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Why QCD?

SU(3)xSU(2)xU(1) Standard Model describes physics (way too)
well up to the TeV scale

The discovery of 125GeV nearly
SM Higgs (?) & no SUSY give
little constraint on BSM physics

Electroweak precision tests are more important than ever and
depend on strong interactions
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Why QCD?

QCD is a prototype model of gauge and fermion fields.
Adding scalars is trivial; SUSY not so much.

Models with different gauge groups, fermion representations and
fermion numbers are candidates for beyond SM phenomenology -
but all these candidates are strongly coupled and have to be
studied non-perturbatively.
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Why Lattice?

Strong interactions are

• Asymptotically free

• Confining

• Chirally broken

The latter two properties are non-perturbative.
Physical quantities are not analytic in the QCD coupling!
Lattice regularization is the only method that can describe
non-perturbative QCD
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Continuum QCD

Continuum Euclidean action:

S [A] =

∫
ddx

(
1

4
F 2
µν + ψ̄(x)γµDµψ(x)

)

F a
µ,ν = ∂µA

a
ν − ∂νA

a
µ + gf abcAb

µA
c
ν

Dµ = ∂µ − igAa
µt

a

Symmetries:

• SU(3) gauge symmetry

• Lorentz, C,P & T

• ψ → e iαψ

• In the m = 0 chiral limit ψ → e iγ5αψ
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Chiral symmetry breaking

Flavor symmetry: in m = 0 chiral limit

U(Nf )V × U(Nf )A = U(1)V × SU(Nf )V × U(1)A × SU(Nf )A

U(1)A gets broken by the anomaly
SU(Nf )A breaks spontaneously

→ N2
f − 1 massless Goldstone bosons (pions).

Fermion mass breaks the chiral symmetry explicitly

m2
π ∼ mq

mp = mp0 + cmq
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All Known Physics
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Lattice action: Scalars

Continuum Euclidean system:

Z =

∫
Dφe−S[φ]

S [φ] =

∫
ddx

(
1

2
(∂µφ(x))

2 +
1

2
m2φ(x)2 +

λ

4!
φ(x)4

)

Need to

1. Interpret
∫
Dφ

2. Regularize momentum integrals

Lattice discretization can do both.
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Lattice action: Scalars

Discretize:

φ(x) −→ φn, x = na∫
dxi −→ a

∑

ni∫
Dφ −→

∏

n

dφn

Discrete lattice derivative

∂µφ(x) −→ ∆µφn =
1

a
(φn+µ̂ − φn)

∆∗
µφn =

1

a
(φn − φn−µ̂)
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Lattice action: Scalars

The scalar lattice action:

S [φ] = a4
∑

n

(
1

2
(∆µφn)

2 +
1

2
m2φ2

n +
λ

4!
φ4
n

)

= a4
∑

n

(
−1

2
φn(∆

∗
µ∆µ)φn +

1

2
m2φ2

n +
λ

4!
φ4
n

)
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Homework

1) Show that in the λ → ∞ the scalar lattice action reduces to the
Ising model with φn = ±1. (You will have to rescale the field to
get ±1)
2) Generalize the discussion of the scalar model to complex scalar
and also to 2-component complex scalar. The latter one is the
relevant model for the Standard Model Higgs.



Introduction QCD fundamentals The lattice action Strong coupling Lattice fermions

Lattice action: naive fermions

Discretize:

ψ(x) −→ ψn, x = na∫
dxi −→ a

∑

ni∫
DψDψ̄ −→

∏

n

dψndψ̄n

The naive fermion lattice action:

S [ψ] = a4
∑

n

(
1

2
ψ̄nγµ(∆

∗
µ +∆µ)ψn +mqψ̄nψn

)
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Lattice action: gauge fields
The most important feature is local gauge symmetry.
Gauge transformation:

ψn → Vnψn, ψ̄n → ψ̄nV
†
n Vn ∈ SU(3)

and the role of the gauge field is to make derivatives gauge
invariant

ψ̄nψn+µ̂ −→ ψ̄nUn,µψn+µ̂

with Un,µ ∈ SU(3) transforming as

Un,µ −→ VnUn,µVn+µ̂
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Lattice action: gauge fields

Relation to continuum gauge field

Aµ(x) −→ Un,µ = e−iagAb
n,µt

b

Gauge invariant quantities:

ψ̄nγµUn,µψn+µ, φnUn,µφn+µ,∏

C
Un,µ for any closed loop

The gauged lattice action could be

S [ψ] ∼
∑

n

(
Tr(

∏

C
Un,µ + hc) + a3(ψ̄nγµUn,µψn+µ + h.c.+ amψ̄nψn)

)

Is it that simple?
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Lattice action

The simplest gauge action is the plaquette (Wilson gauge)

S [ψ] =
∑

n

β

6

∑

p

Tr(U! +U†
!)

+a3(ψ̄nγµUn,µψn+µ + ψ̄nγµU
†
n−µ,µψn−µ + amψ̄nψn)

but we could take any other closed loop (or combination of loops).
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Lattice action

Does it reproduce at least the naive a → 0 continuum limit?
Expand:

Un,µ = e−aAµ(n) = 1− aAµ(n) +
a2

2
Aµ(n)

2 + . . .

leads to
U! = e−a2Gµν , Gµν = Fµν +O(a)

so
Tr(U! +U†

!) = 2Tr1+ a4Tr(Fµν)
2 +O(a6)

i.e. correct continuum form if β = 2N/g2.



Introduction QCD fundamentals The lattice action Strong coupling Lattice fermions

Homework

3) Prove the relations on the previous slide. Be careful: how many

terms are there in the
∑

ni
Tr(U! +U†

!)? What is the trace of the
SU(3) generators?
4) Can you derive similar expressions for the 1x2 and other small
loops? These terms show up in improved actions, like the
Symanzik gauge action.
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Observables
The expectation value of any operator is given

〈O〉 = 1

Z

∫ ∏

n,µ

DUn,µOe−Sg [U],

Z =

∫ ∏

n,µ

DUn,µe
−Sg [U]

Operators of physical quantities are called observables.
Expectation value of a non-gauge invariant operator vanishes.
Numerical simulations: create configurations with probability

e−Sg [U],

and calculate expectation values.
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Wilson loops & the static potential
The Wilson loop: closed gauge loop

An RxT Wilson loop describes a
quark-antiquark pair propagating at
distance R for time T

W (R ,T ) ∼ e−V (R)T

where V (R) is the static potential

In a confining theory

V (R) = c +
e

R
+ σR

Coulomb + linear terms (σ is the string tension)
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Glueballs

Glueballs are pure gauge bound states
Plaquettes can create glueball states
(different combinations are taken to
describe different quantum numbers).
If they are separated at distance T

〈!(0)!′(T )〉 ∼ e−mGT

where mG is the glueball mass.
Glueballs are notoriously difficult to calculate. (Tricks, tricks and
more tricks are needed.)
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Strong coupling expansions

Before powerful computers there was strong coupling expansion . . .
At small β

e−Sg [U] = e−β/6
∑

p Tr(U!+U†
!) =

∏

p

(
1− β

6
Tr(U! +U†

!) + . . .

)

〈O(U)〉 = 1

Z

∫ ∏

n,µ

DUn,µO(U)
∏

p

(
1− β

6
Tr(U! +U†

!) + . . .

)
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Strong coupling expansions

Which terms survive
∫
DU? Where U and U† or three U’s meet

∫
dUTr(UV1)Tr(U

†V2) = Tr(V1V2)

(OK, this should really be done with group characters.)
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Wilson loop at strong coupling
〈O(U)〉 = 1

Z

∫ ∏

n,µ

DUn,µO(U)
∏

p

(
1− β

6
Tr(U! +U†

!) + . . .

)

Cover every link with an
opposite directional one:

Need RxT plaquettes to cover it all

W (R ,T ) ∼ βRT ∼ eT (Rlog(β))

The potential

V (R) = −R log(β)

linear in R .

The strong coupling gauge model is confining!
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Wilson loop at strong coupling
Next order : plaquette sticking out:
β4, multiplicity 4*RxT, etc

The string tension:( u = β/6 )

−σ = ln(u) + 4u4 + 12u5 − 10u6 . . .
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Glueballs in strong coupling

Lowest order : connect the two plaquettes with a tube:

〈O〉 ∼ (
β

6
)4T ∼ e−T×4ln(β/6)

giving
mG = −4lnu± 3u . . .

The rest depends on the glue ball quantum numbers.
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Message from strong coupling expansion

The strong coupling pure gauge system is

• Confining

• Has massive glueballs

• Meson spectrum shows chiral symmetry breaking (but that’s
not exact)

Is there any use for the strong coupling expansion in the are of
supercomputers?
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Homework

3) Calculate the next order term to the strong coupling expansion
of the potential. (It is known to order 14)
4) Calculate the glueball mass in next order strong coupling
expansion. Take two plaquettes, parallel to each other for
simplicity.
5) Feeling ambitious? Calculate the potential between two
Polyakov lines at finite temperature in the strong coupling.
References: Montvay&Munster has extensive discussion about the
strong coupling expansion.


