure at imaginary chemical potential

- **strong coupling**
- **c** complex Langevin dynamics

Quantum statistical mechanics

system at finite temperature $T(= 1/\beta)$ conserved charge N , spatial volume V

- **Partition function:** $Z = \text{Tr } e^{-(H-\mu N)/T} = e^{-F/T}$
- charge (density): $\langle N\rangle$ $=T\frac{\partial}{\partial x}$ $\frac{\partial}{\partial \mu} \ln Z \qquad \langle n \rangle$ $\,=\,1$ $\frac{1}{V}\langle N\rangle$
- *S* fluctuations: $\langle\chi\rangle$ $=$ $\frac{1}{1}$ $\bar{\overline{V}}$ $\bigl[$ $\langle N^2 \rangle - \langle N \rangle^2$ $\left[2\right]=\frac{\partial\langle n\rangle}{\partial\mu}$ $\big]$

compute partition function, free energy and otherthermodynamic quantities

determine phase structure

. . .

Various conserved charges

Consider two flavours: up and down μ_u, μ_d

quark (baryon) chemical potential $\mu_u=\mu_d=\mu_q$

$$
\mu_B=3\mu_q
$$

quark number $\langle n \rangle$ = $\langle n_u \rangle+\langle n_d \rangle$

isospin
$$
\mu_u = -\mu_d = \mu_{\text{iso}}
$$
 $\langle n_{\text{iso}} \rangle = \langle n_u \rangle - \langle n_d \rangle$

 \bullet electrical charge $\mu_u=\frac{2}{3}$ $\frac{2}{3}\mu, \mu_d=-\frac{1}{3}$ $\frac{1}{3}\mu$

$$
\langle q \rangle = \frac{2}{3} \langle n_u \rangle - \frac{1}{3} \langle n_d \rangle
$$

Chemical potential (continuum/fermions)

free fermions \Rightarrow global symmetry \Rightarrow Noether charge

$$
S = \int_0^{\beta = 1/T} d\tau \int d^3x \,\overline{\psi} \left[\gamma_\nu \partial_\nu + m \right] \psi
$$

$$
\psi \to e^{i\alpha}\psi \qquad \qquad \bar{\psi} \to \bar{\psi}e^{-i\alpha}
$$

$$
N = \int d^3x \,\overline{\psi}\gamma_4\psi = \int d^3x \,\psi^\dagger\psi \quad \Rightarrow \quad \partial_\tau N = 0
$$

$$
\text{add} \quad \beta \mu N = \beta \mu \int d^3x \, \bar{\psi} \gamma_4 \psi = \int_0^\beta d\tau \int d^3x \, \mu \bar{\psi} \gamma_4 \psi
$$

Chemical potential (continuum/fermions)

action (with abelian gauge field)

$$
S = \int_0^\beta d\tau \int d^3x \,\overline{\psi} \left[\gamma_\nu (\partial_\nu + iA_\nu) + \mu \gamma_4 + m \right] \psi
$$

=
$$
\int d^4x \,\overline{\psi} D\psi
$$

- **o** two observations:
	- μ appears as iA_4 : imaginary component of abelian vector field
	- " complex action": no γ_5 $_{5}$ hermiticity

$$
\gamma_{\nu}^{\dagger} = \gamma_{\nu} \quad \gamma_{5}^{\dagger} = \gamma_{5}, \quad \{\gamma_{\mu}, \gamma_{\nu}\} = 2\delta_{\mu\nu}, \quad \{\gamma_{\nu}, \gamma_{5}\} = 0, \quad \gamma_{5}^{2} = 1
$$

Chemical potential (continuum/fermions)

• **at**
$$
\mu = 0
$$
: $(\gamma_5 D)^{\dagger} = \gamma_5 D$ or $D^{\dagger} = \gamma_5 D \gamma_5$

$$
\det D^{\dagger} = \det (\gamma_5 D \gamma_5) = \det D = (\det D)^*
$$

 \Rightarrow real determinant

• no longer true when
$$
\mu \neq 0
$$

2 instead:
$$
D^{\dagger}(\mu) = \gamma_5 D(-\mu^*) \gamma_5
$$

note:

P real determinant for imaginary chemical potential

Chemical potential

- **Solution is a sign problem not specific for fermions**
- \Rightarrow due to complexity of the weight/action/determinant
	- not due to Grassman nature of fermions \bullet (after all, standard lattice simulations work well at zero chemical potential)

- **Also present in bosonic theories at nonzero density**
- \Rightarrow complex action problem

Chemical potential (continuum/bosons)

complex scalar field, global symmetry: $\qquad \phi \rightarrow e^{i\alpha} \phi$

1 action:
$$
S = \int d^4x \left(|\partial_\nu \phi|^2 + m^2 |\phi|^2 + \lambda |\phi|^4 \right)
$$

Conserved charge:
$$
N = \int d^3x \, i \, (\phi^* \partial_4 \phi - (\partial_4 \phi^*) \phi)
$$

back to partition function $Z = \text{Tr} \, e^{-(H-\mu N)/T}$

hamiltonian ⇒ canonical momenta ⇒
. integrate out momenta \Rightarrow euclidean path integral

Chemical potential (continuum/bosons)

rederive path integral:

• write
$$
\phi = (\phi_1 + i\phi_2)/\sqrt{2}
$$

canonical momenta $\pi_1=\partial_4\phi_1, \pi_2=\partial_4\phi_2$

$$
N = \int d^3x \left(\phi_2 \pi_1 - \phi_1 \pi_2\right)
$$

P partition function:

$$
Z = \text{Tr} e^{-(H-\mu N)/T}
$$

= $\int D\phi_1 D\phi_2 \int D\pi_1 D\pi_2 \exp \int d^4x \Big[i\pi_1 \partial_4 \phi_1 + i\pi_2 \partial_4 \phi_2$
- $\mathcal{H} + \mu(\phi_2 \pi_1 - \phi_1 \pi_2) \Big]$

C integrate out momenta when all the dust settles:

.

Chemical potential (continuum/bosons)

chemical potential appears as imaginary vectorpotential

$$
S = \int d^4x \left[(\partial_4 + \mu) \phi^* (\partial_4 - \mu) \phi + |\partial_i \phi|^2 + m^2 |\phi|^2 + \lambda |\phi|^4 \right]
$$

or

$$
S = \int d^4x \left[|\partial_\nu \phi|^2 + (m^2 - \mu^2) |\phi|^2 + \mu (\phi^* \partial_4 \phi - \partial_4 \phi^* \phi) + \lambda |\phi|^4 \right]
$$

- linear term is purely imaginary: complex action \bullet
- **•** quadratic term from integrating out momenta

same symmetry: S^* $^*(\mu) = S($ $-\mu^*$ $\left(\begin{array}{c} \ast \\ \ast \end{array} \right)$

Towards the Silver Blaze problem

consider massive particle with mass m at low temperature:

- μ is the change in free energy when a particle carrying the corresponding quantum number is addedi.e. energy cost for adding one particle
- if $\mu < m$: not enough energy to create a particle \Rightarrow no
change in groundstate change in groundstate
- if $\mu > m$: plenty of energy available \Rightarrow nonzero density

onset at $\mu=\mu_c(=m)$ at zero temperature generic principle of statistical mechanics

 \Rightarrow demonstrate for free fermions

Free fermions: onset at low temperature

standard thermal field theory: free fermion gas

$$
\ln Z = 2V \int \frac{d^3 p}{(2\pi)^3} \left[\beta \omega_{\mathbf{p}} + \ln \left(1 + e^{-\beta(\omega_{\mathbf{p}} - \mu)} \right) + \ln \left(1 + e^{-\beta(\omega_{\mathbf{p}} + \mu)} \right) \right]
$$

o density: $\omega_{\mathbf{p}}=% \begin{bmatrix} \omega_{\mathbf{p}}&\frac{\partial\mathbf{p}}{\partial\mathbf{p}}&\frac{\partial\mathbf{p}}{\partial\mathbf{p}}&\frac{\partial\mathbf{p}}{\partial\mathbf{p}}&\frac{\partial\mathbf{p}}{\partial\mathbf{p}}&\frac{\partial\mathbf{p}}{\partial\mathbf{p}}&\frac{\partial\mathbf{p}}{\partial\mathbf{p}}&\frac{\partial\mathbf{p}}{\partial\mathbf{p}}&\frac{\partial\mathbf{p}}{\partial\mathbf{p}}&\frac{\partial\mathbf{p}}{\partial\mathbf{p}}&\frac{\partial\mathbf{p}}{\partial\mathbf{p}}&\frac{\partial$ $\sqrt{{\bf p}^2}$ $^2+m^2$

$$
\langle n \rangle = \frac{T}{V} \frac{\partial \ln Z}{\partial \mu} = 2 \int_{\mathbf{p}} \left[\frac{1}{e^{\beta(\omega_{\mathbf{p}} - \mu)} + 1} - \frac{1}{e^{\beta(\omega_{\mathbf{p}} + \mu)} + 1} \right]
$$

low-temperature limit: \bullet $T\rightarrow 0, \beta \rightarrow \infty$ case 1:

$$
\mu < m \; : \; \langle n \rangle \sim 2 \int_{\mathbf{p}} \left[e^{-\beta(\omega_{\mathbf{p}} - \mu)} - e^{-\beta(\omega_{\mathbf{p}} + \mu)} \right] \to 0
$$

(anti)particles thermally excited but Boltzmannsuppressed

Free fermions: onset at low temperature

$$
\bullet \quad \text{case 2:} \quad \mu > m
$$

Fermi-Dirac distribution become step function at $T=0^\circ$

$$
\mu > m \; : \quad \langle n \rangle \sim 2 \int_{\mathbf{p}} \Theta(\mu - \omega_{\mathbf{p}}) = \frac{\left(\mu^2 - m^2\right)^{3/2}}{3\pi^2} \Theta(\mu - m)
$$

filled Fermi sphere:

nonzero density

• onset at
$$
\mu = \mu_c = m
$$

no μ dependence below onset

Free bosons: onset at low temperature

- same is true for Bose gas: Bose-Einstein condensation
- need interaction term for stabilization
- massless particle at onset (Goldstone boson)

$$
S = \int d^4x \left[|\partial_\nu \phi|^2 + (m^2 - \mu^2) |\phi|^2 + \mu (\phi^* \partial_4 \phi - \partial_4 \phi^* \phi) + \lambda |\phi|^4 \right]
$$

important: at $T=0^\circ$

thermodynamic quantities $(\ln Z, p, f, \langle n \rangle, \chi, \ldots)$ are \bullet independent of μ as long as μ is below the mass of the lightest particle in channel with appropriate quantumnumbers

relevant for Silver Blaze problem

Cohen ⁰⁴

- naively adding $\mu\bar{\psi}\gamma$ μ dependent) UV divergences $_4\psi$ leads to unexpected (i.e.
- **o** instead:
	- couple to conserved charge on the lattice
	- should appear as iA 4
- lattice action: $S \sim$ $\bar{\psi}_x U_{\nu x} \gamma_\nu \psi_{x+\nu}$ $\bar{\psi}_{x+\nu}U_{\nu}$ $\stackrel{\dagger}{\nu x} \gamma_\nu \psi_x$
- conserved current: j_{ν} \sim $\bar{\psi}_xU_{\nu x}\gamma_\nu\psi_{x+\nu}+\bar{\psi}_{x+\nu}U_x$ $\stackrel{\dagger}{\nu x} \gamma_\nu \psi_x$ (point-split)

modify temporal hopping terms:

- **o** forward hopping: $U_{4x}=e^{iA_4}$ $x \Rightarrow e^{\mu}$
- **C** backward hopping: $\, U \,$ $\frac{1}{4x}$ $=e$ $-iA_4$ $\,x\,$ $x \Rightarrow e^{-\mu}$

- correct naive continuum limit
- couples to exactly conserved charge on the lattice \bullet
- no new UV divergences

```
Hasenfratz & Karsch 83, Kogut et al 83
```

```
non-unique: Gavai & Bilic 84
```
(different prescriptions should agree in continuum limit)

note:

use lattice units: $\mu \equiv a \mu$

always clear what is meant: appears in combination

(lattice) $\mu N_\tau=$ $=\mu/T$ (continuum)

chemical potential introduces an imbalance betweenforward and backward hopping

- **o** forward hopping (quark)
	- \Rightarrow favoured as $e^{\mu n_{\tau}}$
- backward hopping (anti-quark)
	- \Rightarrow disfavoured as $e^{-\mu n_\tau}$
- **C** closed worldline

$$
\Rightarrow \quad \mu \text{ dependence cancels}
$$

exactly

 μ dependence only remains when worldline wraps around time direction

$$
e^{\mu N_{\tau}} = e^{\mu/T} \qquad \qquad e^{-\mu N_{\tau}} = e^{-\mu/T}
$$

suggestion:

 μ is effectively a boundary condition

make explicit:

6 field redefinition
$$
\psi_x = e^{-\mu \tau} \psi'_x
$$
 $\overline{\psi}_x = e^{\mu \tau} \overline{\psi}'_x$

- μ dependence drops from all terms $\quad \bar{\psi}_x e^\mu$ $^\mu \psi_{x+4}$ etc (and also from spatial terms)
- but appears as ^a boundary condition \bullet

$$
\psi_{N_{\tau}} = -\psi_0 \quad \Rightarrow \quad \psi'_{N_{\tau}} = -e^{\mu N_{\tau}} \psi'_0
$$

wrapping around the temporal direction

Bose gas on the lattice

add e $^{\pm \mu}$ in temporal hopping terms

$$
S = \sum_{x} \left[\left(2d + m^2 \right) \phi_x^* \phi_x + \lambda (\phi_x^* \phi_x)^2 - \sum_{\nu=1}^4 \left(\phi_x^* e^{-\mu \delta_{\nu,4}} \phi_{x+\nu} + \phi_{x+\nu}^* e^{\mu \delta_{\nu,4}} \phi_x \right) \right]
$$

- **Continuum limit:**
	- **second derivatives** ok
	- first derivatives $+\mu$ ok
	- no derivatives $-\mu$ 2

ok

How hard is the sign problem?

partition function: $\hspace{.1cm} Z =$ $\int D U D \bar{\psi} D \psi \, e^{-S}$ $=$ $\int DU e^{-S}$ B det M complex weight due to complex determinant

$$
[\det M(\mu)]^* = \det M(-\mu^*)
$$

write $\det M =$ $=|\det M|e^{i\varphi}$ and absorb phase in observable

$$
\langle O \rangle_{\text{full}} = \frac{\int DU e^{-S_B} \det MO}{\int DU e^{-S_B} \det M} = \frac{\int DU e^{-S_B} |\det M| e^{i\varphi} O}{\int DU e^{-S_B} |\det M| e^{i\varphi}}
$$

$$
= \frac{\langle e^{i\varphi} O \rangle_{\text{pq}}}{\langle e^{i\varphi} \rangle_{\text{pq}}}
$$

expectation values are taken wrt phase-quenched weight well-defined in principle . . .

Sign and overlap problems

what is average phase factor $\langle e^{i\varphi}\rangle_{\rm pq}$?

$$
\langle e^{i\varphi} \rangle_{\text{pq}} = \frac{\int DU e^{-S_B} |\det M| e^{i\varphi}}{\int DU e^{-S_B} |\det M|} = \frac{Z_{\text{full}}}{Z_{\text{pq}}} = e^{-\Omega \Delta f} \to 0
$$

ratio of two partition functions! \bullet

$$
\mathsf{note} \colon Z_{\rm full} \le Z_{\rm pq}
$$

$$
Z = e^{-F/T} = e^{-\Omega f} \qquad \qquad \Omega = N_{\tau} N_s^3
$$

average phase factor $\rightarrow 0$ in thermodynamic limit! (unless $f=f_{\mathrm{pq}}$)

this is the overlap problem: sampling with the 'wrong' weightexponentially hard

Origin of overlap problem

phase-quenched physics is different!

consider two flavours: $\quad [\det D(\mu)]^2$ ² vs $|\det D(\mu)|^2$

• recall
$$
D^{\dagger}(\mu) = \gamma_5 D(-\mu^*) \gamma_5
$$

• then
$$
|\det D(\mu)|^2 = \det D(-\mu) \det D(\mu)
$$

⇒ isospin chemical potential! up/down quark: $\pm \mu$

- **C** lightest particle with nonzero isospin: pion
- **I** lightest particle with nonzero baryon number: nucleon

Onset, phase-quenching and Silver Blaze

full QCD with quark chemical potential:

onset when μ equals [lightest baryon mass (nucleon) binding energy]/ $3\,$ nuclear matter

phase-quenched QCD with isospin chemical potential:

onset when μ equals [pion mass]/2 (nonzero isospin) pion condensation

 $0 < \mu < m$ $_{\pi}/2$ full = $=$ phase-quenched at $T=0$

no severe sign problem, but no interesting physics

 $m_\pi/2 < \mu \lesssim m_B/3$ severe sign problem strong cancelations required to cancel μ dependence of phase-quenched theory

Onset, phase-quenching and Silver Blaze

- perform lattice simulations in phase-quenched theory
- extract full QCD results
- ⇒ requires severe cancelations of the μ dependence in region m β / γ / \leq m α /3 region $m_\pi/2 < \mu \lesssim m_B/3$

most straightforward numerical methods will fail this test!

Onset, phase-quenching and Silver Blaze

same happens in Bose gasphase-quenching:

- linear term ignored $\quad+\mu\,(\phi^{*}%)\equiv\alpha^{*}(\phi^{*}+\phi^{*})$ $^* \partial_4 \phi$ $\partial_4\phi^*$ $^{\ast}\phi)$
- quadratic term kept $\quad (m$ 2 $^--\mu$ 2 $^2)|\phi|^2$
- \Rightarrow theory with μ $^{\rm 2}$ dependent effective potential
	- ordinary symmetry breaking as μ $^{\rm 2}$ is increased
	- μ dependence immediate in phase-quenched theory

Silver Blaze region: $0 < \mu < m$

Dirac eigenvalues and Silver Blaze

original formulation of Silver Blaze problem:

- weight and therefore configurations and eigenvalues of Dirac operator depend on μ
- this μ dependence should cancel: sensitive test \bullet
- commonly demonstrated using spectrum of DiracoperatorCohen 04, Splittorff, Verbaarschot, Osborn ⁰⁵
- write $D+m$ with $D=$ $= \not\!\!D + \mu \gamma_4$

then
$$
Z = \int DU \det(D + m)e^{-S_{YM}} = \langle \det(D + m) \rangle_{YM}
$$

write $\det(D+m) = \prod (\lambda_k+m)$ where $D\psi$ $_{k}=\lambda_{k}\psi_{k}$

since D is not γ_5 imaginary, instead $\lambda_k\in\mathbb{C}$ $_{5}$ hermitian, eigenvalues not real or

Dirac eigenvalues and Silver Blaze

 \bullet chiral condensate

$$
\langle \bar{\psi}\psi\rangle = \frac{1}{\Omega}\frac{\partial\ln Z}{\partial m} = \left\langle \frac{1}{\Omega}\sum_{k}\frac{1}{\lambda_{k}+m}\prod_{j}(\lambda_{j}+m)\right\rangle_{\text{YM}}
$$

 \bullet introduce density of eigenvalues

$$
\rho(z;\mu) = \frac{1}{Z} \int DU \det(D+m) e^{-S_{YM}} \frac{1}{\Omega} \sum_{k} \delta^{2}(z - \lambda_{k})
$$

$$
= \left\langle \det(D+m) \frac{1}{\Omega} \sum_{k} \delta^{2}(z - \lambda_{k}) \right\rangle_{YM}
$$
then
$$
\langle \bar{\psi}\psi \rangle = \int d^{2}z \frac{\rho(z;\mu)}{z+m}
$$

Dirac eigenvalues and Silver Blaze

 $\rho(z;\mu)$ depends on μ since $D+m$ does

$$
\langle \bar{\psi}\psi \rangle = \int d^2z \, \frac{\rho(z;\mu)}{z+m}
$$

if $\mu \lesssim m_B/3$ (below onset), all μ dependence should cancel achieved:

 $\rho(z;\mu)$ is complex, oscillating with amplitude e $^{\Omega \mu}$ and period $1/\Omega$

only when all oscillations are correctly integrated, μ dependence will cancel

'solution to Silver Blaze problem' from viewpoint of Dirac spectral density

Where are we?

complex weight:

- straightforward importance sampling not possible
- overlap problem \bullet
- extreme care is needed: Silver Blaze problem

various possibilities:

- preserve overlap as best as possible
- use approximate methods at small chemical potential
- do something radical: \bullet
	- **•** rewrite partition function in other dof
	- explore field space in different way
	- . . .