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Plan of of this lecture

AdS/CFT correspondence at zero temperature.

Thermodynamics of strongly coupled plasmas (N = 4 supersymmetric

Yang-Mills theory)

Viscosity at strong coupling

Next lecture:

Quantum anomalies in hydrodynamics
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Motivation

Strong coupling regime of QCD is difficult

There exist gauge theories where the strong coupling regime can be studied

analytically using AdS/CFT correspondence

Hope: learn more about QCD from models
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Some literature

Horowitz and Polchinski, Gauge/gravity duality, gr-qc/0602037

general, philosophical, basic ideas

Klebanov’s TASI lectures Introduction to AdS/CFT correspondence,

hep-th/0009139
early and very readable introduction

McGreevy Holographic duality with a view toward many-body physics,

hep-th/0909.0518

emphasizes recent “AdS/CMT” applications
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Zero Temperature AdS/CFT
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AdS space: 2D illustration

Sphere in projective coordinates:

ds2 =
dx2 + dy2

(1 + x2 + y2)2
y

x

This is a space with constant positive curvature.
To make a space with constant negative curvature, we change signs in the

denominator.
The result is Euclidean AdS2 space:

ds2 =
dx2 + dy2

(1− x2 − y2)2
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AdS space (continued)

Now we perform conformal transformation:

τ

x

y

z

z + iτ =
1− x− iy

1 + x+ iy
⇒ ds2 =

dz2 + dτ2

z2

In more than two dimensions, Minkowski signature:

ds2 =
R2

z2
︸︷︷︸

warp factor

(−dt2 + d~x2 + dz2)
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Problem 1

Find a coordinate transformation that maps

ds2 =
dy2

1 + dy2
2 + · · · dy2

n

(1− y2
1 − y2

2 − · · · y2
n)2

to

ds2 =
1

z2
(dz2 + dx2

1 + dx2
2 + · · · dx2

n−1)

Verify that the Ricci tensor for these metrics satisfies

Rµν = −Λgµν

where Λ is some constant
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Original AdS/CFT correspondence

Maldacena; Gubser, Klebanov, Polyakov; Witten

between N = 4 supersymmetric Yang-Mills theory

and type IIB string theory on AdS5× S5

ds2 =
R2

z2
(d~x2 + dz2) +R2dΩ2

5

This is a solution to the Einstein equation

Rµν − 1

2
gµνR = 8πGTµν

(Tµν = Fµ
αβγδFναβγδ)

Large ’t Hooft limit in gauge theory ⇔ small curvature limit in string theory

g2Nc ≫ 1 ⇔ R/ls =
√
α′ R ≫ 1

Correlation function are computable at large ’t Hooft coupling, where string theory

→ supergravity.
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The dictionary of gauge/gravity duality

gauge theory gravity

operator Ô field φ

energy-momentum tensor Tµν graviton hµν

dimension of operator mass of field

globar symmetry gauge symmetry

conserved current gauge field

anomaly Chern-Simon term

... ...

∫

eiS4D+φ0O =

∫

eiS5D

where S5D is computed with nontrivial boundary condition

lim
z→0

φ(~x, z) = φ0(~x)
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Origin of the idea

Consider type IIB string theory in (9+1)D

contains: strings (massless string modes = graviton, dilaton, etc.)

Dp-branes, p = 1, 3, 5, 7

Stack N D3 branes on top of each other:

N

{

Fluctuations of the branes are described by
N = 4 super Yang-Mills theory

field = open strings

N ≫ 1: space time is curved
closed strings in a curved background
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Duality

Hypothesis: the two pictures are two different descriptions of the same object.

Type IIB string theory

on AdS5× S5
⇔

N = 4 super Yang-Mills

in flat space time

a conformal field theory

This is supported by many checks:

Symmmetries: conformal symmetry ↔ isometry of AdS5, R-symmetry ↔
SO(6) symmmetry of S5.

Correlation functions: some can be computed exactly in field theory and

checked with AdS/CFT calculations

· · ·
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Computing correlators

In the limit Nc → ∞, g2Nc → ∞, calculation of correlators reduces to solving

classical e.o.m:

Z[J ] =

∫

DφeiS[φ]+i
∫
JO = eiW [J]

W [J ] = Scl[ϕcl] : classical action

ϕcl solves e.o.m., ϕcl|z→0 → J(x).

Example: correlator of R-charge currents

R-charge current in 4D corresponds to gauge field in 5D

Field equation for transverse components of gauge fields is

∂µ(
√−g gµαgνβFαβ) = 0

In the gauge Az = 0, equation for transverse and longitudinal parts of Aµ

decouple. The equation for the transverse part is

∂z

(
1

z
∂zA⊥(z, q)

)

− q2

z
A⊥ = 0 ⇒ A⊥(z, q) = QzK1(Qz)A⊥(0, q)
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Computing correlators (continued)

Two-point correlator = second derivative of classical action over boundary values

of fields

〈jµjν〉 ∼ δ2SMaxwell

δA⊥(0)2
=

(

gµν − qµqν

q

2) 1

z

∂

∂z
[ QzK1(Qz)
︸ ︷︷ ︸

1+Q2z2 ln(Qz)

]

= #(gµνq2 − qµqν) lnQ2

This structure is the consequence of conformal symmetry
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Problem 2

It is known that the operator O = F 2
µν in 4D field theory corresponds to the dilaton

field φ in 5D. The dilaton couples minimally to the metric:

S = −1

2

∫

d5x
√−g gµν∂µφ∂νφ

Find the general solution to the equation of motion for φ in AdS space

ds2 =
R2

z2
(dz2 + d~x2)

with the boundary condition φ(z = 0, ~x) = φ0(~x), φ(z = ∞, ~x) = 0.

Find the classical action S as a functional of φ0(~x),

Find the correlation function of O,

〈O(~x)O(~y) =
δ2S

δφ(~x)δφ(~y)

Ref.: Gubser, Klebanov, Polyakov 1998
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Plasma Thermodynamics
and Black Holes
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Reminder of GR and black holes

Metric: ds2 = gµνdx
µdxν

Einstein equation: Rµν − 1
2
gµνR = 8πGTµν

where Rµν is the Ricci tensor (∼ curvature, ∂2gµν )

Tµν is the stress-energy tensor of matter

Example: Schwarzschild black hole is a solution with Tµν = 0

ds2 = −
(

1− 2GM

r

)

dt2 +

(

1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2

︸ ︷︷ ︸

dΩ2
2

)

Properties

r → ∞: flat space

r = r0 = 2GM : metric is singular, but curvature is finite (coordinate

singularity)

this is the black hole horizon
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Behavior near horizon

Near r = r0, ds2 = #(r − r0)dt
2 +#dr2/(r − r0) + · · ·

For r near r0, we introduce new coordinate ρ:

r − r0 =
ρ2

4r0
=⇒ ds2 = − ρ2

4r20
dt2 + dρ2 + r20dΩ

2
2

This is simply a Minkowski version of polar coordinates:

ds2 = dρ2 + ρ2dϕ2, ϕ =
it

2r20

and has no curvature singularity at ρ = 0, if ϕ is a periodic variable

Hawking temperature: ϕ ∼ ϕ+ 2π

corresponding to periodic Euclidean time: it ∼ it+ 4πr0
︸ ︷︷ ︸

β=1/T

TH =
1

4πr0

Gauge/gravity duality and its applications – p.18/32



Black hole entropy

We inteprete the black hole as a thermodynamical system with energy

E = M =
r0
2G

and temperture T = TH .

dS =
dE

T
= 4πr0

dr0
2G

S =
πr20
G

=
A

4G

A = 4πr20 area of horizon
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Finite-temperature AdS/CFT correspondence

Black 3-brane solution:

ds2 =
r2

R2
[−f(r)dt2 + d~x2] +

R2

r2f(r)
dr2 +R2dΩ2

5, f(r) = 1− r40
r4

r0 = 0, f(r) = 1: is AdS5× S5, r = R2/z.

r0 6= 0: corresponds to N = 4 SYM at temperture

T = TH =
r0
πR2

Gauge/gravity duality and its applications – p.20/32



Entropy density

Entropy = A/4G

A is the area of the event horizon
G is the 10D Newton constant.

A =

∫

dx dy dz
√
gxxgyygzz × π3R5

︸ ︷︷ ︸

area of S
5

= V3Dπ3r30R
2 = π6V3DR8T 3

On the other hand, from AdS/CFT dictionary

R4 =

√
8πG

2π5/2
Nc

(for derivation see e.g., Klebanov hep-th/0009139).

Therefore

S =
π2

2
N2

c T
3V3D

This formula has the same N2 behavior as at zero ’t Hooft coupling g2Nc = 0
but the numerical coefficient is 3/4 times smaller.
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Thermodynamics

S = f(g2Nc)N
2
c T

3V3D

where the function f interpolates between weak-coupling and strong-coupling

values, which differ by a factor of 3/4.
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Problem 3

The N = 4 SYM theory contains: one gauge boson, 4 Weyl fermions and 6 real

scalar fields. Each field is in the adjoint representation of the gauge group SU(Nc).

Find the entropy density at zero ’t Hooft coupling and finite temperature, and check

that it is 4/3 times larger than quoted value found from AdS/CFT correspondence.
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Hydrodynamics
from Black Hole Physics

Gauge/gravity duality and its applications – p.24/32



Hydrodynamics

is the effective theory describing the long-distance, low-frequency behavior

of interacting finite-temperature systems. Hydrodynamic regime

Valid at distances ≫ mean free path, time ≫ mean free time.

At these length/time scales: local thermal equilibrium: T , µ vary slowly in
space.

Simplest example of a hydrodynamic theory: the Navier-Stokes equations

∂tρ+∇(̇ρv) = 0

∂tv + (v · ∇)v = −1

ρ
∇P + η∇2

v

The quark-gluon plasma can be described by similar equations.

All microscopic physics reduces to a small number of kinetic coefficients

(shear viscosity η, bulk viscosity, diffussion coeffecients).
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Idea

The idea is to use AdS/CFT correspondence to explore the hydrodynamic regime

of thermal gauge theory.

Finite-T QFT ⇔ black hole with translationally invariant horizon

ds2 =
r2

R2
(−fdt2 + d~x2) +

R2

r2
(
dr2

f
+ r2∂Ω2

5)

horizon: r = r0, ~x arbitrary.

Local thermal equilibrium ⇔ parameters of metric (e.g., r0) slowly vary with

~x.
remember that T ∼ r0/R

2.
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Dynamics of the horizon

unperturbed horizon

r

x

perturbed horizon
T ∼ r0 = r0(~x)

Generalizing black hole thermodynamics M , Q,... to black brane hydrodynamics

T = TH(~x), µ = µ(~x)

While we know S = A/(4G), what is the viscosity from the point of view of gravity?
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Kubo’s formula: physical meaning

Viscosities can be expressed in terms of Green’s functions

Hydrodynamics = effective theory describing response of a system to

external long-distance perturbations.

Example of such perturbation: gravitational waves
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Kubo’s formula: physical meaning

Viscosities can be expressed in terms of Green’s functions

Hydrodynamics = effective theory describing response of a system to

external long-distance perturbations.

Example of such perturbation: gravitational waves

Long-wavelength ravitational waves induce hydrodynamic perturbations
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Kubo’s formula

η = lim
ω→0

1

2ω

∫

dt d~x eiωt〈[Txy(t, ~x), Txy(0, 0)]〉

= lim
ω→0

lim
~q→0

ImGR
xy,xy(ω, ~q)

imaginary part of the retarded correlator of Txy.

Similar relations exist for other kinetic coefficients.
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Gravity counterpart of Kubo’s formula

Klebanov: ImGR is proportional to the absorption cross section by the black hole.

σabs = −16πG

ω
ImGR(ω)

That means viscosity = absorption cross section for low-energy gravitons

η =
σabs(0)

16πG

The absorption cross section can be found classically.

There is a theorem that the cross section at ω = 0 is equal to the area of the
horizon.
But the entropy is also proportional to the area of the horizon

η

s
=

1

4π
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Viscosity/entropy ratio and uncertainty principle

Estimate of viscosity from kinetic theory

η ∼ ρvℓ, s ∼ n =
ρ

m

η

s
∼ mvℓ ∼ ~

mean free path

de Broglie wavelength

Quasiparticles: de Broglie wavelength . mean free path

Therefore η/s & ~

Weakly interacting systems have η/s ≫ ~.

Theories with gravity duals have universal η/s, but we don’t know how to

derive the constancy of η/s without AdS/CFT.

Computing the viscosity of finite-temperature QCD is a challenging problem!
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Further references

Viscosity from AdS/CFT correspondence: DTS, Starinets 0704.0240

Determination of viscosity from RHIC data: Luzum, Romatschke 0804.4015

Attempts to determine viscosity on the lattice: H. Meyer
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