Quantum anomalies in hydrodynamics

Dam T. Son (INT, University of Washington)

Plan

- Relativistic hydrodynamics
- Triangle anomaly
- anomalies in hydrodynamics: insights from gauge/ gravity duality
- What can we learn without gauge/gravity duality

A low-energy effective theory

Consider a thermal system: $T \neq 0$

Finite mean free path λ_{mfp}

Dynamics at large distances $\ell \gg \lambda_{\rm mfp}$

is simple: most degrees of freedom do not matter

Degrees of freedom in hydrodynamics

D.o.f. that relax arbitrarily slowly in the long-wavelength limit:

- Conserved densities
- Goldstone modes (superfluids)
- Massless U(I) gauge field (magnetohydrodynamics)

Degrees of freedom in hydrodynamics

D.o.f. that relax arbitrarily slowly in the long-wavelength limit:

will consider only this case

- Conserved densities⁴
- Goldstone modes (superfluids)
- Massless U(I) gauge field (magnetohydrodynamics)

Degrees of freedom in hydrodynamics

D.o.f. that relax arbitrarily slowly in the long-wavelength limit:

will consider only this case

- Conserved densities⁴
- Goldstone modes (superfluids)
- Massless U(I) gauge field (magnetohydrodynamics)

Equations of hydrodynamics can usually be written down from general principles: symmetries, conservation laws

Relativistic hydrodynamics

Constitutive equations: local thermal equilibrium

 $T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu}$ $j^{\mu} = nu^{\mu}$

Total: 5 equations, 5 unknowns

Relativistic hydrodynamics

Conservation laws: $\partial_{\mu}T^{\mu\nu} = 0$ $\partial_{\mu}j^{\mu} = 0$ (one conserved charge)

Constitutive equations: local thermal equilibrium

$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu} + \tau^{\mu\nu}$$
$$j^{\mu} = nu^{\mu} + \nu^{\mu}$$

Total: 5 equations, 5 unknowns

Dissipative terms, in local fluid rest frame:

$$\tau^{ij} = -\eta(\partial^i u^j + \partial^j u^i - \frac{2}{3}\delta^{ij}\vec{\nabla}\cdot\vec{u}) - \zeta\delta^{ij}\vec{\nabla}\cdot\vec{u} \qquad \nu^i = -\sigma T\partial^i\left(\frac{\mu}{T}\right)$$

Relativistic hydrodynamics

Conservation laws: $\partial_{\mu}T^{\mu\nu} = 0$ $\partial_{\mu}j^{\mu} = 0$ (one conserved charge)

Constitutive equations: local thermal equilibrium

$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu} + \tau^{\mu\nu}$$
$$j^{\mu} = nu^{\mu} + \nu^{\mu}$$

Total: 5 equations, 5 unknowns

Dissipative terms, in local fluid rest frame:

$$\tau^{ij} = -\eta (\partial^{i} u^{j} + \partial^{j} u^{i} - \frac{2}{3} \delta^{ij} \vec{\nabla} \cdot \vec{u}) - \zeta \delta^{ij} \vec{\nabla} \cdot \vec{u} \qquad \nu^{i} = -\sigma T \partial^{i} \left(\frac{\mu}{T}\right)$$

$$\int_{\text{shear viscosity}} \text{bulk viscosity} \qquad \text{conductivity}$$

$$(\text{diffusion})$$

Parity-odd effects?

- What happens if the conserved current is axial?
 - example: QCD with massless quarks: axial currents conserved in absence of external EM fields
- Parity invariance does not forbid

$$j^{5\mu} = n^5 u^{\mu} + \xi(T,\mu)\omega^{\mu}$$
$$\omega^{\mu} = \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} u_{\nu} \partial_{\alpha} u_{\beta} \qquad \text{vorticity}$$

• The same order in derivatives as dissipative terms (viscosity, diffusion)

Landau-Lifshitz frame

• We can also have correction to the stress-energy tensor

 $T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu} + \xi'(u^{\mu}\omega^{\nu} + \omega^{\mu}u^{\nu})$

• Can be eliminated by redefinition of u^{μ}

$$u^{\mu} \to u^{\mu} - \frac{\xi'}{\epsilon + P} \omega^{\mu}$$

Only a linear combination $\xi - \frac{n}{\epsilon + P} \xi'$ has physical meaning

Let us set $\xi' = 0$

New effect: chiral separation

- Rotating piece of quark matter
- Initially only vector charge density $\neq 0$
- Rotation: lead to j⁵: chiral charge density develops
- Can be thought of as chiral separation: left- and right-handed quarks move differently in rotation fluid
- Similar effect in nonrelativistic fluids?

Can chiral separation occur in rigid rotation?

- If a chiral molecule rotates with respect to the liquid, it will moves
- In rigid rotation, molecules rotate with liquid
- \Rightarrow no current in rigid rotation.

Relativistic theories are different

- There can be current ~ vorticity
- It is related to triangle anomalies

 $\partial_{\mu}j^{5\mu} = \#E \cdot B$

but the effect is there even in the absence of external field

The kinetic coefficient ξ is determined (almost) completely by anomalies and equation of state

Forbidden?

- Terms with epsilon tensor do not appear in the standard (e.g., Landau-Lifshitz) treatments of hydrodynamics
- Usual argument: 2nd law of thermodynamics:
- additional requirement beside symmetries, conservations law:

hydrodynamic equations must be consistent with the existence of a non-decreasing entropy

Standard textbook manipulations (single U(1) charge)

 $\partial_{\mu} [(\epsilon + P) u^{\mu} u^{\nu}] + \partial^{\nu} P + \partial_{\mu} \tau^{\mu\nu} = 0$ $\partial_{\mu} (n u^{\mu}) + \partial_{\mu} \nu^{\mu} = 0$

Standard textbook manipulations (single U(1) charge)

 $\partial_{\mu} [(Ts + \mu n)u^{\mu}u^{\nu}] + \partial^{\nu}P + \partial_{\mu}\tau^{\mu\nu} = 0$

 $\partial_{\mu}(nu^{\mu}) + \partial_{\mu}\nu^{\mu} = 0$

$$-\frac{u_{\nu}}{T} \times \partial_{\mu} [(Ts + \mu n)u^{\mu}u^{\nu}] + \partial^{\nu}P + \partial_{\mu}\tau^{\mu\nu} = 0$$
$$-\frac{\mu}{T} \times \partial_{\mu} (nu^{\mu}) + \partial_{\mu}\nu^{\mu} = 0$$

$$-\frac{u_{\nu}}{T} \times \partial_{\mu} [(Ts + \mu n)u^{\mu}u^{\nu}] + \partial^{\nu}P + \partial_{\mu}\tau^{\mu\nu} = 0$$
$$+ \frac{\mu}{T} \times \partial_{\mu} (nu^{\mu}) + \partial_{\mu}\nu^{\mu} = 0$$

$$-\frac{u_{\nu}}{T} \times \partial_{\mu} [(Ts + \mu n)u^{\mu}u^{\nu}] + \partial^{\nu}P + \partial_{\mu}\tau^{\mu\nu} = 0$$
$$+ \frac{\mu}{T} \times \partial_{\mu} (nu^{\mu}) + \partial_{\mu}\nu^{\mu} = 0$$

$$\partial_{\mu}(su^{\mu}) = \frac{\mu}{T}\partial_{\mu}\nu^{\mu} + \frac{1}{T} \quad u_{\nu}\partial_{\mu}\tau^{\mu\nu}$$

$$-\frac{u_{\nu}}{T} \times \partial_{\mu} [(Ts + \mu n)u^{\mu}u^{\nu}] + \partial^{\nu}P + \partial_{\mu}\tau^{\mu\nu} = 0$$
$$+ \frac{\mu}{T} \times \partial_{\mu} (nu^{\mu}) + \partial_{\mu}\nu^{\mu} = 0$$

$$\partial_{\mu}(su^{\mu} - \frac{\mu}{T}\nu^{\mu}) = \frac{\mu}{T}\partial_{\mu}\nu^{\mu} + \frac{1}{T} \quad u_{\nu}\partial_{\mu}\tau^{\mu\nu}$$

$$-\frac{u_{\nu}}{T} \times \partial_{\mu} [(Ts + \mu n)u^{\mu}u^{\nu}] + \partial^{\nu}P + \partial_{\mu}\tau^{\mu\nu} = 0$$
$$+ \frac{\mu}{T} \times \partial_{\mu} (nu^{\mu}) + \partial_{\mu}\nu^{\mu} = 0$$

$$\partial_{\mu} (su^{\mu} - \frac{\mu}{T} \nu^{\mu}) = -\partial_{\mu} \frac{\mu}{T} \quad \nu^{\mu} - \frac{1}{T} \partial_{\mu} u_{\nu} \quad \tau^{\mu\nu}$$

$$-\frac{u_{\nu}}{T} \times \partial_{\mu} [(Ts + \mu n)u^{\mu}u^{\nu}] + \partial^{\nu}P + \partial_{\mu}\tau^{\mu\nu} = 0$$

+
$$-\frac{\mu}{T} \times \partial_{\mu} (nu^{\mu}) + \partial_{\mu}\nu^{\mu} = 0$$

$$\partial_{\mu} (su^{\mu} - \frac{\mu}{T}\nu^{\mu}) = -\partial_{\mu}\frac{\mu}{T} \quad \nu^{\mu} - \frac{1}{T}\partial_{\mu}u_{\nu} \quad \tau^{\mu\nu}$$

$$= ntropy \text{ current } s^{\mu}$$

Standard textbook manipulations (single U(1) charge)

$$-\frac{u_{\nu}}{T} \times \partial_{\mu} [(Ts + \mu n)u^{\mu}u^{\nu}] + \partial^{\nu}P + \partial_{\mu}\tau^{\mu\nu} = 0$$

+
$$-\frac{\mu}{T} \times \partial_{\mu} (nu^{\mu}) + \partial_{\mu}\nu^{\mu} = 0$$

$$\partial_{\mu} (su^{\mu} - \frac{\mu}{T}\nu^{\mu}) = -\partial_{\mu}\frac{\mu}{T} \quad \nu^{\mu} - \frac{1}{T}\partial_{\mu}u_{\nu} \quad \tau^{\mu\nu}$$

$$= ntropy current s^{\mu}$$

Positivity of entropy production constrains the dissipation terms: only three kinetic coefficients η , ζ , and σ (right hand side positive-definite)

Standard textbook manipulations (single U(1) charge)

$$-\frac{u_{\nu}}{T} \times \partial_{\mu} [(Ts + \mu n)u^{\mu}u^{\nu}] + \partial^{\nu}P + \partial_{\mu}\tau^{\mu\nu} = 0$$

+
$$-\frac{\mu}{T} \times \partial_{\mu} (nu^{\mu}) + \partial_{\mu}\nu^{\mu} = 0$$

$$\partial_{\mu} (su^{\mu} - \frac{\mu}{T}\nu^{\mu}) = -\partial_{\mu}\frac{\mu}{T} \quad \nu^{\mu} - \frac{1}{T}\partial_{\mu}u_{\nu} \quad \tau^{\mu\nu}$$

$$= ntropy current s^{\mu}$$

Positivity of entropy production constrains the dissipation terms: only three kinetic coefficients η , ζ , and σ (right hand side positive-definite)

$$\tau^{ij} = -\eta (\partial^i u^j + \partial^j u^i - \frac{2}{3} \delta^{ij} \vec{\nabla} \cdot \vec{u}) - \zeta \delta^{ij} \vec{\nabla} \cdot \vec{u} \qquad \nu^i = -\sigma T \partial^i \left(\frac{\mu}{T}\right)$$

Is there a place for a new kinetic coefficient?

$$\partial_{\mu} \left(s u^{\mu} - \frac{\mu}{T} \nu^{\mu} \right) = -\frac{1}{T} \tau^{\mu\nu} \partial_{\mu} u_{\nu} - \nu^{\mu} \partial_{\mu} \left(\frac{\mu}{T} \right)$$

Consider a theory with a single conserved chiral charge

Can we add to the current: $\nu^{\mu} = \cdots + \xi \omega^{\mu}$?

Problem: Extra term in current would lead to

$$\partial_\mu s^\mu = \cdots - \xi \omega^\mu \partial_\mu \left(rac{\mu}{T}
ight)$$
 not manifestly zero

This can have either sign, and can overwhelm other terms

Is there a place for a new kinetic coefficient?

$$\partial_{\mu} \left(s u^{\mu} - \frac{\mu}{T} \nu^{\mu} \right) = -\frac{1}{T} \tau^{\mu\nu} \partial_{\mu} u_{\nu} - \nu^{\mu} \partial_{\mu} \left(\frac{\mu}{T} \right)$$

Consider a theory with a single conserved chiral charge

Can we add to the current: $\nu^{\mu} = \cdots + \xi \omega^{\mu}$?

Problem: Extra term in current would lead to

$$\partial_\mu s^\mu = \cdots - \xi \omega^\mu \partial_\mu \left(rac{\mu}{T}
ight)$$
 not manifestly zero

This can have either sign, and can overwhelm other terms

Forbidden by 2nd law of thermodynamics?

Holography

The first indication that standard hydrodynamic equations are not complete comes from considering

rotating 3-sphere of N=4 SYM plasma \leftrightarrow rotating BH

If the sphere is large: hydrodynamics should work no shear flow: corrections ~ 1/R^2 Instead: corrections ~ 1/R Bhattacharyya, Lahiri, Loganayagam, Minwalla

Holography (II)

Erdmenger et al. arXiv:0809.2488

Banerjee et al. arXiv:0809.2596

considered N=4 super Yang Mills at strong coupling finite T and μ

should be described by a hydrodynamic theory

discovered that there is a current ~ vorticity

Found the kinetic coefficient $\xi(T,\mu)$

$$\xi = \frac{N^2}{4\sqrt{3}\pi^2}\mu^2 \left(\sqrt{1 + \frac{2}{3}\frac{\mu^2}{\pi^2 T^2}} + 1\right) \left(3\sqrt{1 + \frac{2}{3}\frac{\mu^2}{\pi^2 T^2}} - 1\right)^{-1}$$

Fluid-gravity correspondence

- Long-distance dynamics of black-brane horizons (in AdS) are described by hydrodynamic equations
 - finite-T field theory \leftrightarrow AdS black holes \uparrow described by hydrodynamics
- Charged black branes in Einstein-Maxwell theory: hydrodynamics with conserved charges
- Anomalies: Chern-Simons term in 5D action of gauge fields

A holographic fluid

$$S = \frac{1}{8\pi G} \int d^5x \sqrt{-g} \left(R - 12 - \frac{1}{4} F_{AB}^2 + \frac{4\kappa}{3} \epsilon^{LABCD} A_L F_{AB} F_{CD} \right)$$
encodes anomalies

Black brane solution (Eddington coordinates)

$$ds^{2} = 2dvdr - r^{2}f(r, m, q)dv^{2} + r^{2}d\vec{x}^{2} \qquad f(m, q, r) = 1 - \frac{m^{4}}{r^{4}} + \frac{q^{2}}{r^{6}}$$
$$A_{0}(r) = \#\frac{q}{r^{2}}$$

Boosted black brane: also a solution

$$ds^{2} = -2u_{\mu}dx^{\mu}dr + r^{2}(P_{\mu\nu} - fu_{\mu}u_{\nu})dx^{\mu}dx^{\nu}$$

$$A_{\mu}(r) = -u_{\mu} \# \frac{q}{r^2}$$

Promoting parameters into variables

Solve for g¹ perturbatively in derivaties

Condition: no singularity outside the horizon

BH horizon in equilibrium

BH horizon out of equilibrium

• Chern-Simons term enters the equation of motion

 $\Box A^{\mu} \sim \epsilon^{\mu\nu\lambda\alpha\beta} F_{\nu\lambda} F_{\alpha\beta}$

• Chern-Simons term enters the equation of motion

$$\Box A^{\mu} \sim \epsilon^{\mu\nu\lambda\alpha\beta} F_{\nu\lambda} F_{\alpha\beta}$$

$$\uparrow \uparrow \uparrow \uparrow$$

$$i \qquad 0 \text{ r } j \text{ k}$$

• Chern-Simons term enters the equation of motion

$$\Box A^{\mu} \sim \epsilon^{\mu\nu\lambda\alpha\beta} F_{\nu\lambda} F_{\alpha\beta}$$

$$\uparrow \uparrow \uparrow \uparrow \uparrow$$

$$i \qquad 0 \text{ r } \text{ j } \text{ k } \qquad A_i \sim u_i$$

• Chern-Simons term enters the equation of motion

$$\Box A^{\mu} \sim \epsilon^{\mu\nu\lambda\alpha\beta} F_{\nu\lambda} F_{\alpha\beta}$$

$$\uparrow \uparrow \uparrow \uparrow \uparrow$$

$$i \qquad 0 \text{ r } \text{ j } \text{ k } \qquad A_i \sim u_i$$

• This lead to correction to the gauge field

•
$$\delta A_i \sim \epsilon_{ijk} \partial_j u_k$$

• Current is read out from asymptotics of A near the boundary: j ~ ω

Back to hydrodynamics

- How can the argument based on 2nd law of thermodynamics fail?
 - 2nd law not valid? unlikely...
 - Maybe we were not careful enough?

$$\partial_{\mu}s^{\mu} = \dots - \xi\omega^{\mu}\partial_{\mu}\left(\frac{\mu}{T}\right)$$

Can this be a total derivative?

If yes, then all we need to to is to modify s^{μ}

$$s^{\mu} \to s^{\mu} + D(T,\mu)\omega^{\mu}$$

so our task is to find D so that

$$\partial_{\mu}[D(T,\mu)\omega^{\mu}] = \xi(T,\mu)\omega^{\mu}\partial_{\mu}\left(\frac{\mu}{T}\right)$$

for all solutions to hydrodynamic equations

This is possible for a special class of $\xi(T,\mu)$ (expressible in terms of a function of 1 variable: μ/T

but we are still not able to relate ξ to anomalies

Turning on external fields

- To see where anomalies enter, we turn on external background U(1) field A_{μ}
- Theory still makes sense if A_{μ} is non dynamical
- Now the energy-momentum and charge are not conserved

$$\partial_{\mu}T^{\mu\nu} = F^{\nu\lambda}j_{\lambda}$$
$$\partial_{\mu}j^{\mu} = -\frac{C}{8}\epsilon^{\mu\nu\lambda\rho}F^{\mu\nu}F^{\lambda\rho}$$

 Power counting: A~1, F~O(p): right hand side has to be taken into account

Anomalous hydrodynamics

These equations have to be supplemented by the constitutive relations:

$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu} + \text{viscosities}$$
$$j^{\mu} = nu^{\mu} + \xi\omega^{\mu} + \xi_B B^{\mu} \qquad B^{\mu} = \frac{1}{2}\epsilon^{\mu\nu\alpha\beta}u_{\nu}F_{\alpha\beta}$$
$$+ \text{diffusion+Ohmic current}$$

- We demand that there exist an entropy current with positive derivative: $\partial_{\mu}s_{\mu} \ge 0$
- The most general entropy current is

$$s^{\mu} = su^{\mu} - \frac{\mu}{T}\nu^{\mu} + D\omega^{\mu} + D_B B^{\mu}$$

Entropy production

• Positivity of entropy production almost completely fixes all functions ξ , ξ_B , D, D_B

$$\xi = C \left(\mu^2 - \frac{2}{3} \frac{n\mu^3}{\epsilon + P} \right) + C_1 T^2 \left(1 - \frac{2n\mu}{\epsilon + P} \right)$$

anomaly coefficient not fixed (grav. anomaly)

$$\xi_B = C\left(\mu - \frac{1}{2}\frac{n\mu^2}{\epsilon + P}\right) \qquad \qquad j^\mu = \dots + \xi\omega^\mu + \xi_B B^\mu$$

These expressions have been checked for N=4 SYM

A more convenient frame

$$u^{\mu} \to u^{\mu} + \frac{1}{\epsilon + P} \left[\left(\frac{2}{3} C \mu^3 + 2C_1 \mu T^2 \right) \omega^{\mu} + \frac{1}{2} (C \mu^2 + C_1 T^2) B^{\mu} \right]$$

$$j^{\mu} = nu^{\mu} + (C\mu^2 + C_1T^2)\omega^{\mu} + C\mu B^{\mu}$$

$$T^{\mu\nu} = T^{\mu\nu}_{\text{ideal}} + \left(u^{\mu} q^{\nu} + q^{\mu} u^{\nu} \right)$$

"heat flux"

 $q^{\mu} = \left(\frac{2}{3}C\mu^3 + 2C_1\mu T^2\right) + \frac{1}{2}(C\mu^2 + C_1T^2)B^{\mu}$

anomalous terms are have simpler forms

Current induced by magnetic field

Spectrum of Dirac operator:

 $E^2 = 2nB + p_z^2$

All states LR degenerate except for n=0

 $j_{\rm L} \sim -C\mu B$ $j_{\rm R} \sim C\mu B$

$$j_5 = j_R - j_L \sim C\mu B$$

Current induced by magnetic field

Spectrum of Dirac operator:

 $E^2 = 2nB + p_z^2$

All states LR degenerate except for n=0

 $j_{\rm L} \sim -C\mu B$ $j_{\rm R} \sim C\mu B$

$$j_5 = j_R - j_L \sim C\mu B$$

If there is only right-handed fermions:

$$j^{\mu} = nu^{\mu} + C\mu B^{\mu}$$
$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} + \frac{C}{2}\mu^{2}(u^{\mu}B^{\nu} + u^{\nu}B^{\mu})$$

going to the Landau-Lifshitz frame gives the correct ξ_{B} No similar picture for vorticity induced current

Multiple charges

In the case when there are multiple conserved charges: anomalous contribution to each current

(these are gauge invariant, non-conserved currents)

For U(I)A currents : $j^{5\mu} = \cdots + C'T^2\omega^{\mu}$

Multiple charges (II)

Example: theory with one massless Dirac fermion

$$j^{\mu} = \frac{1}{2\pi^2} (2\mu\mu_5\omega^{\mu} + \mu_5 B^{\mu} + \mu B_5^{\mu})$$
$$j^{\mu}_5 = \frac{1}{2\pi^2} ((\mu^2 + \mu_5^2)\omega^{\mu} + \mu B^{\mu} + \mu_5 B_5^{\mu})$$

 $+C'T^2\omega^{\mu}$

Observable effect on heavy-ion collsions?

Chiral charges accumulate at the poles: what happens when they decay?

"Chiral magnetic effect"

- Large axial chemical potential μ_5 for some reason
- Leads to a vector current: charge separation
- π^+ and π^- would have anticorrelation in momenta
- Some experimental signal?
- Attempts to explain the signal by $j \sim \mu_5 B$ Kharzeev et al

Further developments

- Anomalies in kinetic theory: effect of "Berry curvature" on the Fermi surface (DTS, Yamamoto, 1203.2697)
- Static (Euclidean) view on the anomalous kinetic coefficients: Jensen, Loganayagam, Yarom 1207.5824; Golkar & DTS 1207.5806

Conclusions

- Anomalies affect hydrodynamic behavior of relativistic fluids
- First seen in holographic models, but can be found by other methods
- New terms in hydrodynamics completely fixed
- Interplay between the quantum and classical theories