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Interpolating Operators



The interpolating operators

We have spent some time looking at methods for quark
propagation
What about the operators O = Ψ̄iα(~x, t)ΓαβΨiβ (~x, t)?
The simplest objects are colour-singlet local fermion bilinears:

Oπ = d̄γ5u, Oρ = d̄γiu, ON = εabc
�

uaCγ5db
�

uc,

O∆ = εabc
�

uaCγnudb
�

uc

or more correctly!

OA1 = d̄γ5u, OT1 = d̄γiu, OG1 = εabc
�

uaCγ5db
�

uc,

OH = εabc
�

uaCγnudb
�

uc

Access to JPC = 0−+,0++,1−−,1++,1+−,1/2,3/2
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Extended operators

We would like to access states with J > 1
Would like many more operators that all transform irreducibly
under some irrep enabling variational analysis.
Lattice operators are bilinears with path-ordered products
between the quark and anti-quark field; different offsets,
connecting paths and spin contractions give different
projections into lattice irreps.

Meson operators examples

Oαβ = Oi
αβ

= Oij
αβ =

∑

x ψ̄α(x)ψβ(x)
∑

x ψ̄α(x)Ui(x)ψβ(x + ι̂)
∑

x ψ̄α(x)Ui(x)Uj(x + ι̂)ψβ(x + ι̂+ ȷ̂)
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Extended baryon operators

The same idea for baryons gives prototype extended operators

���uuu
single-
site

muu u
singly-

displaced

eu uu
triply-

displaced

With thanks: 0810.1469

We can make arbitrarily complicated operators in this way
An early success was glueball calculations
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Glueballs
QCD nonAbelian ⇒ allows bound states of glue
Candidates observed experimentally:
f0(1370), f0(1500), f0(2220)
Glueballs can be calculated in lattice QCD
The interpolating fields are purely gluonic, built from Wilson
loops
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Good operators

What makes a good operator?
An operator of definite momentum that transforms under a
lattice irrep
An operator that has strong overlap with the (continuum) state
you are interested in.
An operator is not noisy ie that produces an acceptable
correlator
Note that smearing and distillation are rotationally symmetric
operations and do not change the quantum numbers.
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But recall from earlier that subduction leads to

Lattice irrep, Λ Dimension Continuum irreps, J
A1 1 0, 4, ...
A2 1 3, 5, ...
E 2 2, 4, ...
T1 3 1, 3, ...
T2 4 2, 3, ...
G1 3 1/2, 7/2, ...
G2 3 5/2, 7/2, ...
H 4 3/2, 5/2, ...

So a correlator C(t) = 〈0|ϕ(t)ϕ†(0)|0〉 contains in principle
information about all (continuum) spin states in ΛPC.



Operator basis — derivative construction

A closer link to (or “memory” of) the continuum would be good
There are different approaches to optimise lattice operators.
This is one.

Start with continuum operators, built from n derivatives:

Φ = ψ̄ Γ
�

Di1Di2Di3 . . .Din
�

ψ

Construct irreps of SO(3), then subduce these representations to
Oh

Now replace the derivatives with lattice finite differences:

Djψ(x)→
1

a

�

Uj(x)ψ(x + ȷ̂)−U†
j (x− ȷ̂)ψ(x− ȷ̂)

�

On a discrete lattice covariant derivative become finite
displacements of quark fields connected by links

arXiV:0707.4162
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Example: JPC = 2++ meson creation operator

Trying to gain more information to discriminate spins. Consider
continuum operator that creates a 2++ meson:

Φij = ψ̄

�

γiDj + γjDi −
2

3
δijγ ·D

�

ψ

Lattice: Substitute gauge-covariant lattice finite-difference Dlatt
for D

A reducible representation:

ΦT2 = {Φ12,Φ23,Φ31}

ΦE =

¨

1
p

2
(Φ11 −Φ22),

1
p

6
(Φ11 + Φ22 − 2Φ33)

«

Look for signature of continuum symmetry:

Z = 〈0|Φ(T2)|2++(T2)〉 = 〈0|Φ(E)|2++(E)〉

up to rotation-breaking effects
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This idea appears to work well
arXiv:1204.5425
Spin-3 identification
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Extracting Energies
aka

The Dark Art of Fitting Data



Hadron masses

Hadron energies determined from 2-pt correlation functions.
Begin with a simple correlator

C(t,p) =
∑

x
eip·x〈O(x, t)O†(0, t)〉.

where O is a single interpolating operator for the hadron of interest.
Recall that by inserting a complete set of energy eigenstates |n〉 and
assuming a discrete energy spectrum as t→∞ and for hadrons at
rest

C(t)→
1

2En
|〈0|O|no〉|2e−E0t,

where n0 is the lightest state that couples to O and E0 is its energy.
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The effective mass

A useful quantity is the effective mass

atMeff(t) = ln

�

C(t)

C(t + 1)

�

A useful quantity to see ground state dominance: meff →
constant - the plateau
The onset and length of the plateau depends on O
The hadron mass is extracted from a fit to correlator data in the
plateau region
statistical errors grow exponentially with t, except for the pion
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An effective mass plot

At large times, effective mass converges to the ground state energy
- see a plateau in the effective mass plot as a function of time.
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An effective mass plot (2)

At large times, effective mass converges to the ground state energy
- see a plateau in the effective mass plot as a function of time.
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-mt

Plateau

The correlator data is fitted to the expected C(t) = Ae−E0t form.
Eg using a χ2 minimisation algorithm with A and E0 free
parameters and for some “reasonable” choice of time range.
Errors are estimated by bootstrap or jackknife.
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Resampling techniques

Two methods: Bootstrap and Jackknife

Jackknife from Quenouille (1956) and
Tukey (1957)
Consider N measurements, remove the
first leaving a jackknifed set of N− 1
“resampled” measurements.
Repeat analysis (fits) on this reduced set,
giving parameters αJ(1) .
Repeat resampling, throwing out 2nd
measurement etc to get αJi , i = 1, . . . ,N.
Then

σ2
J

=
(N− 1)

N

N
∑

i=1

(αJ(i) − α)2

where α is the result from fitting the full
dataset.

John Tukey: also
gave us FFT and

box plots!
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Resampling techniques (2): bootstrap

Bootstrap from Efron (late ’70s). See Numerical Recipes and Efron’s
book An Introduction to the Bootstrap

A resampling technique.
Create a new dataset by drawing N datapoints
with replacement from the original dataset, size N.
Replacement means you do not get the original
set each time - but a set with a random fraction of
the original points.
As for jackknife repeat analysis on each new set.

Bradley Efron

Numerical Recipes in C says
Offered the choice between mastery of a five-foot shelf of analytical
statistics books and middling ability at performing statistical Monte
Carlo simulations, we would surely choose to have the latter skill.
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How to choose a fit range

When fitting the correlator data we are looking for:

a good χ2/Nd.o.f .

a “reasonable” range in t

a “reasonable” fit error
a fit that is stable with respect to the choice of t. In particular
with respect to small changes in tmin the minimum timeslice
included in the fit.

Common quantities to look at
a sliding window: plot the fitted mass as a function of tmin

a fit-histogram: plot QNdof /(∆m) for each (tmin, tmax) and
Q = Γ[(interval−Nparam)/2, χ2/2]. Choose the (tmin, tmax) that
maximises this quantity.
A good idea to check your fit range looks reasonable on the
effective mass plot
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Effective mass plots

BMW Collaboration (Dürr et al) 0906.3599v1
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The effective mass (again)
At large times, effective mass converges to the ground state energy
- see a plateau in the effective mass plot as a function of time.
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excited states dominating here

ground state dominating here

How can we determine excited state energies?
First guess: fit to 2 exponentials - C(t) = Ae−E0t + Be−E1t, where
A,B,E0,E1 are fit parameters.
Since the regions where E0 and E1 are relevant are different: fit
for E0 and freeze its value in a fit for E1.
Notoriously unstable fits.
Different approach needed
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Extracting excited state energies

There are a number of ideas on the market
Bayesian analysis
χ2-histogram analysis
Variational analysis
...
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Variational analysis

Consider a basis of operators Oi, i = 1, . . . ,N in a given lattice
irrep.
Form a matrix of correlators

Cij(t) = 〈Oi(t)O†
j (0)〉

Treat as a generalised eigenvalue problem (GEVP):

C(t)vn(t, t0) = λn(t, t0)C(t0)vn(t, t0)

where t0 is a refence timeslice (you choose)
The vectors vn diagonalise C(t)

For finite N one can prove [Lüscher & Wolff 1990]

Eeff
n

(t, t0) = −∂t logλn(t, t0) = En + O(e−∆Ent)
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Fitting principal correlators

Typical fits for a set of excited states in the T−−1 irrep in
charmonium (26 operators!) are
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plotting λn(t) · emn(t1−t0) with t0 = 15.
Expect a plateau at 1.0 if single-exp dominates.
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Improving resolution: anisotropic lattices



Improving resolution - the anisotropic lattice

If we can build a good basis of operators, we can extract
energies of low-lying states from the correlator at short
distances.
The lattice correlator can only be sampled at discrete values of t
and signal falls quickly for a massive state, while the statistical
noise does not. Reducing the lattice spacing is extremely
computationally expensive
Mitigate this cost by reducing just the temporal lattice spacing,
keeping the spatial mesh coarser; the anisotropic lattice.
Unfortunately this reduces the symmetries of the theory from
the hypercubic to the cubic point group. The dimension four
operators on the lattice now split;

Tr FμνFμν →
¦

Tr FijFij,Tr Fi0Fi0
©

ψ̄γμDμψ →
¦

ψ̄γiDiψ, ψ̄γ0D0ψ
©

On 3⊕ 1 anisotropic lattices, spatial symmetries unchanged.
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QCD and the anisotropic lattice

The space-time symmetry breaking in QCD introduces extra
bare parameters in the lagrangian, that must be tuned to
restore Euclidean rotational invariance in the continuum limit.
For QCD, both the quarks and gluons must “feel” the same
anisotropy; this requires tuning a priori.
Two physical conditions are satisfied simultaneously, derived
from the “sideways” potential and the pion dispersion relation.
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Systematic Uncertainties



lattice artefacts

mN

mΩ

�

�

�

�

lat
=

mN

mΩ

�

�

�

�

cont
+O(ap), p ≥ 1

requires extrapolation to the continuum limit, a→ 0

finite volume effects

Energy measurements can be distorted by the finite box
Rule of thumb: mπL > 3 ok for many things ...

Unphysically heavy pions

Simulations at the physical point have started but most
calculations rely on chiral extrapolation to reach physical mu,md

Use Chiral Perturbation Theory (ChPT) to guide the
extrapolations. Are chiral corrections reliably described by
ChPT?

Fitting

Uncertainties from the choice of fit range, t0 etc.



Summary

Constructing operators to have good overlap with states is
important

Extended operators give access to J > 1 states and allow
variational analysis
Operators subduced from the continuum retain a memory of
continuum spin - see this in the operator overlaps
Other methods on the market also and it is early days in this sort of
spectroscopy

Fitting data requires an understanding of the underlying physics.
No rules for picking a fit range but there are guidelines ...
Anisotropic lattices give extra resolution and have been
successfully used in spectroscopy
Systematic errors should be dealt with (or at least
acknowledged)

Precision spectroscopy of ground states usually includes continuum
and chiral extrapolations in large volumes
Spectroscopy for higher-lying states not as mature. There are
precision calculations at finite lattice spacing and unphysical quark
mass.
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