Lattice Methods for Hadron Spectroscopy: lattice symmetries and classifying states

Sinéad Ryan

School of Mathematics, Trinity College Dublin, Ireland

INT, Seattle, 8th August 2012

- A short recap of all-to-all propagators
- A little more on distillation details
- Classifying states by symmetry

recap from yesterday

- Calculating quark propagators is difficult. Solve $M\Psi(y) = \eta(x)$ for M^{-1} where M is a very large matrix.
- Techniques to calculate all to all propagators exist.

recap from yesterday

- Calculating quark propagators is difficult. Solve $M\Psi(y) = \eta(x)$ for M^{-1} where M is a very large matrix.
- Techniques to calculate all to all propagators exist.

Stochastic estimation

• Stochastic estimation: fill the source vector η with noise. Then 1 inversion gives a stochastic estimate of M^{-1}

$$M^{-1} = \langle \langle \psi_{[r]} \otimes \eta_{[r]}^{\dagger} \rangle \rangle = \frac{1}{N_r} \sum_r \Psi_{[r]}(y) \eta_{[r]}^{\dagger}(x), \ N_r \to \infty$$

- Repeated for N_r noise vectors to reduce the error on variance.
- Improve this statistical reduction by dilution ⇒ for 1 noise vector do more inversions but gain in an average over diluted vectors.
- Can combine exact and stochastic estimations.

Noise and dilution

- pseudoscalar (pion) propagator on $12^3 \times 24$ lattice
- black: 24 noise sources, no dilution: 24 inversions of M
- red: single noise source + time dilution: 24 inversions of M

Distillation

- Distillation: a redefinition of smearing as explicitly a low-rank operator.
- Effect: project out eigenmodes that do not contribute to hadronic physics.
- In the low-rank space M^{-1} can be calculated exactly.

• Consider an isovector meson two-point function:

 $C_{\mathcal{M}}(t_1-t_0) = \langle \langle \bar{u}(t_1) \Box_{t_1} \Gamma_{t_1} \Box_{t_1} d(t_1) \quad \bar{d}(t_0) \Box_{t_0} \Gamma_{t_0} \Box_{t_0} u(t_0) \rangle \rangle$

Integrating over quark fields yields

 $C_{M}(t_{1}-t_{0}) =$ $\langle \text{Tr}_{\{\underline{s},\sigma,c\}} \left(\Box_{t_{1}} \Gamma_{t_{1}} \Box_{t_{1}} M^{-1}(t_{1},t_{0}) \Box_{t_{0}} \Gamma_{t_{0}} \Box_{t_{0}} M^{-1}(t_{0},t_{1}) \right) \rangle$

Substituting the low-rank distillation operator
reduces this to a
much smaller trace:

 $C_{M}(t_{1}-t_{0}) = \langle \text{Tr}_{\{\sigma, \mathcal{D}\}} \left[\Phi(t_{1})\tau(t_{1}, t_{0})\Phi(t_{0})\tau(t_{0}, t_{1}) \right] \rangle$

• $\Phi_{\beta,b}^{\alpha,a}$ and $\tau_{\beta,b}^{\alpha,a}$ are $N_{\mathcal{D}} \times N_{\sigma}$ square matrices.

 $\Phi(t) = V^{\dagger}(t) \Gamma_t V(t)$

$$\tau(t,t') = V^{\dagger}(t)M^{-1}(t,t')V(t')$$

The "perambulator"

Meson two-point function

More diagrams: baryons, multihadrons, disconnected

Good news: precision spectroscopy (2)

- Correlation functions for $\bar{\psi}\gamma_5\psi$ operator, with different flavour content (*s*, *l*).
- 16³ lattice (about 2 fm).

[arXiv:1102.4299]

Stochastic estimation and distillation

• Construct a **stochastic identity matrix** in \mathcal{D} : introduce a vector η with $N_{\mathcal{D}}$ elements and with $E[\eta_i] = 0$ and $E[\eta_i \eta_j^*] = \delta_{ij}$

[E = expectation value]

Now the distillation operator is written

 $\Box = E[V\eta\eta^{\dagger}V^{\dagger}] = E[WW^{\dagger}]$

- Introduces noise into computations
- **Dilution:** "thin out" the stochastic noise.
- Use N_{η} orthogonal projectors to make a variance-reduced estimator of $E[WW^{\dagger}] = \sum_{k=1}^{N_{\eta}} E[V\mathcal{P}_k\eta\eta^{\dagger}\mathcal{P}_kV^{\dagger}]$, with $W_k = V\mathcal{P}_k\eta$, a $N_{\eta} \times (N_s \times N_c)$ matrix
- Remember V was size $N_{\mathcal{D}} \times (N_s \times N_c)$ and $N_{\mathcal{D}}$ scales like V^2 .

[arXiv:1104.3870]

Stochastic estimation: baryon correlator

Convergence faster for noise in distillation space

[arXiv:1011.0481]

Lattice symmetries and classifying spin

"A man who is tired of group theory is a man who is tired of life." - Sidney Coleman

- Continuum and Lattice symmetry groups
- Classifying states by irreducible representations (irreps)
- From lattice to continuum irreps
- [The group theory of two-particle states]

Classifying States

Continuum QCD:

- angular momentum and parity, J^{P} correspond to irreducible representations (irreps) of improper rotation group, O(3).
- irreps include bosonic (single-valued) and fermionic (double-valued) representations.
- the projection of angular momentun onto some axis, J_z labels rows of the representation.

Symmetry and lattice QCD

- a spatially isotropic lattice breaks $O(3) \rightarrow O_h$, the cubic point group
- eigenstates of the lattice Hamiltonian transform under irreps of O_h .
- lattice states are classified by a "quantum letter" Λ^{P} , the irreps of O_{h} and not by J^{P} .
- continuum states with same J^P quantum numbers but different J_z values are in general separated acorss lattice irreps
- need operators which couple strongly to lattice eigenstates, ie project into the irreps of O_h.

Group theory primer

Representations

- a *d*-dimensional representation Γ of a group *G*: a set of $d \times d$ matrices each acting on $g_i \in G$ such that $\Gamma(g_1g_2) = \Gamma(g_1)\Gamma(g_2)$.
- A group of matrices satisfying the same multiplication as the elements of the group is a representation.
- A representation is reducible iff it is possible to perform the same similarity transform on all matrices in the rep and reduce them to block diagonal form.
- Otherwise it is irreducible.

what does this mean?

• say $\Gamma^{(1)}(g)$ and $\Gamma^{(2)}(g)$ representations of the same group. Then

$${f \Gamma}(g)=\left(egin{array}{cc} {\Gamma}^{(1)}(g) & 0 \ 0 & {\Gamma}^{(2)}(g) \end{array}
ight)$$

also a representation. Write $\Gamma(g) = \Gamma^{(1)}(g) \oplus \Gamma^{(2)}(g)$.

Properties and rules for irreps

vectors from matrices of different reps are orthogonal

$$\sum_{g} \Gamma_i(g)_{mn} \Gamma_j(g)_{mn} = 0, \ i \neq j$$

 vectors from same rep but differnet matrix elements are orthogonal

$$\sum_{g} \Gamma_i(g)_{mn} \Gamma_j(g)_{m'n'} = 0 \ m \neq m' \text{ or } n \neq n'.$$

 vectors from the same rep and same matrix elements have magnitude h/l_i.

$$\sum_{g} \Gamma_i(g)_{mn} \Gamma_i(g)_{mn} = h/\ell_i$$

where *h* is the order of the group and l_i the dimension of Γ_i

Useful rules: for irreps and their characters

Recall that the character χ of representation $\Gamma(q)$ is

$$\chi(g) = \sum_j \Gamma_{jj}(g), ext{ for each } g \in G.$$

- $\sum_{i} \ell_{i}^{2} = h$ $\sum_{g} [\chi_{i}(g)]^{2} = h$ a simple test of irreducibility
- $\sum_{q} \chi_i(g) \chi_j(g) = h \delta_{ij}$
- In a given rep or irrep the characters of all matrices belonging to the same class are identical.
- In a group, number of irreps = number of classes.

Symmetry group of the cube

- O: the symmetry group of the octahedron (dual to a cube)
- 24 rotational (orientation-preserving/proper) symmetries
- 48 including combinations of reflection and rotation:
- cubic point group: $O_h = O \otimes \{I, I_s\}$

Operation	No.	Label
identity	1	
90° about axes through centres of opposite faces	6	<i>C</i> ₂
180° about the same axes	3	<i>C</i> ₂
120° about diagonals connecting opposite vertices	8	<i>C</i> ₃
180° about axes through centers of opposite edges	6	<i>C</i> ₄

A soothing exercise in group theory

Think about the symmetries of the cube that we have described. Construct matrices forming an irreducible representation. The identity operation

$$E\left(\begin{array}{c} x\\ y\\ z\end{array}\right) \rightarrow \left(\begin{array}{c} x\\ y\\ z\end{array}\right)$$

Rotation of $\pm \frac{\pi}{2}$ about x, y, z axes gives

$$C_{X}(1) \qquad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} x \\ z \\ -y \end{pmatrix}, \quad C_{X}(-1) \begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} x \\ -z \\ y \end{pmatrix},$$

$$C_{Y}(1) \qquad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} -z \\ y \\ x \end{pmatrix}, \quad C_{Y}(-1) \begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} -y \\ x \\ z \end{pmatrix},$$

$$C_{Z}(1) \qquad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} y \\ -x \\ z \end{pmatrix}, \quad C_{Z}(-1) \begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} -y \\ x \\ z \end{pmatrix},$$

- O has 5 conjugacy classes (O_h has 10)
- number of conjugacy classes = number of irreps
- Schur: for G is a group and Γ_i an irrep of G.

$$|G| = \sum_{i} \dim(\Gamma_i)^2$$

- So for *O* we get: $24 = 1^2 + 1^2 + 2^2 + 3^2 + 3^2$.
- irreps called: A_1, A_2, E, T_1, T_2 .

Character tables

- A character table is the tabulation by class of the irreps of a group.
- The entries consist of characters, the trace of the matrices representing group elements of the column's class in the given row's group representation.

Character table for O

0	0	8C ₃	6C ₂	6C4	$3C_2(=(C_4)^2)$
A_1	+1	+1	+1	+1	+1
A ₂	+1	+1	-1	-1	+1
E	+2	-1	0	0	+2
T_1	+3	0	-1	+1	-1
<i>T</i> ₂	+3	0	+1	-1	-1

The cubic point group: O_h

 Note: the extension to O_h includes the 24 improper rotations (spatial inversions) of O such that

$$\mathbb{I}_{S}\left(\begin{array}{c} x\\ y\\ z\end{array}\right) \rightarrow \left(\begin{array}{c} -x\\ -y\\ -z\end{array}\right)$$

- The number of group elements is now 48 with 10 irreps labelled $A_{1g}, A_{1u}, A_{2g}, A_{2u}, E_g, E_u, T_{1g}, T_{1u}, T_{2g}, T_{2u}$.
- (*g*, *u*) label the even (*g*erade) and odd (*u*ngerade) behaviour under spatial inversion.

Verify that the extended character table is										
O _h	0	8C ₃	6C ₂	6C4	$3C_2(=(C_4)^2)$	۱ <u>s</u>	6 <i>5</i> 4	8 <i>5</i> 6	3σ _h	$6\sigma_d$
A_{1g}	1	1	1	1	1	1	1	1	1	1
A_{2g}	1	1	-1	-1	1	1	-1	1	1	-1
E_g	2	-1	0	0	2	2	0	-1	2	0
T_{1g}	3	0	-1	1	-1	3	1	0	-1	-1
T_{2g}	3	0	1	-1	-1	3	-1	0	-1	1
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1
A _{2u}	1	1	-1	-1	1	-1	1	-1	-1	1
Eu	2	-1	0	0	2	-2	0	1	-2	0
T_{1u}	3	0	-1	1	-1	-3	-1	0	1	1
T _{2u}	3	0	1	-1	-1	-3	1	0	1	-1

Group theory for baryons

- To determine fermionic reps of *O* its double group *O*^{*D*} must be used.
- 48-element group obtained from *O* by adding a negative identity: rotations through 2π . The group of rotations for which you recover the identity after a rotation of 4π .

O^D

- 8 single-valued irreps
- In 5, rotation by 2π represented by the identity matrix coincide with irreps of *O*.
- 3 new irreps: G_1, G_2, H and $24 = \sum_i l_i^2 = 2^2 + 2^2 + 4^2$ (irrep

dimensions 2,2 and 4)

Connecting lattice and continuum groups

- Considering O for clarity.
- There are an infinite number of irreps (/ values) in the continuum but just 5 on the lattice
- To identify which continuum states can occur in a particular irrep note that O is a subgroup of SO(3)
- Restricting the irreps of SO(3) labelled by J to rotations allowed by the lattice generates representations that are reducible ie J is reducible under O or O_h
- Subduction is the method for generating these representations
- Using

$$n_J^{(\alpha)} = \frac{1}{N_G} \sum_k n_k \chi_k^{(\alpha)} \chi_k^{(J)}$$

it is possible to find the multiplicity of the irreps of SO(3) in O

Connecting lattice and continuum groups (2)

	<i>A</i> ₁	A ₂	Ε	<i>T</i> ₁	<i>T</i> ₂
<i>J</i> = 0	1				
J = 1				1	
J = 2			1		1
J = 3		1		1	1
J = 4	1		1	1	1
1	- :	1	÷	1	1

Connecting lattice and continuum groups (2)

- In principle then to identify a J = 2 state, results from E and T_2 at finite a should extrapolate to the same result.
- an expensive business(!)
- Even then, is this enough information to disentangle high-spin states eg $4 = 0 \oplus 1 \oplus 2$?
- In charmonium a radial excitation of the near-degenerate (0⁺⁺, 1⁺⁺, 2⁺⁺) could be close in energy to the 4⁺⁺ ground state.

Summary

- States (hadrons) on the lattice are classified the symmetries of the cubic point group O_h
- States are labelled by irreps of this group
- The relationship between continuum J^P states and lattice states is made using group theory: subduction
- For moving hadrons or two-particle states the set of symmetries is further reduced ⇒ more group theory!

Lattice irrep, <mark>A</mark>	Dimension	Continuum irreps, <mark>J</mark>
A1	1	0, 4,
A ₂	1	3, 5,
Е	2	2, 4,
T_1	3	1, 3,
$\overline{T_2}$	4	2, 3,
G_1	3	1/2, 7/2,
$\overline{G_2}$	3	5/2, 7/2,
н	4	3/2, 5/2,

Group theory of two particles in a box

- Consider two identical particles, with momentum p and -p (so zero total momentum).
- $\Omega(p)$, set of all momentum directions related by rotations in O_h
- Can make a set of operators, $\{\phi(p)\}$ from Ω and these form a (reducible) representation of O_h .
- Example: $\Phi = \{\phi(1, 0, 0), \phi(0, 1, 0), \phi(0, 0, 1)\}$ contains the A_1 and E irreps
- Different particles: +p and -p are not equivalent

р	irreducible content
(0,0,0)	A_1^g
(1,0,0)	$A_1^g \oplus E^g$
(1, 1, 0)	$A_1^g \oplus E^g \oplus T_2^g$
(1,1,1)	$A_1^g \oplus T_2^g$

- John F. Cornwell Group Theory in Physics, Vols 1 and 2 Academic Press
- H. F. Jones *Groups, Representations and Physics* (Hilger, Bristol 1990)
- Robert Gilmore *Lie Groups, Lie Algebras, and Some of Their Applications* (Dover Publ.:2006)