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Continuum limit

The continuum limit
The lattice is just a regulator, we want to take the a → 0
continuum limit.
But the lattice action does not depend on a.

S [ψ] =
∑

n

β

6

∑

p

Tr(U! +U†
!)

Or even when it does, it just carries the dimension, it can be
absorbed in the fields

S [ψ] =
∑

n

β

6

∑

p

Tr(U! +U†
!)

+a3(ψ̄nγµUn,µψn+µ + ψ̄nγµU
†
n−µ,µψn−µ + amψ̄nψn)

The lattice spacing emerges through the coupling β = 6/g2.
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The continuum limit - massless case

On the lattice it is natural to work with bare quantities: β = 6/g2

is the coupling.
Consider a physical quantity mp at some coupling β :
mlatt(g(a)) = amp

a
d

da
mp = 0 = a

dg(a)

da
× dmlatt

dg
−mlatt

β(g) = a
dg(a)

da
= −β0g

3 − β1g
5 . . .

is the RG β function (β0 > 0! )
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The continuum limit - massless case

Integrate the equation (lowest order for now):

∫
dg

β(g)
=

∫
dmlatt

mlatt

−1

2β0g2
= ln

mlatt

Λ

mlatt = Ωe−1/(2β0g2) = amp

where Ω is just an integration constant.
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The continuum limit - massless case

a =
1

Λ
e−1/2β0g2

g−β1/β
2
0 (1 +O(g2))

the relation between a and β
An example : Pure gauge Wilson action, β = 6.0; The string
tension from the static potential is a

√
σ = 0.220. Since√

σ = 460MeV ,
a(β = 6.0) = 0.095fm

Now predict Λ and a(g) everywhere else.
When this works, the system is in the asymptotic scaling regime.
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Dimensional transmutation

Magic happened: We started with a system that had no
dimensional parameter and through (necessary) regularization we
generated a mass scale.

Λ =
1

a
e−1/2β0g(a)2g(a)−β1/β

2
0

is the ”Lambda parameter”.
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The continuum limit - massless case

a → 0 means g2 → 0
At the same time

mlatt = amphys −→ 0 or ξ ∼ m−1
latt → ∞

the bare coupling has to be tuned to a critical point with infinite
correlation length.
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The continuum limit - massless case

The general approach did not rely on perturbation theory.
Very general, very important:
A continuum limit can be defined by tuning the bare parameter to
the critical surface of a lattice system. As long as the critical
behavior is universal the lattice continuum limit is universal as well.
Give up one physical quantity to set the physical scale - everything
else is a prediction.
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Renormalization group
We are doing the bare coupling analogue of the continuum
(Callan-Symanzik) RG treatment:
g(µ) : renormalized coupling at scale µ, mp some physical quantity

µ
d

dµ
mp(g(µ), µ) = 0 = µ

dg(µ)

dµ
× ∂mp

∂g
+mp

has the same solution. The renormalized β function

β(g(µ)) = µ
dg(µ)

dµ
= −β0g

3 − β1g
5 . . .

mp = Λre
−1/2β0g2

g−β1/β
2
0 (1 +O(g2))

But are the bare and renormalzied β functions the same? How
about the Λ parameters?
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Homework

Show that the RG β functions corresponding to different
definitions of the renormalized or bare couplings are identical to
two loop level, i.e. β0 and β1 are universal. Use

g1 = g2 + cg3
2

The λ parameters are different between different schemes but can
be connected at the 1-loop level, i.e knowing c is sufficient.
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Renormalization group

Tuning

• Bare parameters: tune the bare couplings as a changes

• Continuum: tune the renormalized couplings as µ changes

to keep physical predictions unchanged
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Renormalized coupling

There are many possible definitions:

• Perturbative, based on some subtraction scheme (MS or
MOM, etc)

• Non-perturbative:
• Coulomb term of the static potential
• Schrodinger functional coupling
• Wilson flow coupling

They can be connected perturbatively.
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Including the quark mass
There are two lattice parameters, β and m

a
dg

da
≡ β(g) = β0g

3β1g
5 + . . .

a
dm

da
≡ mγ(g) = m(γ0g

2 + γ1g
4 . . . )

Solve the first equation as before

a =
1

Λ
e−1/2β0g2

and the second ∫
dm

m
=

∫
da

a
γ(g) =

∫
dg

β(g)
γ(g)
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Including the quark mass

m = Mgγ0/β0 ∼ Mln(1/aΛ)−γ0/β0

M is physical (fixed), m(a) is now predicted

0

a

m(a)

g(a)

Need two physical quantities to set Λ
and m
Tune both β and m to the Gaussian
FP
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β function

Nf fermions in the fundamental representation, gauge group
SU(N)

β0 =
1

16π2
(11N/3− 2Nf /3)

β1 = (
1

16π2
)2(34N2/3− 10NNf /3− Nf (N

2 − 1)/N)

γ0 =
1

16π2

3(N2 − 1)

N

• β0 = 0 when Nf = 16.5 (N = 3) : loss of asymptotic freedom

• β1 = 0 when Nf = 8.05 (N = 3) : second zero of the β
function

What does that mean?
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β function
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The continuum limit - massless case

The general approach did not rely on perturbation theory.
Very general, very important:
A continuum limit can be defined by tuning the bare parameter to
the critical surface of a lattice system. As long as the critical
behavior is universal the lattice continuum limit is universal as well.

If the critical surface is not at g2 = 0 the continuum theory is not
going to be perturbative.
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Wilson renormalization group
Take a system with lattice spacing a or momentum cutoff π/a.
Integrate out the short distance/ high momentum modes

Z =

∫
Dφe−S[φ] =

∫
Dφ′e−S ′[φ′]

S [φ] −→ S ′[φ]

describes the flow in action space.
Long distance (infrared) physics is unchanged while

a −→ a′ = sa mlatt −→ smlatt
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Wilson renormalization group
Every allowed (by symmetries) coupling will be generated
S ′[φ] is a complicated action, but with diminishing cutoff effects

`   , ....2

`
1

`c

fixed point
Flow lines follow the change of the
action

S [φ] −→ S ′[φ]

Fixed points are at mlatt = 0 or ∞

Operators either flow towards (irrelevant - blue) or away (relevant -
green) the fixed point
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Wilson renormalization group

`   , ....2

`
1

`c

fixed point Relevant operators must be tuned
towards the FP to keep infrared
physics unchanged.
In QCD, g2 and m are relevant
operators
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Wilson renormalization group

`   , ....2

`
1

`c

fixed point

Irrelevant directions will die out, but
while present contribute as lattice
artifacts.

In QCD all other (infinitely many) operators are irrelevant. But
they can make a lattice action really good or pretty bad.
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The fixed point structure of QCD

β - m plane:


