High Temperature and Density in Lattice QCD: Chiral symmetry restoration

C. DeTar

University of Utah

August 6-10, 2012

Chiral symmetry

► Continuum Euclidean fermion action for N_f flavors:

$$\mathcal{S}_{\mathcal{F}} = \sum_{f=1}^{N_f} \int d^4 x [ar{\psi}_f(x) \gamma_\mu (\partial_\mu + i e A^a_\mu \lambda^a/2) \psi_f(x) + m_f ar{\psi}_f(x) \psi_f(x)]$$

• Degenerate masses: $SU(N_f) \times U(1)$ symmetry:

$$\delta\psi(\mathbf{x}) = \left(1 + i\theta^0/2 + i\theta^k \tau^k/2\right)\psi(\mathbf{x})$$

where τ^k are generators of $SU(N_f)$.

► Zero masses: $SU(N_f)_L \times SU(N_f)_R \times U(1) \times U_A(1)$

$$\begin{split} \delta\psi(x) &= \left(1 + i\theta^0/2 + i\theta^k \tau^k/2 + i\phi^0 \gamma_5/2 + i\phi^k \tau^k \gamma_5/2\right)\psi(x) \\ \delta\bar{\psi}(x) &= \bar{\psi}(x)\left(1 - i\theta^0/2 - i\theta^k \tau^k/2 + i\phi^0 \gamma_5/2 + i\phi^k \tau^k \gamma_5/2\right) \end{split}$$

Chiral symmetry

- ► At zero temperature the U_A(1) symmetry (φ⁰ term) is broken by the gauge anomaly.
- ► The axial chiral symmetry (\$\phi^k\$ terms\$) is broken spontaneously at zero temperature

$$\left\langle \bar{\psi}_{f}\psi_{f}
ight
angle
eq 0.$$

• We have $N_f^2 - 1$ Goldstone bosons.

Transformation of quark bilinears ($N_f = 2$ case)

• Linear sigma model fields ($f_0 \equiv \sigma$. $a_0 \equiv \delta$.)

$$\begin{aligned} \pi^{k} &= \bar{\psi} \tau^{k} \gamma_{5} \psi \quad f_{0} &= \bar{\psi} \psi \\ a_{0}^{k} &= \bar{\psi} \tau^{k} \psi \quad \eta &= \bar{\psi} \gamma_{5} \psi \end{aligned}$$

Under an SU(2) axial transformation

$$\delta \pi^{k} = i\phi^{k}f_{0} \quad \delta f_{0} = i\phi^{k}\pi^{k}$$
$$\delta a_{0}^{k} = i\phi^{k}\eta \quad \delta \eta = i\phi^{k}a_{0}^{k}$$

• Under a $U_A(1)$ (axial) transformation

$$\delta \pi^{k} = i\phi^{0}a_{0}^{k} \quad \delta f_{0} = i\phi^{0}\eta$$
$$\delta a_{0}^{k} = i\phi^{0}\pi^{k} \quad \delta \eta = i\phi^{0}f_{0}$$

	$SU(2)_L imes SU(2)_R$		
	$\pi: \ ar{\psi} au\gamma_5\psi$	\leftrightarrow	$f_0: \bar{\psi}\psi$
$U_A(1)$	\$_		\uparrow
	$a_0: ar{\psi} au\psi$	\leftrightarrow	$\eta: \; ar{\psi} \gamma_5 \psi$

C. DeTar (U Utah)

Chiral effective theory

► The chiral theory is a low-energy effective theory for QCD, based on N²_f − 1 Goldstone bosons, π^k. We define (nonlinear sigma model)

$$U = \exp\left(\frac{i}{f}\hat{\pi}_k \tau_k\right)$$

- f is a low energy constant (closely related to the pion decay constant).
- Chiral effective Lagrange density

$$\mathcal{L} = rac{f^2}{4} \operatorname{Tr} \left(\partial_{\mu} U \partial_{\mu} U^{\dagger}
ight) + f^2 B \operatorname{Re} \operatorname{Tr} (MU)$$

- ► M = diag{m₁, m₂,...} contains the quark masses. B is another low-energy constant.
- ▶ When M = 0 the Lagrange density is invariant under the chiral transformation

$$U \to V_R U V_L^{\dagger}$$

Symmetry restoration

- The chiral model behaves like a ferromagnetic spin system. For $N_f = 2$ it is equivalent to O(4).
- Quark masses play the role of a magnetic field. Re Tr U plays the role of magnetization. It is the analog of $\langle \bar{\psi}\psi \rangle$.
- At low temperatures we expect spontaneous symmetry breaking and at high temperatures we expect symmetry restoration.
- ► Restoration of SU(N_f)_L × SU(N_f)_R at high T in QCD, therefore seems certain.
- At sufficiently high mass we expect no phase transition.
- ► Whether the U_A(1) symmetry is restored depends on the fate of the anomaly at high T.

Chiral symmetry

Reference: R. Pisarski and F. Wilczek, Phys. Rev. D29, 338 (1984).

- The nature of the chiral phase transition depends on N_f .
- For $N_f \ge 3$ the phase transition is first order.
- ► The U_A(1) symmetry should be restored at least asymptotically at high T but its restoration needn't occur at the same temperature as that of SU(N_f)_L × SU(N_f)_R.
- For $N_f = 2$, the nature of the phase transition depends on what happens with $U_A(1)$.
- If $U_A(1)$ is effectively restored at the same temperature as $SU(N_f)_L \times SU(N_f)_R$, the transition can be a fluctuation-driven first-order transition.
- Otherwise, it is continuous (second order).

C. DeTar (U Utah)

Question to be answered in lattice simulations

- Is there a phase transition at the physical (nonzero) values of the quark masses?
- ▶ A first order transition is resistant to small changes, so if the transition is first order when $m_u = m_d = m_s = 0$, how large can the masses be before the phase transition is lost?
- At what temperature is $U_A(1)$ (at least effectively) restored?

Signals of chiral symmetry restoration

- At zero mass the order parameter $\langle \bar{\psi}_f \psi_f \rangle$ should vanish.
- If quark masses are not zero, we can still use $\langle \bar{\psi}_f \psi_f \rangle$ as an indicator.
- The chiral susceptibility $\chi_f = \frac{\partial}{\partial m_f} \langle \bar{\psi}_f \psi_f \rangle$ should peak at the transition (or crossover) temperature.
- ► Hadron correlators (implies masses) become equal. For SU(2)_L × SU(2)_R we have C_π = C_{f0}.

$$egin{array}{rll} C_{f_0}(x)&=&\left\langle f_0(x)f_0(0)
ight
angle\ C_{\pi}(x)\delta_{k,k'}&=&\left\langle \pi^k(x)\pi^{k'}(0)
ight
angle \end{array}$$

- Similarly $C_{\eta} = C_{a_0}$.
- With restoration of $U_A(1)$ we have $C_{\pi} = C_{a_0}$ and $C_{f_0} = C_{\eta}$.

Lattice treatment of chiral symmetry

The lattice implementation of chiral symmetry depends on the fermion formulation

- Wilson/clover fermions break chiral symmetry explicitly
- Staggered (asqtad, HISQ) fermions preserve a remnant of chiral symmetry.
- Overlap and domain wall fermions aim to treat chiral symmetry exactly.

Chiral observables

Regulating the ultraviolet divergence

$$\langle \bar{\psi}_f \psi_f \rangle = m_f/a^2 + \dots$$

• So subtract the light quark $(m_u = m_d)$ and strange quark condensates:

$$D_{ud,s}(T) = \left[\left\langle \bar{\psi}\psi \right\rangle_{ud} - m_{ud}/m_s \left\langle \bar{\psi}\psi \right\rangle_s
ight]$$

Also subject to multiplicative renormalization (independent of T).

$$Z_S \bar{\psi} \psi$$

 So take the ratio before comparing results from different calculations.

$$\Delta_{ud,s}(T) = D_{ud,s}(T)/D_{ud,s}(T=0)$$

Numerical results

[HotQCD Phys. Rev. D85 (2012) 054503]

Chiral susceptibility

[HotQCD Phys. Rev. D85 (2012) 054503]

C. DeTar (U Utah)

Banks-Casher relations

[Ohno, Heller, Karsch, Mukherjee, PoS LATTICE2011 (2011) 210]

Susceptibilities

$$\chi_{S} = \left\langle \int C_{f_0}(x) \right\rangle \quad \chi_{P} = \left\langle \int C_{\eta}(x) \right\rangle.$$

Banks-Casher (extended)

$$\langle \bar{\psi}\psi \rangle = m \int_{-\infty}^{\infty} d\lambda \frac{\rho(\lambda)}{\lambda^2 + m^2} \chi_P - \chi_S = \int_{-\infty}^{\infty} d\lambda \frac{2m^2\rho(\lambda)}{(\lambda^2 + m^2)^2}$$

• As
$$m \to 0 \langle \bar{\psi}\psi \rangle = \pi \rho(0)$$
.

- If $SU(2)_R \times SU(2)_L$ is restored we get $\chi_P \chi_S = 0$.
- This happens if $\rho(\lambda)$ opens up a gap, for example.

C. DeTar (U Utah)

Exercise

In terms of the Euclidean Dirac matrix M = m + D, the chiral condensate is

$$\left< ar{\psi} \psi \right> = {
m Tr} \, M^{-1}$$

The eigenvalues and eigenvectors of \mathcal{P} satisfy $Mu_n = i\lambda_n u_n$. Assume that the antihermitian \mathcal{P} operator also satisfies the anticommutation relation $\{\mathcal{P}, \gamma_5\} = 0$.

Prove the Banks-Casher relation

$$\left\langle ar{\psi}\psi
ight
angle =m\int_{-\infty}^{\infty}d\lambdarac{
ho(\lambda)}{\lambda^2+m^2}.$$

where the spectral density is constructed from $1/V \sum_n \rightarrow \int d\lambda \rho(\lambda)$. Then show that at zero mass $\langle \bar{\psi}\psi \rangle = \pi \rho(0)$.

$SU(2) \times SU(2)$ restoration

- $N_{\tau} = 8$ and light quark masses.
- There appears to be a zero for T > 168 MeV.

$U_A(1)$ restoration

• There appears to be a gap for T > 240 MeV, approximately.

C. DeTar (U Utah)

INT Summer School 2012

- Assume the phase transition happens at $T = T_c$ and $m_{ud} = 0$.
- Rescale T and m_{ud} to give t and h:

$$t = \frac{1}{t_0} \frac{T - T_c^0}{T_c^0}$$

$$h = \frac{1}{h_0} H \text{ for } H = \frac{m}{m_0}$$

Free energy density as a function of quark masses and temperature in the vicinity of a critical point

$$f = -\frac{T}{V} \log Z \equiv f_{
m sing}(t,h) + f_{
m reg}(T,m_{ud},m_s)$$
.

- The singular part is singular at the phase transition.
- ► Up to a rescaling of the variables, the singular part is universal, depending only on the symmetries and dimensionality of the system! Here it is O(4) in 3D.

Repeating,

$$f = -\frac{T}{V} \log Z \equiv f_{\mathrm{sing}}(t, h) + f_{\mathrm{reg}}(T, m_{ud}, m_s)$$

• Define $z = t/h^{1/\beta\delta}$ for universal critical exponents δ and β . Then we have, further

$$f_{\rm sing}(t,h) = h^{1/\delta} f_s(z)$$

• Define $M_b \equiv \frac{m_s \langle \bar{\psi} \psi \rangle_{ud}}{T^4}$ where $\langle \bar{\psi} \psi \rangle_{ud} = T/V \partial \log Z / \partial m_{ud}$.

Then

$$M_b(T,H) = h^{1/\delta} f_G(t/h^{1/\beta\delta}) + f_{M,\mathrm{reg}}(T,H)$$

• The function f_G is universal.

- The chiral susceptibility is the derivative $\chi_{ud} = \frac{\partial}{\partial m_{ud}} \langle \bar{\psi}\psi \rangle_{ud}$
- ▶ We get a scaling expression for it by differentiation

$$\frac{\chi_{ud}}{T^2} = \frac{T^2}{m_s^2} \left(\frac{1}{h_0} h^{1/\delta - 1} f_{\chi}(z) + \frac{\partial f_{M, reg}(T, H)}{\partial H} \right)$$

where

$$f_{\chi}(z) = rac{1}{\delta} \left[f_G(z) - rac{z}{eta} f'_G(z)
ight].$$

▶ So the behavior of $\langle \bar{\psi}\psi \rangle_{ud}$ and χ_{ud} is governed by the same singular function.

[HotQCD Phys. Rev. D85 (2012) 054503]

- Used only a leading order Taylor expansion for the regular part
- Such considerations lead to $T_c = 154(9)MeV$.