Lattice Methods for Hadron Spectroscopy:
lattice symmetries and classifying states

Sinéad Ryan

School of Mathematics, Trinity College Dublin, Ireland

INT, Seattle, 8t" August 2012

SO
pe “chi

Sinéad Ryan (TCD) 1/32



Plan

@ A short recap of all-to-all propagators
@ A little more on distillation details
@ Classifying states by symmetry
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recap from yesterday

@ Calculating quark propagators is difficult. Solve MW (y) = n(x) for
M~-1 where M is a very large matrix.

@ Techniques to calculate all to all propagators exist.
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recap from yesterday

@ Calculating quark propagators is difficult. Solve MW (y) = n(x) for
M~-1 where M is a very large matrix.

@ Techniques to calculate all to all propagators exist.

Stochastic estimation

@ Stochastic estimation: fill the source vector n with noise. Then 1
inversion gives a stochastic estimate of M~1

((lp[r]@r’[r]) Z\U[r f][r] ), Np— o0

@ Repeated for N, noise vectors to reduce the error on variance.

@ Improve this statistical reduction by dilution = for 1 noise vector
do more inversions but gain in an average over diluted vectors.

@ Can combine exact and stochastic estimations.
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Noise and dilution
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@ pseudoscalar (pion) propagator on 123 x 24 lattice
@ black: 24 noise sources, no dilution: 24 inversions of M
@ red: single noise source + time dilution: 24 inversions of M
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Distillation

@ Distillation: a redefinition of smearing as explicitly a low-rank
operator.

@ Effect: project out eigenmodes that do not contribute to
hadronic physics.

@ In the low-rank space M~! can be calculated exactly.
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@ Consider an isovector meson two-point function:

Cm(ty —to) = {(T(t1)0e, Mty Ory d(t1) - d(to)Oto Mo Ot U(to)))
@ Integrating over quark fields yields

Cm(ty —to) =
(Tr{§,0,C} (Dtl rtlmth_l(tlr to)Oto rtODtoM_l(tOr tl)))

@ Substituting the low-rank distillation operator OO0 reduces this to a
much smaller trace:

Cm(t1 —to) = (Trio,p} [P(t1)T(t1, to)P(to)T(to, t1)]) |

a

> q’ﬁ'g and TS'Z‘ are Np x Ny square matrices.

o(t) = VI()reV(b) J T(t, t') = VI(OM~L(E, )V (t) J

The “perambulator”

Sinéad Ryan (TCD) 6/32



Meson two-point function

Distilled meson two-point correlation function

CM(t]_ - to) = Tr{g,D} [Cb(t]_) T(tl, l’o) CD(to) T(to, tl)]
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More diagrams: baryons, multihadrons,
disconnected
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Good news: precision spectroscopy (2)
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@ Correlation functions for ) ysy operator, with different flavour content

(s, 1).

@ 163 lattice (about 2 fm).
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Stochastic estimation and distillation

@ Construct a stochastic iden-

tity matrix in D: introduce a vector n with Np elements and with
E[ni] =0 and E[ninj'] = 6

[E =expectation value]
@ Now the distillation operator is written

O = E[Vnn'Vvt] = Eww J

V.

@ Introduces noise into computations
@ Dilution: “thin out” the stochastic noise.
@ Use N, orthogonal projectors to make a variance-reduced

estimator of E[WW1] = Zgll E[VPennTPcVT], with Wy = VPkn, a
Np x (Ns x N¢) matrix

@ Remember V was size Np x (Ns x N¢) and Np scales like V2,
[arXiv:1104.3870]
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Stochastic estimation: baryon correlator
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@ Convergence faster for noise in distillation space
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Lattice symmetries and classifying spin



Plan

“A man who is tired of group theory is a man
who is tired of life.” - Sidney Coleman

@ Continuum and Lattice symmetry groups

@ Classifying states by irreducible representations (irreps)
@ From lattice to continuum irreps

@ [The group theory of two-particle states]
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Classifying States

Continuum QCD:

@ angular momentum and parity, J° correspond to irreducible
representations (irreps) of improper rotation group, O(3).

@ irreps include bosonic (single-valued) and fermionic
(double-valued) representations.

@ the projection of angular momentun onto some axis, J, labels
rows of the representation.

lattice

_—

0(3)
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Symmetry and lattice QCD

a spatially isotropic lattice breaks O(3) — Op, the cubic point
group

eigenstates of the lattice Hamiltonian transform under irreps of
Oh.

lattice states are classified by a “quantum letter” AP, the irreps
of Oy and not by JP.

continuum states with same J® quantum numbers but different J,
values are in general separated acorss lattice irreps

need operators which couple strongly to lattice eigenstates , ie
project into the irreps of Op.
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Group theory primer



Representations

@ a d-dimensional representation I of a group G: a set of d x d
matrices each acting on g; € G such that I'(g192) =T(g91)l(92).

@ A group of matrices satisfying the same multiplication as the
elements of the group is a representation.

@ A representation is reducible iff it is possible to perform the
same similarity transform on all matrices in the rep and reduce
them to block diagonal form.

@ Otherwise it is irreducible. )

what does this mean?

@ say 1)(g) and r?)(g) representations of the same group. Then

r(1) 0
F(Q) = ( 0(9) r(2)(g) )

also a representation. Write (g) = rY)(g) @ r?)(g).
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Properties and rules for irreps

@ vectors from matrices of different reps are orthogonal
Zr 9)mnlj(@mn =0, i #]
@ vectors from same rep but differnet matrix elements are
orthogonal
Zr mnTj(@)m'n» =0 m#£m’ or n#£n’.

@ vectors from the same rep and same matrix elements have
magnitude h/L;.

Zr, )mnli(9)mn = h/1;

where h is the order of the group and /; the dimension of T;
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Useful rules: for irreps and their characters

Recall that the character x of representation '(g) is

X(g) = Y Tj(g), foreach geG.
J

® Y42=h

i

()2 = | | ibili

° Z xi(9)“=h a simple test of irreducibility

g
® > Xi(9)xi(9) = héj

g
@ In a given rep or irrep the characters of all matrices belonging to

the same class are identical.
@ In a group, number of irreps = number of classes.
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Symmetry group of the cube

@ O: the symmetry group of the

octahedron (dual to a cube) N
@ 24 rotational

(orientation-preserving/proper) 3 Cy

symmetries TS
@ 48 including combinations of 4

reflection and rotation:

@ cubic point group: Oy, =0 ® {I, s}

Operation No. Label
identity 1 I
90° about axes through centres of opposite faces 6 (o)
180° about the same axes 3 C
120° about diagonals connecting opposite vertices 8 C3
180° about axes through centers of opposite edges 6 Cy
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A soothing exercise in group theory

Think about the symmetries of the cube that we have described. Con-
struct matrices forming an irreducible representation.

The identity operation
X X
Ely |—=|VY
z z

Rotation of 3 about x, y, z axes gives

( X ([ x ) ( X ) ( X )
Cx(1) y |- zZ |, C(-1)| ¥y |— -Z |,
z) 7Y z y
x\ [ -z bs -y
Cy(1) ( y | — y ) Cy(-1) ( y ) — ( bs )
z ) \ X z z
[2)- () emli)-(%)
C,(1) y |=| x| G- vy |- X
z ) 4 z z




More on symmetry

@ O has 5 conjugacy classes (Op has 10)
@ number of conjugacy classes = number of irreps
@ Schur: for G is a group and I'; an irrep of G.

Gl = > dim(r7)?

@ Sofor O we get: 24 =12 +12 422 432432,
@ irreps called: A;, Ay, E, T1, Ta.
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Character tables

@ A character table is the tabulation by class of the irreps of a
group.
@ The entries consist of characters, the trace of the matrices

representing group elements of the column'’s class in the given
row’s group representation.

O | 8C3 6C; 6C;i 3Ca(=(Cs)?)

A1 +1 +1 +1 +1 +1
Ay +1 +1 -1 -1 +1
E +2 -1 0 0 +2
71 +3 0 -1 +1 -1

T, +3 O +1 -1 -1
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The cubic point group: Op

@ Note: the extension to Op includes the 24 improper rotations
(spatial inversions) of O such that

X —X
Is| ¥ [—=| Y
z -z
@ The number of group elements is now 48 with 10 irreps labelled
Algl AIUrAZg,AZUI Eg, EU/ Tlgl TlUl ngl TZU'

@ (g,u) label the even (gerade) and odd (ungerade) behaviour
under spatial inversion.
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Group theory for baryons

@ To determine fermionic reps of O its double group OP must be
used.

@ 48-element group obtained from O by adding a negative
identity: rotations through 2m. The group of rotations for which
you recover the identity after a rotation of 4m.

@ 8 single-valued irreps

@ In 5, rotation by 21 represented by the identity matrix - coincide
with irreps of O.

@ 3 new irreps: Gi1, Go, H and 24 = ZIIZ =224+22 4+ 42 (irrep
7

dimensions 2,2 and 4)
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Connecting lattice and continuum groups

@ Considering O for clarity.

@ There are an infinite number of irreps (/ values) in the
continuum but just 5 on the lattice

@ To identify which continuum states can occur in a particular irrep
note that O is a subgroup of SO(3)

@ Restricting the irreps of SO(3) labelled by J to rotations allowed
by the lattice generates representations that are reducible ie J is
reducible under O or Op

@ Subduction is the method for generating these representations

@ Using
Zn Xk) ()]

it is possible to find the multiplicity of the irreps of SO(3) in O
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Connecting lattice and continuum groups (2)

At A E T1 T>
Jj=0] 1
Jj=1 1
J=2 1 1
/=3 1 1 1
Jj=4] 1 1 1 1
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Connecting lattice and continuum groups (2)

A1 A E T1 T
/=011
/=1 1
Jj=2 1 1
/=3 1 1 1
Jj=4] 1 1 1 1

@ In principle then to identify a / = 2 state, results from E and T, at
finite a should extrapolate to the same result.

@ an expensive business(!)

@ Even then, is this enough information to disentangle high-spin
stateseg4=001027?

@ In charmonium a radial excitation of the near-degenerate
(0T, 17+, 27+) could be close in energy to the 4™ ground

state.
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Summary

@ States (hadrons) on the lattice are classified the symmetries of

the cubic point group Op

@ States are labelled by irreps of this group
@ The relationship between continuum JP states and lattice states

is made using group theory: subduction

@ For moving hadrons or two-particle states the set of symmetries
is further reduced = more group theory!

Lattice irrep, A Dimension

Continuum irreps, J
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Group theory of two particles in a box

@ Consider two identical particles, with momentum p and —p (so
zero total momentum).

@ Q(p), set of all momentum directions related by rotations in Op

@ Can make a set of operators, {¢(p)} from Q and these form a
(reducible) representation of Op.

@ Example: & = {¢(1,0, 0), $(0,1,0),¢(0,0, 1)} contains the A;
and E irreps

@ Different particles: +p and —p are not equivalent

irreducible content
g
A7
A @ E9
AloE9eT)
AleT)
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