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Housekeeping

@ Web page for these lectures at
http://www.maths.tcd.ie/~ryan/INT2012

@ lectures, homework problems and data as well as
references will all be there
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Plan

@ Motivation - why is hadron spectroscopy interesting?
@ Lattice hadron spectroscopy

@ Quark model and notation
°

Path integrals and correlation functions: the building
blocks

Extracting the spectrum in a lattice calculation

Why do we need good methods and precision results: a
brief overview of experiments.
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Spectroscopy: why?

@ Many recently discovered hadrons have unexpected
properties.

@ Understand the hadron spectra to separate EW physics
from strong-interaction effects

@ Techniques for non-perturbative physics useful for physics
at LHC energies.

@ Understanding EW symmetry breaking may require
nonperturbative techniques at TeV scales, similar to
spectroscopy at GeV.

@ Better techniques may help understand the nature of
masses and transitions
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Lattice Hadron Spectroscopy:
an overview



Lattice Hadron Spectrosopy

Goal: to determine the low-energy hadron spectrum of
quarks and gluons from Locp.

1 —
Locp = _ZFZVFa KV 4 Z\Uf (I'Y“D“ - mf) V¢, f=u,d,s,c,b,t
f

and D, =9, —ig (;)\a) AZ
Recall the only inputs are the coupling go and my so
continuum QCD is recovered for
@ simulation at or extrapolation to mz = mppys
@a—0andV —
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How are we doing?
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How are we doing (2)?

C. Hoelbling, arXiVv.1102.0410
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N =2 + 1 simulations at the physical point

@ First N =2 + 1 simulations at physical quark mass.
@ PACS-CS computer, U Tsukuba. 14.3 Tflops peak
@ Lattice spacing: a =0.08995(40)fm (from mgq).

PACS-CS Collaboration [arXiv:0911.2561]
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Convergence through universality

BMW Collaboration ETMC Collaboration
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Objects of interest

@ Quark @ AntiQuark

Mesons/Baryons : &

Molecules/Multiquarks : & :_: :.._:
Hybrids § %
Glueballs O ©

+ Effects due to the complicated QCD vacuum
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A constituent model

@ QCD has fundamental objects: quarks (in 6 flavours) and
gluons

@ Fields of the lagrangian are combined in colorless
combinations: the mesons and baryons. Confinement.

quark model object structure

meson 33=108
baryon 393®3=19808e10
hybrid 383 =1980680680106 10

glueball 8®8=198080 1010

@ This is a model. QCD does not always respect this
constituent picture! There can be strong mixing.
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Classifying states: mesons

@ Recall that continuum states are classified by JP¢
multiplets (representations of the poincare symmetry):

e Recall the naming scheme: n?>*1L; with S = {0, 1} and
L={0,1,...}

@ /, hadron angular momentum, |[L -S| <J<|L+ S|

o P=(-1)+D), parity

o C=(-1)+5), charge conjugation. Only for qg states of
same quark and antiquark flavour. So, not a good quantum
number for eg heavy-light mesons (D(s), B(s))-
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Mesons

@ two spin-half fermions 2°*1L, ‘

@ S =0 for antiparallel quark spins and S =1 {'/
for parallel quark spins; ‘

@ States in the natural spin-parity series have P = (=1 then
S=1and CP=+1:

e PC=0—t,0tF,1-—,1t-,2-—,2~+,... allowed
@ States with P=(—1) but CP = -1 forbidden in gg model of
mesons:

e /PC=0*t-,0-—,1-F,2*+=,3~+,... forbidden (by quark model
rules)
@ These are EXOTIC states: not just a qg pair ...
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Baryons

Baryon number B = 1: three quarks in colourless combination

@ / is half-integer, C not a good quantum number: states
classified by JP

@ spin-statistics: a baryon wavefunction must be
antisymmetric under exchange of any 2 quarks.

@ totally antisymmetric combinations of the colour indices
of 3 quarks

@ the remaining labels: flavour, spin and spatial structure
must be in totally symmetric combinations

|gqq)a = |color)a x |space, spin, flavour)s

With three flavours, the decomposition in flavour is

33®3=10s®8y®8y® 1,

Many more states predicted than observed: missing
resonance problem
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Path integrals and correlation functions



Field theory on a Euclidean lattice

@ Monte Carlo simulations are only
practical using importance
sampling

@ Need a non-negative weight for each
field configuration on the lattice

¥ (a , - :
e \& Minkowski — Euclidean

@ Benefit: can isolate lightest states in the spectrum (as
we will see!).

@ Problem: direct information on scattering is lost and
must be inferred indirectly.

@ To access radial and orbital excitations and resonances
need a variational method.
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Correlators in an EFT

@ In EFT physical observables O is determined from

1 _
(0) = = f DUDVDYOe ™50

@ Analytically integrate Grassman fields (¥, V) — factors of
detM the fermion mx.

1
(0) "=? ~ J DU det M20e=56

The expectation value is calculated by importance
sampling of gauge fields and averaging over ensembles.
@ We are interested in two-point correlation functions built
from interpolating operators (functions of v):
e Eg the local meson operator O(x) = U, (x)I'Wp(x)
o [ an element of the Dirac algebra with possible
displacements; a and b flavour indices
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@ The two-point function is then
C(t) = (O(x)0"(0)) = (Wa(x)I W (X)Wp(0)ITW,(0))

where x = (t, x);t >0
@ Using Wick’s theorem to contract quark fields replaces
fields — quark propagators

C(t,x) = —(Tr(M;*(0,x)rM~*p(x, 0)r™))
+8ab(Tr(TM ™14 (x, X)) Tr(ITM~15(0, 0)))

where the trace is over spin and colour.
@ For flavour non-singlets (a # b) this leads to

C(t, x) = (Tr(ysM;*(x, 0)TysTM; 1 (x, 0)r'))

@ We consider the correlation function in momentum space
at zero momentum

C(p, t)= Jd3xe’ﬁXC(x t,0,0)and C(0,t) = ZCX t,0,0)
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Notes

Fermions in lagrangian — fermion determinant

Fermions in measurement — propagators

The integral over gauge fields is done using importance
sampling.

¥s hermiticity: M—1(x, y) = ysM~1(y, x)Tys allows us to
rewrite the correlator in terms of propagators from origin
to all sites. Point (to-all) propagators

practically: M(x, 0 : U)~! compute a singe column (in
space-time indices) with linear solvers

for flavour singlets a = b terms like M~1(x, x) - requires the
inverse of the full fermion mx on each config. More on
this later
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propagator cartoon

The most general opera-
tor.

A restricted correlation
function accessible to one
point-to-all computation.
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Wick’s Theorem

We used Wick’s theorem to contract quark fields and replace
with propagators ...

@ Example — four field insertions:
(i)

@ the pairwise contraction can be done
in two ways: -
iy and  ¢ididy

@ giving the propagator combination
My Mgt — MMy

@ minus-sign from the
anti-commutation in second term.

@ More fields means more
combinations. Important in (eg.)
isoscalar meson spectroscopy. We
will see this again later
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Warm Up Exercise!

For a system with six degrees of freedom, {n;, ni},i =1,2,3,
evaluate the grassmann integral

3
la = fl_[ dnidn; nif2nzia €=M
-1

and compare this answer to the prediction of Wick’s theorem.

@ See problem sheet for a related problem.
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The QCD spectrum

@ Want to extract the energy of (colourless) states of QCD.
@ This information is encoded in the 2-point correlation
functions

C(t) = (pi(t)197(0))
where ¢ and ¢ are operators acting on the quark fields to
create a state at t = 0 and annihilate at t =t.

@ Euclidean time evolution: ¢(t) = etpe="t and inserting a
complete set of states

n=0 2mp

0o 2
N L g

we work in the low-temp limit ie 8 = 1/kT = L; large.

@ Now as t — coC(t) = Ze~Fot

@ At large times the exponential fall off of C(t) gives the
ground state energy.
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From correlators to energies

@ In general works well for extracting ground states

@ Higher excitation energies hard to extract by just fitting to
exponentials.

C
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@ The correlator and effective mass of the J/¥ meson.

@ For O; = O; the correlation function is positive definite and
Meffective CONVerges monotonically from above.

Sinéad Ryan (TCD) 25/34



The QCD spectrum (2)

@ The lattice has finite extent - impose (anti)-periodic
boundary conditions. Then meson correlators are
symmetric about the midpoint of the lattice ie
e~mMt — e~mt L e=M(T-t) where T is the time extent.

@ Want to optimise O to get a large overlap with the
wavefunction of the state of interest ie make

{0104In)|?
2En (D)

the spectral weight of the nt" state large for state of
interest and small for the rest.

Zn(D) =
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What about excitations?

One approach: variational method

If we can measure Cjj(t) = (O|¢,-(t)¢;r(0)|0) for all /,j and solve
generalised eigenvalue problem:

C(t) v = AC(to) v
then

lim Ag=e B4 0 (e 2E)
t—t0—>00

For this to be practical, we need:
@ a ‘good’ basis set that resembles the states of interest
@ all elements of this correlation matrix measured
[see Blossier et.al. JHEP 0904 (2009) 094]
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Current and Future Experiments:
motivating lattice spectroscopy



the light unflavoured mesons

porticle dota group

GRS summary Tables | Reviews, Tables, plots. | particlo Listings

from the 2010 Review of Particle Physics.
Please use this GITATION: K. Nakamura et af. (Partcle Data Group), J. Phys. G 37, 075021 (2010).
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The GlueX experiment at JLab

Jefierson lab =

@ 12 GeV upgrade to
CEBAF ring

@ New experimental
hall: Hall D

@ New experiment:
GlueX

@ Aim: photoproduce mesons, in particular the hybrid

meson (with intrinsic gluonic excitations)
@ Expected to start taking data 2014

Sinéad Ryan (TCD)
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Panda@FAIR, GSI

@ Extensive new
construction at GSI
Darmstadt

@ Expected to start
operation 2014

PANDA: Anti-Proton
ANnihilation at DArmstadt

@ Anti-proton beam from
FAIR on fixed-target.

@ Physics goals include
searches for hybrids and
glueballs (as well as charm
and baryon spectroscopy).
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A renaissance in charmonium spectroscopy

@ Early in the noughties, new narrow structures were seen
by Belle and BaBar above the open-charm threshold.

@ This led to substantial renewed interest in spectroscopy.
Were these more quark-anti-quark states, or something
more?

e X(3872): very close to DD threshold - a molecule?
@ Y(4260): a 17~ hybrid?
e Z*(4430): charged, can't be cc.

@ Very little is known and no clear picture seems to be
emerging...

@ Lattice calculations have a role to play
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Lattice Hadron Spectroscopy

@ Significant experimental effort hoping to understand light
hadron and charm spectroscopy
@ Are there resonances that don’t fit in the quark model?
@ Are there gluonic excitations in this spectrum?
o What structure does confinement lead to?
e How do resonances decay?
@ To use LQCD to address these questions means:
e identifying continuum properties of states
@ going beyond precision ground state spectroscopy to
compute scattering and resonance widths
@ To achieve this we need new tools
e Techniques that give statistical precision
@ Methods for operator construction and spin identification
on lattice
o New methods for resonance and isoscalar physics
e Control over extrapolations (mg — 0,V — o0, a — 0).

Tools not interdependent but should work well together J
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