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Plan

Something about homeworks
Pros and cons of point propagators
Smearing
All-to-all propagators
Distillation

Improving stochastically
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Question 1
Wick contractions for flavour singlets
Question 2
At http://www.maths.tcd.ie/~ryan/INT2012/
you will find a data file called jpsi-correlator-16x128.dat
This is two-point correlator data for a J/Ψ meson generated with a
sinlge interpolating operator: O = c̄γic. The lattice is 163 × 128 and
there are 20 configurations. The data are indexed by timeslice
value for each configuration.

Plot the correlator data to see the exponential (and
time-symmetric) behaviour.

Write a short program to determine the effective mass on each
timeslice ameff and plot the result.

Hopefully you will see a plateau (no time dependence) at large
times!

Calculate the jackknifed errors for each point.



Question 3 Write a short program to implment the Metropolis
algorithm (described on the full sheet) for the
one-dimensional harmonic oscillator: V(x) = x2/2 with m = 1.
Calculate

G(t) =
1

N

∑

j

〈x(tj + t)x(tj)〉 ∀t = 0,2a, . . . (N− 1)a

Try N = 20 sites with spacing a = 0.5 and ε = 1.4. Use
Nconfigs = 25,50,100,10000 and see the effect.
Repeat for V(x) = x4/2.



Point propagators

For better simulations of hadronic quantities look again at the
building blocks: the quark propagators
Point propagator pros

doesn’t require vast computing resources
Point propagator cons

restricts the accessible physics
flavour singlets and condenstates impossible: quark loops
need props w sources everywhere in space

restricts the interpolating basis used
a new inversion needed for every operator that is not
restricted to a single lattice point

entangles propagator calculation and operator
construction
throws away information encoded in configurations
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Solutions?

Improve the determination point props to access the
physics of interest: smearing
Compute all elements of the quark propagator: all-to-all
propagators. Problem It’s expensive - needs and
unrealistic number of inversions.
Work around: Use stochastic estimators (with variance
reduction).
Rethink the problem: combine smearing and propagation
ie distillation

I am picking a few methods to focus on.
See references at the end of this lecture for full descriptions of
these and other methods.
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Smearing
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Smearing techniques

Hadrons are extended objects (O(1)fm).
So far the propagator and interpolating fields (operators)
are point sources

they can have small overlap with the state of interest:
quantified by Zn
optimise the projection onto the state we want to study

Gauge-invariant smearing of quark fields:

Ψ(~x, t) =
∑

~y

F(~x, ~y,U(t))Ψ(~y, t)

Gaussian smearing: F(~x, ~y,U(t)) = (1 + κsH)nσ and H is the
lattice realisation of the covariant Laplacian in 3d
Variations on a theme: Jacobi, Wuppertal ...
More improvements to gauge noise by smearing the U
fields in F: APE, HYP, Stout
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An example from D. Alexandrou at ECT* Trento

Examples of effective mass plots
• Quenched at about 550 MeV pions:

amπ

eff
amN

eff

• Reduce gauge noise by using APE, hypercubic or stout smearing on the links U that enter the smearing
function F (�x,�y, U(t)).
• NF = 2

H. Wittig, SFB/TR16, August, 2009

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Introduction to Lattice QCD Aurora School, ECT* Trento 8 / 26
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All-to-all propagators



About all-to-all propagators

Computing all elements of the quark propagator would
require full knowledge of the inverse - this is prohibitively
expensive
The lattice representation of the Dirac operator is a large,
but very sparse matrix.
If we are satisfied with an unbiased estimator of all
elements then sparse matrix methods can be used.
Stochastic estimation should be acceptable - we are
already using it to generate gauge fields!
Variance reduction will be crucial
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All-to-all quark propagators

Start with a spectral representation of Q = γ5M (choose Q
here because it is hermitian so eigenvalues are easier to
compute).
If we can compute all the eigenvectors and eigenvalues,
{λ(i), v(i)} of

Q =
N
∑

i=1

λ(i)v(i) ⊗ v∗(i) and Q−1 =
N
∑

i=1

1

λ(i)
v(i) ⊗ v∗(i)

Unfortunately, finding even a small sub-set of
eigenvectors is computationally expensive, so we are
forced to truncate this representation at Nev� N

Truncated sum violates reflection positivity. Must correct.
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All-to-all (1)

Start again, this time find a stochastic representation of Q.
Generate an ensemble of random, independent noise
vectors
¦

η[1], η[2], . . . , η[Nr ]

©

, with property

〈〈η[r](x)⊗ η[r](y)†〉〉 = δx,y

where 〈〈· · · 〉〉 is the expectation value over the distribution
of noise vectors. Z4 = {1, i,−1,−i} a good choice.
Each component of the noise vectors has modulus 1

ηiα(x)∗ηiα(x) = 1 no summation

The solution vectors ψ[r] are obtained in the usual way

ψ[r](x) = Q−1η[r](y)

i, j are colour indices and α, β are spin.
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all-to-all (2)

The quark propagator from any point x to any point y is
then

Q−1(y, x)
ij
αβ = 〈〈ψ[r] ⊗ η†[r]

〉〉ijαβ = lim
Nr→∞

1

Nr

Nr
∑

r

ψiα
[r]

(y)η
jβ
[r](x)†

Note that for Nr different sources the variance falls like
1/
p

Nr. Can we do better?
Recall, the exact propagator can be computed with a
finite (but large!) amount of effort; use point-propagator
methods with Kronecker delta sources put everywhere.
Suggests a trick; break the vector space of the quark
fields, V into d smaller sub-spaces V = V1 ⊕ V2 ⊕ . . .
spanned by sub-sets of the basis vectors.
This partitioning (“dilution”) is arbitrary.
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Dilution

Dilute the noise vector η in some set of variables of that
η =
∑

j η
(j).

For spectroscopy involving temporal correlations an
important example is time dilution

η(~x, t) =

Nt−1
∑

j=0

η(j)(~x, t)

and η(j)(~x, t) = 0 unless t = j.
Each diluted source is inverted, yielding Nd pairs of
vectors {ψ(j), η(j)}
Get a an estimator of Q−1 with a single noise source

Nd−1
∑

i=0

ψ(i)(~x, t)⊗ η(i)( ~x0, t0)†
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A hybrid method

In the homeopathic limit of dilution (one noise vector for
each time,space,colour and spin) the exact propagator is
recovered in a finited number of steps.
Not practically in current simulations but the path of
dilution may be optimised so gauge field noise dominates
for manageable inversions.
A hybrid method:

calculate Nev eigenvalues and eigenvectors of Q exactly
and determine Q−1

Nev

use the stochastic method with dilution to correct the
truncation
there are some more nice tricks you can do to make this
efficient and optimal but that needs more time ....
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Comparing methods: point and all-to-all
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β = 5.7,123 × 24 lattice Wilson fermions,
κ = 0.1675(mπ/mρ = 0.50) 75 configurations. 100
eigenvectors. Time/even-odd/spin dilution.
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Distillation



Smearing

Smeared field: ψ̃ from ψ, the “raw” quark field in the
path-integral:

ψ̃(t) = �[U(t)] ψ(t)

Extract the essential degrees-of-freedom.
Smearing should preserve symmetries of quarks.
Now form creation operator (e.g. a meson):

OM(t) =
¯̃ψ(t)Γψ̃(t)

Γ: operator in {s, σ, c} ≡ {position,spin,colour}
Smearing: overlap 〈n|OM|0〉 is large for low-lying
eigenstate |n〉
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Can redefining smearing help?

Computing quark propagation in configuration generation
and observable measurement is expensive.
Objective: extract as much information from correlation
functions as possible.

Two problems:
1 Most correlators: signal-to-noise falls exponentially
2 Making measurements can be costly:

Variational bases
Exotic states using more sophisticated creation
operators
Isoscalar mesons
Multi-hadron states

Good operators are smeared; helps with problem 1, can
it help with problem 2?
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Gaussian smearing

To build an operator that projects effectively onto a
low-lying hadronic state need to use smearing
Instead of the creation operator being a direct function
applied to the fields in the lagrangian first smooth out the
UV modes which contribute little to the IR dynamics
directly.
A popular gauge-covariant smearing algorithm —
Gaussian smearing: Apply the linear operator

�J = exp(σ∇2)

∇2 is a lattice representation of the 3-dimensional
gauge-covariant laplace operator on the source time-slice

∇2
x,y

= 6δx,y −
3
∑

i=1

Ui(x)δx+ι̂,y + U†
i
(x− ι̂)δx−ι̂,y

Correlation functions look like Tr �JM−1�JM−1�J . . .
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Gaussian smearing

Gaussian smearing:

lim
n→∞

�

1 +
σ∇2

n

�n

= exp(σ∇2)

This acts
in the space of coloured scalar fields on a time-slice: Ns×Nc

0 2000 4000 6000 8000 10000 12000
Eigenvector index, i

0

0.2

0.4

0.6

0.8

1

λ i

0 50 100 150 200
i

0.001

0.01

0.1

1

λ i

Data from as ≈ 0.12fm 163 lattice: 163 × 3 = 12288.
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Distillation

“distill: to extract the quintessence of” [OED]

Distillation: define smearing to be explicitly a very
low-rank operator. Rank is ND(� Ns ×Nc).

Distillation operator

�(t) = V(t)V†(t)

with Va
x,c

(t) a ND × (Ns ×Nc) matrix

Example (used to date): �4 the projection operator
into D4, the space spanned by the lowest
eigenmodes of the 3-D laplacian
Projection operator, so idempotent: �2

4 = �4
limND→(Ns×Nc) �4 = I

Eigenvectors of ∇2 not the only choice. . .
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Distillation: preserve symmetries

Using eigenmodes of the gauge-covariant laplacian
preserves lattice symmetries

Ui(x)
g
−→ U

g
i (x) = g(x)Ui(x)g†(x + ι̂)

�∇(x, y)
g
−→ �g

∇(x, y) = g(x)�∇(x, y)g†(y)

Translation, parity, charge-conjugation symmetric

Oh symmetric
Close to SO(3)
symmetric
“local” operator
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Consider an isovector meson two-point function:

CM(t1 − t0) = 〈〈ū(t1)�t1Γt1�t1d(t1) d̄(t0)�t0Γt0�t0u(t0)〉〉

Integrating over quark fields yields

CM(t1 − t0) =

〈Tr{s,σ,c}
�

�t1Γt1�t1M−1(t1, t0)�t0Γt0�t0M−1(t0, t1)
�

〉

Substituting the low-rank distillation operator � reduces
this to a much smaller trace:

CM(t1− t0) = 〈Tr{σ,D} [Φ(t1)τ(t1, t0)Φ(t0)τ(t0, t1)]〉

Φ
α,a
β,b and τα,aβ,b are (Nσ ×ND)× (Nσ ×ND) matrices.

Φ(t) = V†(t)ΓtV(t) τ(t, t′) = V†(t)M−1(t, t′)V(t′)

The “perambulator”
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Meson two-point function

t t
1 0

τ

τ

ΦΦ Γ Γ

Distilled meson two-point correlation function

CM(t1 − t0) = Tr{σ,D} [Φ(t1) τ(t1, t0) Φ(t0) τ(t0, t1)]
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More diagrams

τ

τ

τ

BB

τ

τ BB

τ
Γ

B̄abcτaa′τbb′τcc′Ba′b′c′ B̄abcτaa′τΓ
bb′τcc′Ba′b′c′

τ
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Φ

Φ

Φ Φττ

Tr [ΦτΦτΦτ] Tr [Φτ] Tr [Φτ]
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Good news: precision spectroscopy
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Quark model: 1S,1P,2S,1D,2P,1F,2D, . . . all seen.

Not all fit quark model: spin-exotic (and non-exotic) hybrids
seen [Liu et.al. arXiv:1204.5425]
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Good news: precision spectroscopy (2)
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Correlation functions for ψ̄γ5ψ operator, with different flavour
content (s, l).

163 lattice (about 2 fm). [arXiv:1102.4299]
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Limitation

Distillation does not give direct access to all modes of the
Dirac operator, only those low-modes relevant for
spectroscopy
Cannot use the method to calculate eg the strangeness
content of the nucleon.

〈N(tf , ~q|
∑

x

e−i~q·~xs̄(t′, ~xΓs(t′, ~x)|N(0, ~0〉

Use standard all to all instead.
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Bad news: the bill!

For constant resolution distillation space scales with Ns

The cost of a calculation scales with V2

The problem:

To maintain constant resolution, need ND ∝ Ns

Budget:
Fermion solutions construct τ O(Ns

2)

Operator constructions construct Φ O(Ns
2)

Meson contractions Tr[ΦτΦτ] O(Ns
3)

Baryon contractions B̄τττB O(Ns
4)

Ok for reasonable lattices (eg with Ns = 163,ND = 64) but
scaling this to a 323 volume requires ND = 512. Expensive.
Distillation does not preclude stochastic estimation - use
both for large V.
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Stochastic estimation and distillation

[arXiv:1104.3870]
Construct a stochastic identity matrix in D: introduce a
vector η with ND elements and with

E[ηi] = 0 and E[ηiηj
∗] = δij

Now the distillation operator is written

� = E[Vηη†V†] = E[WW†]

Introduces noise into computations
Dilution: “thin out” the stochastic noise with Nη

orthogonal projectors to make a variance-reduced
estimator of ID = E[WW†] =

∑Nη

k=1 E[VPkηη†PkV†], with
Wk = VPkη, a Nη × (Ns ×Nc) matrix
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Stochastic estimation: baryon correlator
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Convergence faster for noise in distillation space
[arXiv:1011.0481]
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Summary

Need good algorithms and new ideas for both effects
Quark propagator is expensive to calculate and too large
to store: either compute one column of it, or
estimate it stochastically
Don’t need all entries to make hadrons - redefine
smearing
Distillation is a promising method for making hadrons
Works well, but it is expensive and scales poorly
Stochastic estimators rescue us again
Know the limitations and pitfalls in each and choose to
suit your budget and taste!
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