Lattice Methods for Hadron Spectroscopy: building operators and extracting energies

Sinéad Ryan

School of Mathematics, Trinity College Dublin, Ireland

INT, Seattle, 9th August 2012

Plan

Operator construction

- types of operator
- what makes a good operator?
- operators on the lattice and the continuum

• Fitting correlator data

- single correlators and single exponentials
- general remarks on fitting and errors
- extracting excited states

Anisotropic lattices

Systematic errors

Interpolating Operators

The interpolating operators

- We have spent some time looking at methods for quark propagation
- What about the operators $\mathcal{O} = \overline{\Psi}_{i\alpha}(\vec{x}, t)\Gamma_{\alpha\beta}\Psi_{i\beta}(\vec{x}, t)$?
- The simplest objects are colour-singlet local fermion bilinears:

$$\mathcal{O}_{\pi} = \bar{d}\gamma_5 u, \ \mathcal{O}_{\rho} = \bar{d}\gamma_i u, \ \mathcal{O}_{N} = \epsilon^{abc} \left(u^a C \gamma_5 d^b \right) u^c,$$

$$\mathcal{O}_{\Delta} = \epsilon^{abc} \left(u^a C \gamma_n u d^b \right) u^c$$

or more correctly!

 $\mathcal{O}_{A_1} = \bar{d}\gamma_5 u, \ \mathcal{O}_{T_1} = \bar{d}\gamma_i u, \ \mathcal{O}_{G_1} = \epsilon^{abc} \left(u^a C \gamma_5 d^b \right) u^c,$

$$\mathcal{O}_{H} = \epsilon^{abc} \left(u^{a} C \gamma_{n} u d^{b} \right) u^{c}$$

Access to $J^{PC} = 0^{-+}, 0^{++}, 1^{--}, 1^{++}, 1^{+-}, 1/2, 3/2$

Extended operators

- We would like to access states with J > 1
- Would like many more operators that all transform irreducibly under some irrep enabling variational analysis.
- Lattice operators are bilinears with path-ordered products between the quark and anti-quark field; different offsets, connecting paths and spin contractions give different projections into lattice irreps.

Meson operators examples

Extended baryon operators

The same idea for baryons gives prototype extended operators

With thanks: 0810.1469

- We can make arbitrarily complicated operators in this way
- An early success was glueball calculations

Glueballs

- QCD nonAbelian ⇒ allows bound states of glue
- Candidates observed experimentally: $f_0(1370), f_0(1500), f_0(2220)$
- Glueballs can be calculated in lattice QCD
- The interpolating fields are purely gluonic, built from Wilson loops

- What makes a good operator?
- An operator of definite momentum that transforms under a lattice irrep
- An operator that has strong overlap with the (continuum) state you are interested in.
- An operator is not noisy ie that produces an acceptable correlator
- Note that smearing and distillation are rotationally symmetric operations and do not change the quantum numbers.

But recall from earlier that subduction leads to

Lattice irrep, <mark>A</mark>	Dimension	Continuum irreps, <mark>J</mark>
A1	1	0, 4,
A ₂	1	3, 5,
E	2	2, 4,
T_1	3	1, 3,
<i>T</i> ₂	4	2, 3,
G 1	3	1/2, 7/2,
G ₂	3	5/2, 7/2,
H	4	3/2, 5/2,

• So a correlator $C(t) = \langle 0|\phi(t)\phi^{\dagger}(0)|0 \rangle$ contains in principle information about all (continuum) spin states in Λ^{PC} .

Operator basis — derivative construction

- A closer link to (or "memory" of) the continuum would be good
- There are different approaches to optimise lattice operators. This is one.

Operator basis — derivative construction

- A closer link to (or "memory" of) the continuum would be good
- There are different approaches to optimise lattice operators. This is one.
- Start with continuum operators, built from n derivatives:

$$\Phi = \bar{\psi} \, \Gamma \left(D_{i_1} D_{i_2} D_{i_3} \dots D_{i_n} \right) \psi$$

- Construct irreps of SO(3), then subduce these representations to O_h
- Now replace the derivatives with lattice finite differences:

$$D_j\psi(x) \rightarrow \frac{1}{a} \left(U_j(x)\psi(x+\hat{j}) - U_j^{\dagger}(x-\hat{j})\psi(x-\hat{j}) \right)$$

 On a discrete lattice covariant derivative become finite displacements of quark fields connected by links

arXiV:0707.4162

Example: $J^{PC} = 2^{++}$ meson creation operator

 Trying to gain more information to discriminate spins. Consider continuum operator that creates a 2⁺⁺ meson:

$$\Phi_{ij} = \bar{\psi} \left(\gamma_i D_j + \gamma_j D_i - \frac{2}{3} \delta_{ij} \gamma \cdot D \right) \psi$$

- Lattice: Substitute gauge-covariant lattice finite-difference D_{latt} for D
- A reducible representation:

$$\Phi^{I_2} = \{\Phi_{12}, \Phi_{23}, \Phi_{31}\}$$

$$\Phi^{E} = \left\{ \frac{1}{\sqrt{2}} (\Phi_{11} - \Phi_{22}), \frac{1}{\sqrt{6}} (\Phi_{11} + \Phi_{22} - 2\Phi_{33}) \right\}$$

Look for signature of continuum symmetry:

$$\mathcal{Z} = \langle 0 | \Phi^{(T_2)} | 2^{++(T_2)} \rangle = \langle 0 | \Phi^{(E)} | 2^{++(E)} \rangle$$

up to rotation-breaking effects

Sinéad Ryan (TCD)

This idea appears to work well

Extracting Energies aka The Dark Art of Fitting Data

Hadron energies determined from 2-pt correlation functions. Begin with a simple correlator

$$C(t,\mathbf{p}) = \sum_{\mathbf{x}} e^{i\mathbf{p}\cdot\mathbf{x}} \langle \mathcal{O}(\mathbf{x},t) \mathcal{O}^{\dagger}(\mathbf{0},t) \rangle.$$

where \mathcal{O} is a single interpolating operator for the hadron of interest. Recall that by inserting a complete set of energy eigenstates $|n\rangle$ and assuming a discrete energy spectrum as $t \to \infty$ and for hadrons at rest

$$C(t) \rightarrow \frac{1}{2E_n} |\langle 0|\mathcal{O}|n_o\rangle|^2 e^{-E_0 t},$$

where n_0 is the lightest state that couples to O and E_0 is its energy.

The effective mass

A useful quantity is the effective mass

$$a_t M_{\text{eff}}(t) = \ln\left(rac{C(t)}{C(t+1)}
ight)$$

- A useful quantity to see ground state dominance: m_{eff} → constant - the plateau
- The onset and length of the plateau depends on ${\cal O}$
- The hadron mass is extracted from a fit to correlator data in the plateau region
- statistical errors grow exponentially with *t*, except for the pion

At large times, effective mass converges to the ground state energy - see a plateau in the effective mass plot as a function of time.

An effective mass plot (2)

At large times, effective mass converges to the ground state energy - see a plateau in the effective mass plot as a function of time.

- The correlator data is fitted to the expected $C(t) = Ae^{-E_0 t}$ form. Eg using a χ^2 minimisation algorithm with A and E_0 free parameters and for some "reasonable" choice of time range.
- Errors are estimated by bootstrap or jackknife.

Resampling techniques

- Two methods: Bootstrap and Jackknife
 - Jackknife from Quenouille (1956) and Tukey (1957)
 - Consider N measurements, remove the first leaving a jackknifed set of N 1 "resampled" measurements.
 - Repeat analysis (fits) on this reduced set, giving parameters $\alpha_{j(1)}$.
 - Repeat resampling, throwing out 2nd measurement etc to get α_i, i = 1,..., N.

Then

$$\sigma_j^2 = \frac{(N-1)}{N} \sum_{i=1}^N (\alpha_{j(i)} - \alpha)^2$$

John Tukey: also gave us FFT and box plots!

where α is the result from fitting the full dataset.

Sinéad Ryan (TCD)

Resampling techniques (2): bootstrap

Bootstrap from Efron (late '70s). See Numerical Recipes and Efron's book An Introduction to the Bootstrap

- A resampling technique.
- Create a new dataset by drawing *N* datapoints with replacement from the original dataset, size *N*.
- Replacement means you do not get the original set each time - but a set with a random fraction of the original points.

- **Bradley Efron**
- As for jackknife repeat analysis on each new set.

Numerical Recipes in C says

Offered the choice between mastery of a five-foot shelf of analytical statistics books and middling ability at performing statistical Monte Carlo simulations, we would surely choose to have the latter skill.

How to choose a fit range

When fitting the correlator data we are looking for:

- a good $\chi^2/N_{d.o.f.}$
- a "reasonable" range in t
- a "reasonable" fit error
- a fit that is stable with respect to the choice of t. In particular with respect to small changes in t_{min} the minimum timeslice included in the fit.

Common quantities to look at

- a sliding window: plot the fitted mass as a function of t_{min}
- a fit-histogram: plot $QN_{dof}/(\Delta m)$ for each (t_{min}, t_{max}) and $Q = \Gamma[(interval N_{param})/2, \chi^2/2]$. Choose the (t_{min}, t_{max}) that maximises this quantity.
- A good idea to check your fit range looks reasonable on the effective mass plot

Effective mass plots

• $L/a = 48, a = 0.085 fm, m_{\pi} = 190 MeV$

The effective mass (again)

At large times, effective mass converges to the ground state energy - see a plateau in the effective mass plot as a function of time.

- How can we determine excited state energies?
- First guess: fit to 2 exponentials $C(t) = Ae^{-E_0t} + Be^{-E_1t}$, where A, B, E_0, E_1 are fit parameters.
- Since the regions where E₀ and E₁ are relevant are different: fit for E₀ and freeze its value in a fit for E₁.
- Notoriously unstable fits.
- Different approach needed

Extracting excited state energies

There are a number of ideas on the market

- Bayesian analysis
- χ²-histogram analysis
- Variational analysis
- :

Variational analysis

- Consider a basis of operators O_i, i = 1, ..., N in a given lattice irrep.
- Form a matrix of correlators

 $C_{ij}(t) = \langle \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \rangle$

• Treat as a generalised eigenvalue problem (GEVP):

 $C(t)v_n(t,t_0) = \lambda_n(t,t_0)C(t_0)v_n(t,t_0)$

where t_0 is a refence timeslice (you choose)

- The vectors v_n diagonalise C(t)
- For finite *N* one can prove

[Lüscher & Wolff 1990]

$$E_n^{\text{eff}}(t,t_0) = -\partial_t \log \lambda_n(t,t_0) = E_n + O(e^{-\Delta E_n t})$$

Fitting principal correlators

• Typical fits for a set of excited states in the T_1^{--} irrep in charmonium (26 operators!) are

• plotting $\lambda_n(t) \cdot e^{m_n(t_1-t_0)}$ with $t_0 = 15$.

Expect a plateau at 1.0 if single-exp dominates.

Improving resolution: anisotropic lattices

Improving resolution - the anisotropic lattice

- If we can build a good basis of operators, we can extract energies of low-lying states from the correlator at short distances.
- The lattice correlator can only be sampled at discrete values of t and signal falls quickly for a massive state, while the statistical noise does not. Reducing the lattice spacing is extremely computationally expensive
- Mitigate this cost by reducing just the temporal lattice spacing, keeping the spatial mesh coarser; the anisotropic lattice.
- Unfortunately this reduces the symmetries of the theory from the hypercubic to the cubic point group. The dimension four operators on the lattice now split;

$$\begin{array}{rcl} \text{Tr } F_{\mu\nu}F_{\mu\nu} & \rightarrow & \left\{ \text{Tr } F_{ij}F_{ij}, \text{Tr } F_{i0}F_{i0} \right\} \\ & \bar{\psi}\gamma_{\mu}D_{\mu}\psi & \rightarrow & \left\{ \bar{\psi}\gamma_{i}D_{i}\psi, \bar{\psi}\gamma_{0}D_{0}\psi \right\} \end{array}$$

On 3 ⊕ 1 anisotropic lattices, spatial symmetries unchanged.

QCD and the anisotropic lattice

- The space-time symmetry breaking in QCD introduces extra bare parameters in the lagrangian, that must be tuned to restore Euclidean rotational invariance in the continuum limit.
- For QCD, both the quarks and gluons must "feel" the same anisotropy; this requires tuning *a priori*.
- Two physical conditions are satisfied simultaneously, derived from the "sideways" potential and the pion dispersion relation.

Systematic Uncertainties

lattice artefacts

 $\left. \frac{m_N}{m_\Omega} \right|_{lat} = \left. \frac{m_N}{m_\Omega} \right|_{cont} + \mathcal{O}(a^p), \ p \ge 1$

requires extrapolation to the continuum limit, $a \rightarrow 0$

finite volume effects

- Energy measurements can be distorted by the finite box
- Rule of thumb: $m_{\pi}L > 3$ ok for many things ...

Unphysically heavy pions

- Simulations at the physical point have started but most calculations rely on chiral extrapolation to reach physical m_u, m_d
- Use Chiral Perturbation Theory (ChPT) to guide the extrapolations. Are chiral corrections reliably described by ChPT?

Fitting

• Uncertainties from the choice of fit range, *t*₀ etc.

Summary

- Constructing operators to have good overlap with states is important
 - Extended operators give access to J > 1 states and allow variational analysis
 - Operators subduced from the continuum retain a memory of continuum spin see this in the operator overlaps
 - Other methods on the market also and it is early days in this sort of spectroscopy
- Fitting data requires an understanding of the underlying physics. No rules for picking a fit range but there are guidelines ...
- Anisotropic lattices give extra resolution and have been successfully used in spectroscopy
- Systematic errors should be dealt with (or at least acknowledged)
 - Precision spectroscopy of ground states usually includes continuum and chiral extrapolations in large volumes
 - Spectroscopy for higher-lying states not as mature. There are precision calculations at finite lattice spacing and unphysical quark mass.