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The Lattice Hadron Frontier



The spectrum of light states

Using the technology we have discussed the (light)
spectrum of mesons and baryons can be determined
precisely.
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Is this everything?
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Resonances and scattering states

We have assumed that all particles in the spectrum are
stable
Many (the majority) are not.
A resonance is a state that forms eg when colliding two
particles and then decays quickly to scattering states.
They respect conservation laws: if isospin of the colliding
particles is 3/2, resonance must have isospin 3/2 (∆
resonance)
Usually indicated by a sharp peak in a cross section as a
function of c.o.m. energy of the collision.
Can lattice qcd distinguish resonances and scattering
states?
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Mesons and Isospin Strange particles Resonances The quark model

Resonances in e
+
e
−

→ hadrons

σee→hadrons(Eee)

Note the more or less sharp
resonances on a comparably flat
“continuum”, coming from
e+e− → qq̄

(We will discuss this in more detail!)

They are (apart from the Z ) all
related to qq̄-bound states.

Zoom into J/Ψ

Note: Here width around 3
MeV completely determined
by detector (ΓJ/Ψ = 87
keV)

F. Krauss IPPP

Introduction to particle physics Lecture 4



Maiani-Testa no-go theorem

In

States

Out

States

Importance sampling Monte-carlo simulations rely on a
path integral with positive definite probability measure:
Euclidean space
Maiani-Testa: scattering matrix (S-matrix) elements
cannot be extracted from infinite-volume Euclidean-space
correlation functions (except at threshold)

Michael 1989 and Maiani, Testa (1990)
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Maiani-Testa (2)

Can understand this since:
Minkowski space: S-matrix elements complex functions
above kinematic thresholds
Euclidean space: S-matrix elements are real for all
kinematics - phase information lost

Lattice simulations with dynamical fermions admit strong
decays eg for light-enough up and down dynamical
quarks ρ→ ππ

τ

τ

τΦ

Φ

Φ

Sinéad Ryan (TCD) 8 / 28



Maiani-Testa (3)

Can the lattice get around the no-go theorem to extract
the masses and widths of such unstable particles?
Yes - use the finite volume.

For elastic two-body resonances (Lüscher): M1M2→ R→M1M2

−→ Volume dependence of energy spectrum

−→ Phase shift in infinite volume

−→ Mass and width of resonance

Note: This is a rapidly developing field. I will add some refs for
recent work or see Lattice Conf talks.
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Particles in a box

Spatial lattice of extent L with periodic boundary
conditions
Allowed momenta are quantized: p = 2π

L (nx,ny,nz) with
ni ∈ {0,1,2, . . .L− 1}
Energy spectrum is a set of discrete levels, classified by
p: Allowed energies of a particle of mass m

E =

s

m2 +

�

2π

L

�2

N2 with N2 = n2
x + n2

y + n2
z

Can make states with zero total momentum from pairs
of hadrons with momenta p,−p.
“Density of states” increases with energy since there are
more ways to make a particular value of N2 e.g. {3,0,0}
and {2,2,1}→ N2 = 9
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Avoided level crossings

Consider a toy model with two states (a resonance and a
two-particle decay mode) in a box of side-length L
Write a mixing hamiltonian:

H =

�

m g
g 4π

L

�

Now the energy eigenvalues of this hamiltonian are given
by

E± =
(m + 4π

L )±
Æ

(m− 4π
L )2 + 4g2

2
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Avoided level crossings
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Avoided level crossings

Ground-state smoothly changes from resonance to
two-particle state
Need a large box. This example, levels cross at
mL = 4π ≈ 12.6
Example: m = 1 GeV state, decaying to two massless
pions - avoided level crossing is at L = 2.5fm.
If the decay product pions have mπ = 300 MeV, this
increases to L = 3.1fm
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Lüscher’s method

Relates the spectrum in a finite box to the scattering
phase shift (and so resonance properties)

Lüscher’s formula

δ(p) = −ϕ(κ) + πn

tanϕ(κ) =
π3/2κ

Z00(1;κ2)

κ =
pL

2π

pn is defined for level n with energy En from the
dispersion relation:

En = 2
Æ

m2 + p2
n
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Lüscher’s method

Z00 is a generalised Zeta function:

Zjs(1,q2) =
∑

n∈Z3

rjYjs(θ,ϕ)

(n2 − q2)s

[Commun.Math.Phys.105:153-188,1986.]

With the phase shift, and for a well-defined resonance,
can fit a Breit-Wigner to extract the resonance width
and mass.

δ(p) ≈ tan−1

 

4p2 + 4m2
π −m2

σ

mσΓσ

!
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Lüscher (3): considering ρ→ ππ

For non-interacting pions, the energy levels of a 2 pion
system in a periodic box of length L are

E = 2
Æ

m2
π + p2 p = 2π|~n|/L

and ~n has components ni ∈ N.
In the interacting case the energy levels are shifted

E = 2
Æ

m2
π + p2 p = (2π/L)q

where q is no longer constrained to orginate from a
quantised momentum mode.
In the presence of the interaction, energy eigenvalues
deviate from the noninteracting case
These deviations contain the information on the
underlying strong interaction - yielding resonance
information via Luscher formulism.
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Schrödinger equation

Exercise: find the phase shift for a 1-d potential

V(x) = V0δ(x− a) + V0δ(x + a)

Now compute the spectrum in a finite box and use
Lüscher’s method to compare the two

L

E
n
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Test: O(4) Sigma model

8 9 10 11 12 13 14 15 16 17 18 19
L

1.0

1.5

2.0

2.5

3.0

E
ne

rg
y

M.Peardon and P. Giudice
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ρ→ ππ

In the real world rho→ ππ is in isospin I = 1
This involves disconnected diagrams which is already a
complication - although in principle doable.
Start with an “easier” system, I = 2ππ and test methods
there.
I = 1 case is now studied (distillation has helped a lot here)
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I=2 ππ scattering
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Orange boxes: possible ππ∗ scattering states
Dashed lines: non-interacting pion pairs
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I=2 ππ scattering
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Non-resonant scattering in S-wave - compares well with
experimental data
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The inelastic threshold

Lüscher’s method is based on elastic scattering.
Since mπ is small, most resonances are above this
threshold
Not clear how to proceed - perhaps a histogram approach
will help us gain some expertise
It will be crucial to ensure we have a comprehensive
basis of operators that create multi-hadron states.
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Summary: Measuring energies and widths

Requirements for measuring decay widths in QCD

Light, dynamical quarks
Accurate spectroscopy in appropriate channels
Simulations in multiple box sizes (and/or momenta)
Access to excited states in these channels
Ability to create multi-hadron states

Next Generation lattice calculations
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A different frontier: finite temperature
spectroscopy
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Spectroscopy at finite temperature

You already learned a lot about finite temp LQCD.
States made from heavy quarks are expected to act as a
probe of dynamics of the QGP
There are interesting results coming from RHIC and CERN
for the melting and suppresion of such states.
Can lattice say anything? It is a challenge!

Remember, the thermal correlator is

C(τ) ∼
∫ ∞

0
dωρ(ω,T)K(ω, τ,T), (p = 0).

C(τ) sampled discretely but ρ has values for continuous ω
An ill-posed problem!
Maximum entropy methods (MEM) can be used but can be
unstable and model-dependent
New ideas needed!
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Effective masses at finite T
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Note P wave behaviour at T > Tc

Appears to rule out pure exponential decay at high T for P
waves.
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Results: maximum entropy analysis
ηb MEM
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melting or suppression?
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Executive Summary

There is much that I did not cover in these lectures
I chose to focus on methods, new and old, for the “basic”
building blocks of spectroscopy
... and described their successful applications as well as
some pitfalls
Lattice hadron spectroscopy is moving rapidly at the
moment as new techniques emerge
There will be lots more experimental data in the near
future and to keep pace will be challenging

Thanks for listening and enjoy the rest of the school!
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