Lattice Methods for Hadron Spectroscopy: introduction and basics

Sinéad Ryan

INT, Seattle, 6th August 2012

- Web page for these lectures at http://www.maths.tcd.ie/~ryan/INT2012
- lectures, homework problems and data as well as references will all be there

- Motivation why is hadron spectroscopy interesting?
- Lattice hadron spectroscopy
- Quark model and notation
- Path integrals and correlation functions: the building blocks
- Extracting the spectrum in a lattice calculation
- Why do we need good methods and precision results: a brief overview of experiments.

Spectroscopy: why?

- Many recently discovered hadrons have unexpected properties.
- Understand the hadron spectra to separate EW physics from strong-interaction effects
- Techniques for non-perturbative physics useful for physics at LHC energies.
- Understanding EW symmetry breaking may require nonperturbative techniques at TeV scales, similar to spectroscopy at GeV.
- Better techniques may help understand the nature of masses and transitions

Lattice Hadron Spectroscopy: an overview

Goal: to determine the low-energy hadron spectrum of quarks and gluons from \mathcal{L}_{QCD} .

$$\mathcal{L}_{QCD} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\,\mu\nu} + \sum_{f} \bar{\Psi}_{f} \left(i \gamma^{\mu} D_{\mu} - m_{f} \right) \Psi_{f}, \ f = u, d, s, c, b, t$$

and
$$D_{\mu}=\partial_{\mu}-ig\left(rac{1}{2}\lambda^{a}
ight)A_{\mu}^{a}$$

Recall the only inputs are the coupling g_0 and m_q so continuum QCD is recovered for

- simulation at or extrapolation to $m_{\pi} = m_{phys}$
- $a \rightarrow 0$ and $V \rightarrow \infty$

How are we doing?

C. Hoelbling, arXiV.1102.0410

How are we doing (2)?

C. Hoelbling, arXiV.1102.0410

$N_f = 2 + 1$ simulations at the physical point

- First $N_f = 2 + 1$ simulations at physical quark mass.
- PACS-CS computer, U Tsukuba. 14.3 Tflops peak
- Lattice spacing: a = 0.08995(40) fm (from m_{Ω}).

Convergence through universality

MILC Collaboration

ETMC Collaboration

BMW: SW-Wilson
 [Science 322:1224-1227,2008.]
 ETMC: Twisted Mass
 [arXiv:0910.2419,0803.3190]
 MILC: Staggered
 [arXiv:0903.3598]

Objects of interest

+ Effects due to the complicated QCD vacuum

2

A constituent model

- QCD has fundamental objects: quarks (in 6 flavours) and gluons
- Fields of the lagrangian are combined in colorless combinations: the mesons and baryons. Confinement.

quark model object structure

```
meson3 \otimes \overline{3} = 1 \oplus 8baryon3 \otimes 3 \otimes 3 = 1 \oplus 8 \oplus 8 \oplus 10hybrid\overline{3} \otimes 8 \otimes 3 = 1 \oplus 8 \oplus 8 \oplus 8 \oplus 10 \oplus 10glueball8 \otimes 8 = 1 \oplus 8 \oplus 8 \oplus 10 \oplus 10\vdots\vdots
```

• This is a model. QCD does not always respect this constituent picture! There can be strong mixing.

- Recall that continuum states are classified by J^{PC} multiplets (representations of the poincare symmetry):
 - Recall the naming scheme: $n^{2S+1}L_J$ with $S = \{0, 1\}$ and $L = \{0, 1, ...\}$
 - J, hadron angular momentum, $|L S| \le J \le |L + S|$

•
$$P = (-1)^{(L+1)}$$
, parity

• $C = (-1)^{(L+S)}$, charge conjugation. Only for $q\bar{q}$ states of same quark and antiquark flavour. So, not a good quantum number for eg heavy-light mesons $(D_{(s)}, B_{(s)})$.

- two spin-half fermions ^{2S+1}L_J
- S = 0 for antiparallel quark spins and S = 1 for parallel quark spins;

States in the natural spin-parity series have P = (-1)^f then S = 1 and CP = +1:

• $J^{PC} = 0^{-+}, 0^{++}, 1^{--}, 1^{+-}, 2^{--}, 2^{-+}, \dots$ allowed

- States with P = (-1)¹ but CP = -1 forbidden in qq
 model of mesons:
 - $J^{PC} = 0^{+-}, 0^{--}, 1^{-+}, 2^{+-}, 3^{-+}, \dots$ forbidden (by quark model rules)
 - These are EXOTIC states: not just a qq̄ pair ...

Baryons

Baryon number B = 1: three quarks in colourless combination

- J is half-integer, C not a good quantum number: states classified by J^{P}
- spin-statistics: a baryon wavefunction must be antisymmetric under exchange of any 2 quarks.
- totally antisymmetric combinations of the colour indices of 3 quarks
- the remaining labels: flavour, spin and spatial structure must be in totally symmetric combinations
 |qqq)_A = |color)_A × |space, spin, flavour)_S

With three flavours, the decomposition in flavour is

 $3 \otimes 3 \otimes 3 = 10_S \oplus 8_M \oplus 8_M \oplus 1_A$

Many more states predicted than observed: missing resonance problem

Sinéad Ryan (TCD)

Path integrals and correlation functions

Field theory on a Euclidean lattice

- Monte Carlo simulations are only practical using importance sampling
- Need a non-negative weight for each field configuration on the lattice

Minkowski → Euclidean

- **Benefit:** can isolate lightest states in the spectrum (as we will see!).
- **Problem:** direct information on scattering is lost and must be inferred indirectly.
- To access radial and orbital excitations and resonances need a variational method.

Correlators in an EFT

• In EFT physical observables \mathcal{O} is determined from

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D} U \mathcal{D} \Psi \mathcal{D} \bar{\Psi} \mathcal{O} e^{-S_{QCD}}$$

• Analytically integrate Grassman fields $(\Psi, \overline{\Psi}) \rightarrow$ factors of det *M* the fermion mx.

$$\langle \mathcal{O} \rangle \stackrel{N_f=2}{=} \frac{1}{Z} \int \mathcal{D}U \det M^2 \mathcal{O}e^{-S_G}$$

The expectation value is calculated by importance sampling of gauge fields and averaging over ensembles.

- We are interested in two-point correlation functions built from interpolating operators (functions of Ψ):
 - Eg the local meson operator $\mathcal{O}(x) = \overline{\Psi}_a(x)\Gamma\Psi_b(x)$

The two-point function is then

 $C(t) = \langle \mathcal{O}(x) \mathcal{O}^{\dagger}(0) \rangle = \langle \bar{\Psi}_{a}(x) \Gamma \Psi_{b}(x) \bar{\Psi}_{b}(0) \Gamma^{\dagger} \Psi_{a}(0) \rangle$

where $x \equiv (t, \mathbf{x}); t \ge 0$

 Using Wick's theorem to contract quark fields replaces fields → quark propagators

 $C(t, \mathbf{x}) = -\langle \operatorname{Tr}(M_a^{-1}(0, x) \Gamma M^{-1}{}_b(x, 0) \Gamma^{\dagger}) \rangle \\ + \delta_{ab} \langle \operatorname{Tr}(\Gamma M^{-1}{}_a(x, x)) \operatorname{Tr}(\Gamma^{\dagger} M^{-1}{}_a(0, 0)) \rangle$

where the trace is over spin and colour.

• For flavour non-singlets $(a \neq b)$ this leads to

$$C(t, \mathbf{x}) = \langle \mathsf{T}r(\gamma_5 M_a^{-1}(x, 0)^{\dagger} \gamma_5 \Gamma M_b^{-1}(x, 0) \Gamma^{\dagger}) \rangle$$

• We consider the correlation function in momentum space at zero momentum

 $C(\vec{p},t) = \int d^3x e^{i\vec{p}\cdot\vec{x}} C(\vec{x},t,0,0) \text{ and } C(0,t) = C(t) \sim \sum_{\vec{x}} C(\vec{x},t,0,0)$

Notes

- Fermions in lagrangian \rightarrow fermion determinant
- Fermions in measurement → propagators
- The integral over gauge fields is done using importance sampling.
- γ_5 hermiticity: $M^{-1}(x, y) = \gamma_5 M^{-1}(y, x)^{\dagger} \gamma_5$ allows us to rewrite the correlator in terms of propagators from origin to all sites. Point (to-all) propagators
- practically: $M(x, 0 : U)^{-1}$ compute a singe column (in space-time indices) with linear solvers
- for flavour singlets a = b terms like $M^{-1}(x, x)$ requires the inverse of the **full** fermion mx on each config. More on this later

propagator cartoon

Wick's Theorem

We used Wick's theorem to contract quark fields and replace with propagators ...

- Example four field insertions: $\langle \psi_i \bar{\psi}_j \psi_k \bar{\psi}_l \rangle$
- the pairwise contraction can be done in two ways: $\psi_i \overline{\psi}_i \psi_k \overline{\psi}_l$ and $\psi_i \overline{\psi}_i \psi_k \overline{\psi}_l$
- giving the propagator combination $M_{ij}^{-1}M_{kl}^{-1} M_{jk}^{-1}M_{il}^{-1}$
- minus-sign from the anti-commutation in second term.
- More fields means more combinations. Important in (eg.) isoscalar meson spectroscopy. We will see this again later

Warm Up Exercise!

For a system with six degrees of freedom, $\{\bar{\eta}_i, \eta_i\}, i = 1, 2, 3$, evaluate the grassmann integral

$$I_4=\int \prod_{i=1}^3 dar\eta_i d\eta_i \ \eta_1ar\eta_2\eta_2ar\eta_1 \ e^{-ar\eta M\eta_1}$$

and compare this answer to the prediction of Wick's theorem.

• See problem sheet for a related problem.

The QCD spectrum

- Want to extract the energy of (colourless) states of QCD.
- This information is encoded in the 2-point correlation functions

 $C(t) = \langle \phi_i(t) | \phi^{\dagger}(0) \rangle$

where ϕ^{\dagger} and ϕ are operators acting on the quark fields to create a state at t = 0 and annihilate at t = t.

• Euclidean time evolution: $\phi(t) = e^{Ht}\phi e^{-Ht}$ and inserting a complete set of states

$$C(t) = \sum_{n=0}^{\infty} \frac{|\langle \phi | n \rangle|^2}{2m_n} e^{-E_n t}$$

we work in the low-temp limit ie $\beta = 1/kT = L_t$ large.

- Now as $t \to \infty C(t) = Ze^{-E_0 t}$
- At large times the exponential fall off of *C*(*t*) gives the ground state energy.

Sinéad Ryan (TCD)

From correlators to energies

- In general works well for extracting ground states
- Higher excitation energies hard to extract by just fitting to exponentials.

- The correlator and effective mass of the J/Ψ meson.
- For $\mathcal{O}_i = \mathcal{O}_j$ the correlation function is positive definite and $m_{effective}$ converges monotonically from above.

The QCD spectrum (2)

- The lattice has finite extent impose (anti)-periodic boundary conditions. Then meson correlators are symmetric about the midpoint of the lattice ie $e^{-mt} \rightarrow e^{-mt} + e^{-m(T-t)}$ where *T* is the time extent.
- Want to optimise O to get a large overlap with the wavefunction of the state of interest ie make

$$\mathcal{Z}_n(\vec{p}) \equiv \frac{|\langle 0|\mathcal{O}_i|n\rangle|^2}{2E_n(\vec{p})}$$

the spectral weight of the *n*th state large for state of interest and small for the rest.

What about excitations?

One approach: variational method

If we can measure $C_{ij}(t) = \langle 0 | \phi_i(t) \phi_j^{\dagger}(0) | 0 \rangle$ for all *i*, *j* and solve generalised eigenvalue problem:

 $\mathbf{C}(t) \, \underline{v} = \lambda \mathbf{C}(t_0) \, \underline{v}$

then

$$\lim_{t-t_0\to\infty}\lambda_k=e^{-\boldsymbol{E}_kt}+\mathcal{O}\left(e^{-\Delta \boldsymbol{E}_nt}\right)$$

For this to be practical, we need:

- a 'good' basis set that **resembles the states** of interest
- all elements of this correlation matrix measured

[see Blossier et.al. JHEP 0904 (2009) 094]

Current and Future Experiments: motivating lattice spectroscopy

from the 2010 Review of Particle Physics. Please use this CITATION: K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).

G back to contents

LIGHT UNFLAVOR	ED MESONS (S =	C = B = 0)			
		For I=1 (II, b, p, a):	u d, (u u-d d)/√2, d u;		
		tor <i>I</i> =0 (η, η, h, h, ω, φ, f	$(, f): c_1(u \overline{u} + d \overline{d}) + c_2(s \overline{s})$		
n [±]	1 (0)	η(1475)	0+(0++)	 f₂(1910) 	0+(2++)
п ⁰	1-(0-+)	f ₀ (1500)	0+(0++)	f ₂ (1950)	0+(2++)
η	0*(0-+)	• f ₁ (1510)	0*(1**)	 ρ₃(1990) 	1+(3)
$f_0(600) \text{ or } \sigma$	0*(0**)	f_(1525)	0+(2++)	f ₂ (2010)	0+(2++)
ρ(770)	1*(1)	• f_(1565)	0+(2++)	• f _o (2020)	0+(0++)
ω(782)	0 (1)	• p(1570)	1+(1	a,(2040)	1-(4++)
η (958)	0*(0**)	 h, (1595) 	0 (1+-)	f.(2050)	0+(4++)
1 ⁰ (ago)	0*(0**)	II. (1600)	1-(1-+)	 π (2100) 	0 (4) 4 (4)
a ₀ (990)	1_(0**)	• a, (1640)	1-(1++)	• f (2100)	1 (2)
φ(1020)	0 (1)	 f_(1640) 	0+(2++)	(2150)	0 (0)
h((110)	0 (1')	n_(1645)	0 ⁺ (2 ⁻⁺)	. 2(2150)	0 (2)
D ₁ (1235)	1*(1***)	(1650)	0(2)	p(2150)	1 (1)
a ₁ (1260)	1-(1**)	ω_(1670)	0 (1)	• f_(2200)	0 (1)
f ₂ (1270)	0*(2**)	n (1670)	(5)	0, ,	0 ⁺ (2 ⁺⁺ or
r ₁ (1285)	0*(1**)	2' '	0 (1)	• f _j (2220)	4++)
η(1295)	0+(0-+)	ρ_(1690)	1+(2-)	 η(2225) 	0+(0-+)
<i>п</i> (1300)	1 (0+)	a(1700)	1+(1	 ρ₃(2250) 	1*(3)
a2(1320)	1 (2++)	• a _n (1700)	1-(2++)	f ₂ (2300)	0+(2++)
r ₀ (1370)	0+(0++)	f_(1710)	0+(0++)	 f₄(2300) 	0+(4++)
• h ₁ (1380)	? (1**)	• n(1760)	0*(0*)	• f _o (2330)	0+(0++)
л ₁ (1400)	1-(1-+)	п(1800)	1-(0-+)	f _o (2340)	0+(2++)
η(1405)	0+(0-+)	. f ₂ (1810)	0*(2**)	 ρ_e(2350) 	1+(5
r ₁ (1420)	0*(1**)	• X(1835)	? [?] (? ⁻⁺)	• a.(2450)	1 (0)
ω(1420)	0 (1)	φ ₃ (1850)	0 (3)	- (2510)	1 (6)
• / ₂ (1430)	0+(2++)	 η₂(1870) 	0*(2**)	6/20.07	0.(0)
a ₀ (1450)	1 (0++)	π ₀ (1880)	1-(2-+)	OMITTED FROM SUMMARY TABLE	
ρ(1450)	1*(1)	• <i>p</i> (1900)	1+(1		
		PACE AND A DECK	10.7		

The GlueX experiment at JLab

- 12 GeV upgrade to CEBAF ring
- New experimental hall: Hall D
- New experiment: GlueX
- Aim: photoproduce mesons, in particular the hybrid meson (with intrinsic gluonic excitations)
- Expected to start taking data 2014

Panda@FAIR, GSI

- Extensive new construction at GSI Darmstadt
- Expected to start operation 2014

PANDA: <u>AN</u>nihilation at Anti-<u>P</u>roton DArmstadt

- at <u>DA</u>rmstad
- Anti-proton beam from FAIR on fixed-target.
- Physics goals include searches for hybrids and glueballs (as well as charm and baryon spectroscopy).

A renaissance in charmonium spectroscopy

- Early in the noughties, new narrow structures were seen by Belle and BaBar above the open-charm threshold.
- This led to substantial renewed interest in spectroscopy. Were these more quark-anti-quark states, or something more?
 - X(3872): very close to $D\bar{D}$ threshold a molecule?
 - Y(4260): a 1⁻⁻ hybrid?
 - $Z^{\pm}(4430)$: charged, can't be \overline{cc} .
- Very little is known and no clear picture seems to be emerging...
- Lattice calculations have a role to play

Lattice Hadron Spectroscopy

- Significant experimental effort hoping to understand light hadron and charm spectroscopy
 - Are there resonances that don't fit in the quark model?
 - Are there gluonic excitations in this spectrum?
 - What structure does confinement lead to?
 - How do resonances decay?
- To use LQCD to address these questions means:
 - identifying continuum properties of states
 - going beyond precision ground state spectroscopy to compute scattering and resonance widths
- To achieve this we need new tools
 - Techniques that give statistical precision
 - Methods for operator construction and spin identification on lattice
 - New methods for resonance and isoscalar physics
 - Control over extrapolations $(m_q \rightarrow 0, V \rightarrow \infty, a \rightarrow 0)$.

Tools not interdependent but should work well together

Textbooks

- M. Creutz: Quarks, Gluons and Lattices (Cambridge Univ. Press, 1983)
- H. J. Rothe: Lattice Gauge Theories An Introduction (World Scientific, 1992)
- I. Montvay and G. Münster: Quantum Fields on a Lattice (Cambridge University Press:1997)
- J. Smit: Introduction to Quantum Fields on a Lattice (Cambridge University Press: 2002)
- T. Degrand and C. Detar: Lattice Methods for Quantum Chromodynamics (World Scientific: 2006)
- C. Gattringer and C. B. Lang: Quantum Chromodynamics on the Lattice (Springer 2010)

Lectures and reviews

- J. W. Negele, *QCD and Hadrons on a lattice*, NATO ASI Series B: Physics vol. 228, 369, eds. D. Vautherin, F. Lenz and J. W. Negele.
- M. Lüscher, Advanced Lattice QCD, Les Houches Summer School in Theoretical Physics, Session 68: Probing the Standard Model of Particle Interactions, Les Houches 1997, 229, hep-lat/9802029
- R. Gupta, Introduction to Lattice QCD, hep-lat/9807028.
- P. Lepage, Lattice for Novices, hep-lat/0506036.
- H. Wittig, Lecture week, SFB/TR16, 3-7 Aug. 2009, Bonn.