High Temperature and Density in Lattice QCD: Chiral symmetry restoration

C. DeTar

University of Utah

August 6-10, 2012

Chiral symmetry

 \triangleright Continuum Euclidean fermion action for N_f flavors:

$$
S_F = \sum_{f=1}^{N_f} \int d^4x [\bar{\psi}_f(x)\gamma_\mu (\partial_\mu + ieA_\mu^a \lambda^a/2)\psi_f(x) + m_f \bar{\psi}_f(x)\psi_f(x)]
$$

 \blacktriangleright Degenerate masses: $SU(N_f) \times U(1)$ symmetry:

$$
\delta\psi(x) = \left(1 + i\theta^0/2 + i\theta^k \tau^k/2\right)\psi(x)
$$

where τ^k are generators of $SU(N_f).$

► Zero masses: $SU(N_f)_L \times SU(N_f)_R \times U(1) \times U_A(1)$

$$
\delta\psi(x) = (1 + i\theta^0/2 + i\theta^k \tau^k/2 + i\phi^0 \gamma_5/2 + i\phi^k \tau^k \gamma_5/2) \psi(x) \n\delta\bar{\psi}(x) = \bar{\psi}(x) (1 - i\theta^0/2 - i\theta^k \tau^k/2 + i\phi^0 \gamma_5/2 + i\phi^k \tau^k \gamma_5/2)
$$

Chiral symmetry

- \blacktriangleright At zero temperature the $U_\mathcal{A}(1)$ symmetry $(\phi^0$ term) is broken by the gauge anomaly.
- \blacktriangleright The axial chiral symmetry $(\phi^k$ terms) is broken spontaneously at zero temperature

$$
\left\langle \bar{\psi}_{f}\psi_{f}\right\rangle \neq0.
$$

► We have N_f^2-1 Goldstone bosons.

Transformation of quark bilinears ($N_f = 2$ case)

 \blacktriangleright Linear sigma model fields ($f_0 \equiv \sigma$. a₀ $\equiv \delta$.)

$$
\pi^k = \bar{\psi}\tau^k \gamma_5 \psi \qquad f_0 = \bar{\psi}\psi \n a_0^k = \bar{\psi}\tau^k \psi \qquad \eta = \bar{\psi}\gamma_5 \psi.
$$

 \blacktriangleright Under an $SU(2)$ axial transformation

$$
\delta \pi^k = i\phi^k f_0 \quad \delta f_0 = i\phi^k \pi^k
$$

$$
\delta a_0^k = i\phi^k \eta \quad \delta \eta = i\phi^k a_0^k
$$

 \triangleright Under a $U_A(1)$ (axial) transformation

$$
\delta \pi^k = i\phi^0 a_0^k \quad \delta f_0 = i\phi^0 \eta
$$

$$
\delta a_0^k = i\phi^0 \pi^k \quad \delta \eta = i\phi^0 f_0
$$

Chiral effective theory

 \triangleright The chiral theory is a low-energy effective theory for QCD, based on \mathcal{N}_{f}^2-1 Goldstone bosons, $\pi^k.$ We define (nonlinear sigma model)

$$
U = \exp\left(\frac{i}{f}\hat{\pi}_k \tau_k\right)
$$

- \triangleright f is a low energy constant (closely related to the pion decay constant).
- \triangleright Chiral effective Lagrange density

$$
\mathcal{L} = \frac{f^2}{4} \operatorname{Tr} \left(\partial_{\mu} U \partial_{\mu} U^{\dagger} \right) + f^2 B \operatorname{Re} \operatorname{Tr} (MU)
$$

- $M = \text{diag}\{m_1, m_2, \dots\}$ contains the quark masses. B is another low-energy constant.
- \triangleright When $M = 0$ the Lagrange density is invariant under the chiral transformation

$$
U \to V_R U V_L^{\dagger}
$$

Symmetry restoration

- \triangleright The chiral model behaves like a ferromagnetic spin system. For $N_f = 2$ it is equivalent to $O(4)$.
- \triangleright Quark masses play the role of a magnetic field. Re Tr U plays the role of magnetization. It is the analog of $\langle \bar{\psi}\psi \rangle.$
- \triangleright At low temperatures we expect spontaneous symmetry breaking and at high temperatures we expect symmetry restoration.
- Restoration of $SU(N_f)_L \times SU(N_f)_R$ at high T in QCD, therefore seems certain.
- \triangleright At sufficiently high mass we expect no phase transition.
- \triangleright Whether the $U_A(1)$ symmetry is restored depends on the fate of the anomaly at high T .

Chiral symmetry

Reference: R. Pisarski and F. Wilczek, Phys. Rev. D29, 338 (1984).

- \blacktriangleright The nature of the chiral phase transition depends on N_f .
- ► For $N_f \geq 3$ the phase transition is first order.
- \blacktriangleright The $U_A(1)$ symmetry should be restored at least asymptotically at high T but its restoration needn't occur at the same temperature as that of $SU(N_f)_I \times SU(N_f)_R$.
- \triangleright For $N_f = 2$, the nature of the phase transition depends on what happens with $U_A(1)$.
- If $U_A(1)$ is effectively restored at the same temperature as $SU(N_f)_L \times SU(N_f)_R$, the transition can be a fluctuation-driven first-order transition.
- \triangleright Otherwise, it is continuous (second order).

Question to be answered in lattice simulations

- If Is there a phase transition at the physical (nonzero) values of the quark masses?
- \triangleright A first order transition is resistant to small changes, so if the transition is first order when $m_{\mu} = m_d = m_s = 0$, how large can the masses be before the phase transition is lost?
- At what temperature is $U_A(1)$ (at least effectively) restored?

Signals of chiral symmetry restoration

- \blacktriangleright At zero mass the order parameter $\left\langle\bar{\psi}_f\psi_f\right\rangle$ should vanish.
- \blacktriangleright If quark masses are not zero, we can still use $\left\langle\bar{\psi}_f\psi_f\right\rangle$ as an indicator.
- ► The chiral susceptibility $\chi_f=\frac{\partial}{\partial n}$ $\frac{\partial}{\partial m_f}\left\langle\bar{\psi}_f\psi_f\right\rangle$ should peak at the transition (or crossover) temperature.
- \blacktriangleright Hadron correlators (implies masses) become equal. For $SU(2)_L\times SU(2)_R$ we have $\mathcal{C}_{\pi}=\mathcal{C}_{f_0}.$

$$
C_{f_0}(x) = \langle f_0(x) f_0(0) \rangle
$$

$$
C_{\pi}(x) \delta_{k,k'} = \langle \pi^k(x) \pi^{k'}(0) \rangle
$$

- Similarly $C_{\eta} = C_{a_0}$.
- \blacktriangleright With restoration of $U_\mathcal{A}(1)$ we have $\mathcal{C}_\pi=\mathcal{C}_{\mathsf{a}_0}$ and $\mathcal{C}_{\mathsf{f}_0}=\mathcal{C}_{\eta}.$

Lattice treatment of chiral symmetry

The lattice implementation of chiral symmetry depends on the fermion formulation

- \triangleright Wilson/clover fermions break chiral symmetry explicitly
- \triangleright Staggered (asqtad, HISQ) fermions preserve a remnant of chiral symmetry.
- \triangleright Overlap and domain wall fermions aim to treat chiral symmetry exactly.

Chiral observables

 \blacktriangleright Regulating the ultraviolet divergence

$$
\langle \bar{\psi}_f \psi_f \rangle = m_f/a^2 + \ldots
$$

So subtract the light quark $(m_u = m_d)$ and strange quark condensates:

$$
D_{ud,s}(T) = \left[\left\langle \bar{\psi}\psi \right\rangle_{ud} - m_{ud}/m_s \left\langle \bar{\psi}\psi \right\rangle_s \right]
$$

- \triangleright Also subject to multiplicative renormalization (independent of T). $Zs\bar{\psi}\psi$
- \triangleright So take the ratio before comparing results from different calculations.

$$
\Delta_{ud,s}(\mathcal{T})=D_{ud,s}(\mathcal{T})/D_{ud,s}(\mathcal{T}=0)
$$

Numerical results

[HotQCD Phys. Rev. D85 (2012) 054503]

Chiral susceptibility

Banks-Casher relations

[Ohno, Heller, Karsch, Mukherjee, PoS LATTICE2011 (2011) 210]

 \blacktriangleright Susceptibilities

$$
\chi_S = \left\langle \int C_{f_0}(x) \right\rangle \quad \chi_P = \left\langle \int C_{\eta}(x) \right\rangle.
$$

 \blacktriangleright Banks-Casher (extended)

$$
\langle \bar{\psi}\psi \rangle = m \int_{-\infty}^{\infty} d\lambda \frac{\rho(\lambda)}{\lambda^2 + m^2}
$$

$$
\chi \rho - \chi s = \int_{-\infty}^{\infty} d\lambda \frac{2m^2 \rho(\lambda)}{(\lambda^2 + m^2)^2}
$$

$$
\triangleright \text{ As } m \to 0 \langle \bar{\psi}\psi \rangle = \pi \rho(0).
$$

- F If $SU(2)_R \times SU(2)_L$ is restored we get $\chi_P \chi_S = 0$.
- \blacktriangleright This happens if $\rho(\lambda)$ opens up a gap, for example.

Exercise

In terms of the Euclidean Dirac matrix $M = m + \emptyset$, the chiral condensate is

$$
\left\langle { \bar \psi \psi} \right\rangle = \mathsf{Tr} \, M^{-1}
$$

The eigenvalues and eigenvectors of $\mathbb D$ satisfy $Mu_n = i\lambda_n u_n$. Assume that the antihermitian D operator also satisfies the anticommutation relation $\{\phi, \gamma_5\} = 0.$

Prove the Banks-Casher relation

$$
\langle \bar{\psi}\psi \rangle = m \int_{-\infty}^{\infty} d\lambda \frac{\rho(\lambda)}{\lambda^2 + m^2}.
$$

where the spectral density is constructed from $1/\mathcal{V}\sum_\mathsf{n}\rightarrow\int\mathsf{d}\lambda\rho(\lambda).$ Then show that at zero mass $\langle \bar{\psi}\psi \rangle = \pi \rho(0)$.

$SU(2) \times SU(2)$ restoration

- 210.]
	- $N_\tau = 8$ and light quark masses.
	- \blacktriangleright There appears to be a zero for $T > 168$ MeV.

$U_A(1)$ restoration

 \blacktriangleright There appears to be a gap for $T > 240$ MeV, approximately.

- Assume the phase transition happens at $T = T_c$ and $m_{ud} = 0$.
- Rescale T and m_{ud} to give t and h:

$$
t = \frac{1}{t_0} \frac{T - T_c^0}{T_c^0}
$$

$$
h = \frac{1}{h_0} H \text{ for } H = \frac{m_l}{m_s}
$$

 \triangleright Free energy density as a function of quark masses and temperature in the vicinity of a critical point

$$
f = -\frac{T}{V} \log Z \equiv f_{\text{sing}}(t, h) + f_{\text{reg}}(T, m_{ud}, m_s) .
$$

- \blacktriangleright The singular part is singular at the phase transition.
- \triangleright Up to a rescaling of the variables, the singular part is universal, depending only on the symmetries and dimensionality of the system! Here it is $O(4)$ in 3D.

 \blacktriangleright Repeating,

$$
f = -\frac{T}{V} \log Z \equiv f_{\text{sing}}(t, h) + f_{\text{reg}}(T, m_{ud}, m_s) .
$$

► Define $z=t/h^{1/\beta\delta}$ for universal critical exponents δ and $\beta.$ Then we have, further

$$
f_{\text{sing}}(t, h) = h^{1/\delta} f_{\mathsf{s}}(z)
$$

► Define $M_b\equiv \frac{m_{\rm s}\langle\bar\psi\psi\rangle_{_{ud}}}{T^4}$ where $\big<\bar\psi\psi\big>_{_{ud}}=T/V\partial\log Z/\partial m_{ud}.$

 \blacktriangleright Then

$$
M_b(T, H) = h^{1/\delta} f_G(t/h^{1/\beta\delta}) + f_{M, \text{reg}}(T, H)
$$

 \blacktriangleright The function f_G is universal.

- ► The chiral susceptibility is the derivative $\chi_{\bm{u}\bm{d}}=\frac{\partial}{\partial\bm{m}}$ $\frac{\partial}{\partial m_{ud}}\left\langle \bar{\psi}\psi\right\rangle _{ud}$
- \triangleright We get a scaling expression for it by differentiation

$$
\frac{\chi_{ud}}{T^2} = \frac{T^2}{m_s^2} \left(\frac{1}{h_0} h^{1/\delta - 1} f_\chi(z) + \frac{\partial f_{M,reg}(T, H)}{\partial H} \right)
$$

where

$$
f_{\chi}(z) = \frac{1}{\delta} \left[f_G(z) - \frac{z}{\beta} f'_G(z) \right].
$$

 \blacktriangleright So the behavior of $\left\langle\bar{\psi}\psi\right\rangle_{ud}$ and χ_{ud} is governed by the same singular function.

[HotQCD Phys. Rev. D85 (2012) 054503]

- \triangleright Used only a leading order Taylor expansion for the regular part
- Such considerations lead to $T_c = 154(9)$ MeV.