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Plan

@ A look at the spectrum of single-particle states
@ Resonances
@ Two particles in a box

@ Accessing resonance information from finite volume
calculations

@ Toy models

@ Recent simulations

@ Spectrosopy at finite temperature
@ Summary
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The Lattice Hadron Frontier



The spectrum of light states

@ Using the technology we have discussed the (light)
spectrum of mesons and baryons can be determined
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Is this everything?
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Resonances and scattering states

@ We have assumed that all particles in the spectrum are
stable

@ Many (the majority) are not.

@ A resonance is a state that forms eg when colliding two
particles and then decays quickly to scattering states.

@ They respect conservation laws: if isospin of the colliding
particles is 3/2, resonance must have isospin 3/2 (A
resonance)

@ Usually indicated by a sharp peak in a cross section as a
function of c.o.m. energy of the collision.

@ Can lattice qcd distinguish resonances and scattering
states?
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Resonances
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Maiani-Testa no-go theorem

In Out
States States

@ Importance sampling Monte-carlo simulations rely on a
path integral with positive definite probability measure:
Euclidean space

@ Maiani-Testa: scattering matrix (S-matrix) elements
cannot be extracted from infinite-volume Euclidean-space
correlation functions (except at threshold)
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Maiani-Testa (2)

@ Can understand this since:

e Minkowski space: S-matrix elements complex functions
above kinematic thresholds

@ Euclidean space: S-matrix elements are real for all
kinematics - phase information lost

@ Lattice simulations with dynamical fermions admit strong
decays eg for light-enough up and down dynamical
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Maiani-Testa (3)

@ Can the lattice get around the no-go theorem to extract
the masses and widths of such unstable particles?

@ Yes - use the finite volume.

For elastic two-body resonances (LUscher):
— Volume dependence of energy spectrum

— Phase shift in infinite volume

— Mass and width of resonance

Note: This is a rapidly developing field. | will add some refs for
recent work or see Lattice Conf talks.
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Particles in a box

@ Spatial lattice of extent L with periodic boundary
conditions

@ Allowed momenta are quantized: p = ZL—”(nX, ny, nz) with
nie{0,1,2,...L—-1}

@ Energy spectrum is a set of discrete levels, classified by
p: Allowed energies of a particle of mass m

2m ? : 2 2., .2, .2
E=4/m?+|— | N2 withN°=n°+n’+n
L X y z

@ Can make states with zero total momentum from pairs
of hadrons with momenta p, —p.

@ “Density of states” increases with energy since there are
more ways to make a particular value of N2 e.g. {3,0,0}
and {2,2,1} - N2=9
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Avoided level crossings

@ Consider a toy model with two states (a resonance and a
two-particle decay mode) in a box of side-length L

@ Write a mixing hamiltonian:

m g
H:
(9 %)

@ Now the energy eigenvalues of this hamiltonian are given
by

_(m+ P E/(m =) +4g?
B 2

=5
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Avoided level crossings

E/m
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Avoided level crossings

@ Ground-state smoothly changes from resonance to
two-particle state

@ Need a large box. This example, levels cross at
mL=4n~12.6

@ Example: m =1 GeV state, decaying to two massless
pions - avoided level crossing is at L = 2.5fm.

@ If the decay product pions have m; = 300 MeV, this
increases to L = 3.1fm
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Luscher’'s method

@ Relates the spectrum in a finite box to the scattering
phase shift (and so resonance properties)

LUscher’s formula

6(p) = —¢(k) +mn
32k
tan¢(k) = Z—oo(l;Kz)
pL
K= —
2T

@ p, is defined for level n with energy E, from the
dispersion relation:

E, :2,/m2+p,27
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Luscher’'s method

@ Zyo is a generalised Zeta function:
rlYjs(6, ¢)
Zis(1,9%) = — e
» neXZ; (n2 - q2)s

[Commun.Math.Phys.105:153-188,1986.]

@ With the phase shift, and for a well-defined resonance,
can fit a Breit-Wigner to extract the resonance width
and mass.

4p? +4m?2 —m?
melo

5(p) ~ tan™? (
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LGscher (3): considering p — mtmt

@ For non-interacting pions, the energy levels of a 2 pion
system in a periodic box of length L are

E=2,/m2+p? p=2m|Al/L

and 7 has components n; € N.
@ In the interacting case the energy levels are shifted

E=2,/m2+p? p=(2m/L)q

where g is no longer constrained to orginate from a
quantised momentum mode.

@ In the presence of the interaction, energy eigenvalues
deviate from the noninteracting case

@ These deviations contain the information on the
underlying strong interaction - yielding resonance
information via Luscher formulism.
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Schrodinger equation

Exercise: find the phase shift for a 1-d potential
V(x) = Vodé(x —a)+ Vod(x +a)

@ Now compute the spectrum in a finite box and use
LUscher’s method to compare the two
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Test: O(4) Sigma model
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o — MT

@ In the real world rho — mm is in isospin I =1

@ This involves disconnected diagrams which is already a
complication - although in principle doable.

@ Start with an “easier” system, | = 2ntmt and test methods
there.
@ /| =1 case is now studied (distillation has helped a lot here)
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|=2 mm scattering
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@ Resolve shifts in masses away from non-interacting values
@ Orange boxes: possible mm* scattering states
@ Dashed lines: non-interacting pion pairs
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|=2 mm scattering
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@ Non-resonant scattering in S-wave - compares well with
experimental data
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The inelastic threshold

@ LUscher’'s method is based on elastic scattering.

@ Since my is small, most resonances are above this
threshold

@ Not clear how to proceed - perhaps a histogram approach
will help us gain some expertise

@ It will be crucial to ensure we have a comprehensive
basis of operators that create multi-hadron states.
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Summary: Measuring energies and widths

Requirements for measuring decay widths in QCD
@ Light, dynamical quarks
@ Accurate spectroscopy in appropriate channels
@ Simulations in multiple box sizes (and/or momenta)
@ Access to excited states in these channels

@ Ability to create multi-hadron states

Next Generation lattice calculations )
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A different frontier: finite temperature
spectroscopy
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Spectroscopy at finite temperature

@ You already learned a lot about finite temp LQCD.

@ States made from heavy quarks are expected to act as a
probe of dynamics of the QGP

@ There are interesting results coming from RHIC and CERN
for the melting and suppresion of such states.

@ Can lattice say anything? It is a challenge!

@ Remember, the thermal correlator is

C(1) ~ dwp(w, T)K(w, T,T), (p=0).
@ C(T1) sampled disc?etely but p has values for continuous w
@ An ill-posed problem!

@ Maximum entropy methods (MEM) can be used but can be
unstable and model-dependent

@ New ideas needed!
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Effective masses at finite T
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@ Anisotropic lattices § =6, Nf =2, as = 0.15fm
@ Note P wave behaviour at T > T,

@ Appears to rule out pure exponential decay at high T for P
waves.
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Results: maximum entropy analysis
MEM
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@ 1S survives to highest T examined.

@ excited states not discernable at 1.4 <T7/T.<51.68 =
melting or suppression?
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Executive Summary

@ There is much that | did not cover in these lectures

@ | chose to focus on methods, new and old, for the “basic”
building blocks of spectroscopy

® ... and described their successful applications as well as
some pitfalls

@ Lattice hadron spectroscopy is moving rapidly at the
moment as new technigues emerge

@ There will be lots more experimental data in the near
future and to keep pace will be challenging

Thanks for listening and enjoy the rest of the school! J
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