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Chiral symmetry

I Continuum Euclidean fermion action for Nf flavors:

SF =

Nf∑
f =1

∫
d4x [ψ̄f (x)γµ(∂µ + ieAa

µλ
a/2)ψf (x) + mf ψ̄f (x)ψf (x)]

I Degenerate masses: SU(Nf )× U(1) symmetry:

δψ(x) =
(

1 + iθ0/2 + iθkτk/2
)
ψ(x)

where τk are generators of SU(Nf ).

I Zero masses: SU(Nf )L × SU(Nf )R × U(1)× UA(1)

δψ(x) =
(

1 + iθ0/2 + iθkτk/2 + iφ0γ5/2 + iφkτkγ5/2
)
ψ(x)

δψ̄(x) = ψ̄(x)
(

1− iθ0/2− iθkτk/2 + iφ0γ5/2 + iφkτkγ5/2
)
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Chiral symmetry

I At zero temperature the UA(1) symmetry (φ0 term) is broken by
the gauge anomaly.

I The axial chiral symmetry (φk terms) is broken spontaneously at
zero temperature 〈

ψ̄f ψf

〉
6= 0.

I We have N2
f − 1 Goldstone bosons.
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Transformation of quark bilinears (Nf = 2 case)
I Linear sigma model fields (f0 ≡ σ. a0 ≡ δ.)

πk = ψ̄τkγ5ψ f0 = ψ̄ψ

ak0 = ψ̄τkψ η = ψ̄γ5ψ.

I Under an SU(2) axial transformation

δπk = iφk f0 δf0 = iφkπk

δak0 = iφkη δη = iφkak0

I Under a UA(1) (axial) transformation

δπk = iφ0ak0 δf0 = iφ0η

δak0 = iφ0πk δη = iφ0f0

SU(2)L × SU(2)R
π : ψ̄τγ5ψ ↔ f0 : ψ̄ψ

UA(1) l l
a0 : ψ̄τψ ↔ η : ψ̄γ5ψ
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Chiral effective theory

I The chiral theory is a low-energy effective theory for QCD, based
on N2

f − 1 Goldstone bosons, πk . We define (nonlinear sigma
model)

U = exp

(
i

f
π̂kτk

)
I f is a low energy constant (closely related to the pion decay

constant).

I Chiral effective Lagrange density

L =
f 2

4
Tr
(
∂µU∂µU†

)
+ f 2BReTr(MU)

I M = diag{m1,m2, . . . } contains the quark masses. B is another
low-energy constant.

I When M = 0 the Lagrange density is invariant under the chiral
transformation

U → VRUV †L
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Symmetry restoration

I The chiral model behaves like a ferromagnetic spin system. For
Nf = 2 it is equivalent to O(4).

I Quark masses play the role of a magnetic field. ReTr U plays the
role of magnetization. It is the analog of

〈
ψ̄ψ
〉
.

I At low temperatures we expect spontaneous symmetry breaking
and at high temperatures we expect symmetry restoration.

I Restoration of SU(Nf )L × SU(Nf )R at high T in QCD, therefore
seems certain.

I At sufficiently high mass we expect no phase transition.

I Whether the UA(1) symmetry is restored depends on the fate of
the anomaly at high T .
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Chiral symmetry

Reference: R. Pisarski and F. Wilczek, Phys. Rev. D29, 338 (1984).

I The nature of the chiral phase transition depends on Nf .

I For Nf ≥ 3 the phase transition is first order.

I The UA(1) symmetry should be restored at least asymptotically
at high T but its restoration needn’t occur at the same
temperature as that of SU(Nf )L × SU(Nf )R .

I For Nf = 2, the nature of the phase transition depends on what
happens with UA(1).

I If UA(1) is effectively restored at the same temperature as
SU(Nf )L × SU(Nf )R , the transition can be a fluctuation-driven
first-order transition.

I Otherwise, it is continuous (second order).
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Suggested phase diagram
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Question to be answered in lattice simulations

I Is there a phase transition at the physical (nonzero) values of the
quark masses?

I A first order transition is resistant to small changes, so if the
transition is first order when mu = md = ms = 0, how large can
the masses be before the phase transition is lost?

I At what temperature is UA(1) (at least effectively) restored?

C. DeTar (U Utah) INT Summer School 2012 August 6-10, 2012 9 / 22



Signals of chiral symmetry restoration

I At zero mass the order parameter
〈
ψ̄f ψf

〉
should vanish.

I If quark masses are not zero, we can still use
〈
ψ̄f ψf

〉
as an

indicator.

I The chiral susceptibility χf = ∂
∂mf

〈
ψ̄f ψf

〉
should peak at the

transition (or crossover) temperature.

I Hadron correlators (implies masses) become equal. For
SU(2)L × SU(2)R we have Cπ = Cf0 .

Cf0(x) = 〈f0(x)f0(0)〉

Cπ(x)δk,k ′ =
〈
πk(x)πk

′
(0)
〉

I Similarly Cη = Ca0 .

I With restoration of UA(1) we have Cπ = Ca0 and Cf0 = Cη.

C. DeTar (U Utah) INT Summer School 2012 August 6-10, 2012 10 / 22



Lattice treatment of chiral symmetry

The lattice implementation of chiral symmetry depends on the
fermion formulation

I Wilson/clover fermions break chiral symmetry explicitly

I Staggered (asqtad, HISQ) fermions preserve a remnant of chiral
symmetry.

I Overlap and domain wall fermions aim to treat chiral symmetry
exactly.
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Chiral observables

I Regulating the ultraviolet divergence〈
ψ̄f ψf

〉
= mf /a2 + . . . .

I So subtract the light quark (mu = md) and strange quark
condensates:

Dud ,s(T ) = [
〈
ψ̄ψ
〉
ud
−mud/ms

〈
ψ̄ψ
〉
s
]

I Also subject to multiplicative renormalization (independent of
T ).

ZS ψ̄ψ

I So take the ratio before comparing results from different
calculations.

∆ud ,s(T ) = Dud ,s(T )/Dud ,s(T = 0)
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Numerical results
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Chiral susceptibility
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Banks-Casher relations
[Ohno, Heller, Karsch, Mukherjee, PoS LATTICE2011 (2011) 210]

I Susceptibilities

χS =

〈∫
Cf0(x)

〉
χP =

〈∫
Cη(x)

〉
.

I Banks-Casher (extended)

〈
ψ̄ψ
〉

= m

∫ ∞
−∞

dλ
ρ(λ)

λ2 + m2

χP − χS =

∫ ∞
−∞

dλ
2m2ρ(λ)

(λ2 + m2)2

I As m→ 0
〈
ψ̄ψ
〉

= πρ(0).

I If SU(2)R × SU(2)L is restored we get χP − χS = 0.

I This happens if ρ(λ) opens up a gap, for example.
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Exercise

In terms of the Euclidean Dirac matrix M = m + D/ , the chiral condensate is〈
ψ̄ψ
〉

= Tr M−1

The eigenvalues and eigenvectors of D/ satisfy Mun = iλnun. Assume that
the antihermitian D/ operator also satisfies the anticommutation relation
{D/ , γ5} = 0.

Prove the Banks-Casher relation〈
ψ̄ψ
〉

= m

∫ ∞
−∞

dλ
ρ(λ)

λ2 + m2
.

where the spectral density is constructed from 1/V
∑

n →
∫

dλρ(λ).

Then show that at zero mass
〈
ψ̄ψ
〉

= πρ(0).
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SU(2)× SU(2) restoration
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[H. Ohno, U. M. Heller, F. Karsch, S. Mukherjee, PoS LATTICE2011 (2011)

210.]

I Nτ = 8 and light quark masses.

I There appears to be a zero for T > 168 MeV.
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UA(1) restoration
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I There appears to be a gap for T > 240 MeV, approximately.
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Universality and critical behavior

I Assume the phase transition happens at T = Tc and mud = 0.

I Rescale T and mud to give t and h:

t =
1

t0

T − T 0
c

T 0
c

h =
1

h0
H for H = ml

ms

I Free energy density as a function of quark masses and
temperature in the vicinity of a critical point

f = −T

V
log Z ≡ fsing(t, h) + freg(T ,mud ,ms) .

I The singular part is singular at the phase transition.

I Up to a rescaling of the variables, the singular part is universal,
depending only on the symmetries and dimensionality of the
system! Here it is O(4) in 3D.
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Universality and critical behavior

I Repeating,

f = −T

V
log Z ≡ fsing(t, h) + freg(T ,mud ,ms) .

I Define z = t/h1/βδ for universal critical exponents δ and β.
Then we have, further

fsing(t, h) = h1/δfs(z)

I Define Mb ≡
ms〈ψ̄ψ〉ud

T 4 where
〈
ψ̄ψ
〉
ud

= T/V ∂ log Z/∂mud .

I Then
Mb(T ,H) = h1/δfG (t/h1/βδ) + fM,reg(T ,H)

I The function fG is universal.
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Universality and critical behavior

I The chiral susceptibility is the derivative χud = ∂
∂mud

〈
ψ̄ψ
〉
ud

I We get a scaling expression for it by differentiation

χud

T 2
=

T 2

m2
s

(
1

h0
h1/δ−1fχ(z) +

∂fM,reg (T ,H)

∂H

)
where

fχ(z) =
1

δ

[
fG (z)− z

β
f ′G (z)

]
.

I So the behavior of
〈
ψ̄ψ
〉
ud

and χud is governed by the same
singular function.
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Universality and critical behavior
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[HotQCD Phys. Rev. D85 (2012) 054503]

I Used only a leading order Taylor expansion for the regular part

I Such considerations lead to Tc = 154(9)MeV .
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