High Temperature and Density in Lattice QCD: Deconfining transition

C. DeTar

University of Utah

August 6-10, 2012

Free energy of a static charge

 \blacktriangleright Polyakov loop operator

$$
L(\mathbf{x}) = P \exp \left[\int ig A_0(\mathbf{x}, \tau) d\tau \right]
$$

 \blacktriangleright Expectation value

$$
\langle L(\textbf{x}) \rangle = \int [dU] L(\textbf{x}) \, \exp[-S_{\rm eff}(U)] / \int [dU] \, \exp[-S_{\rm eff}(U)].
$$

 \triangleright This operator builds a static external point source, so the expectation value gives the difference in free energy between the ensemble plus an additional static charge and the unmodified ensemble.

$$
\exp(-F_0/T)=\langle L\rangle
$$

- Actually $F_0 = F_0(a, T)$ depends on the lattice spacing and temperature.
- \triangleright F₀(a, T) is ultraviolet divergent (\sim const/a), just as in QED.
- \triangleright Usually, we renormalize so $F_0(T) \equiv F_0(a, T) F_0(a, T_0) + \text{const}$

Exercise

The Wilson fermion action for a fermion of bare mass m is

$$
S_F = \sum_{x,x'} \bar{\psi}(x)M(x,x'\psi(x') = \sum_{x} \bar{\psi}(x)\psi(x)
$$

$$
- \kappa \sum_{x,\mu} [\bar{\psi}(x)(1+\gamma_{\mu})U_{\mu}(x)\psi(x+\hat{\mu}) + \bar{\psi}(x+\hat{\mu})(1-\gamma_{\mu})U_{\mu}^{\dagger}(x)\psi(x)].
$$

where $\kappa = 1/(8 + 2ma)$. The fermion propagator is $M^{-1}(x,x').$ Note that $M = 1 - \kappa H$, where H is called the "hopping matrix". For large bare mass (small $\kappa)$ $[1-\kappa H]^{-1}$ can be evaluated as a geometric series (hopping parameter expansion). Find the propagator in leading order in κ for a static quark over the time interval $[0, t]$.

The partition function in the presence of a static quark at x is $\int [dU] \exp(-S)$ Tr $M^{-1}({\bf x}, 1/T; {\bf x}, 0)$ where the trace of the propagator is over color and spin.

So show that $\exp(-F_0/T)$ is proportional to the Polyakov loop operator, where F_0 is the free energy of a static quark, i.e., the difference in the free energies of the ensembles with the static quark and without.

Free energy of a pair of static charges

 \blacktriangleright Found through

$$
\exp[-F(\mathbf{R},T,a)/T] = \left\langle L(\mathbf{x})L^{\dagger}(\mathbf{x}+\mathbf{R})\right\rangle
$$

- At zero T this is the same as the static quark potential $V(R)$.
- \triangleright Confinement $R \to \infty$: $F(R) \to \sigma R$ (area law with area R/T).
- \triangleright Dynamical quarks screen the charges, so we always have, asymptotically,

$$
F(R, T, a) \rightarrow 2F_0(a, T)
$$

Static quark free energy

- Free energy of a static quark and antiquark pair $V(T, R)$
- \triangleright Consider $R \to \infty$: $V(T, R) \to 2F_q(T)$
- Pure glue: $F_q(T)$ is infinite at low T confined
- Finite at high T deconfined. First-order phase transition.

- \triangleright With sea quarks: $F_q(T)$ is finite at all T.
- If quarks are light enough, only crossover.

Static quark free energy

- \triangleright In the case illustrated below, the quarks are not infinitely massive
- \blacktriangleright $F_q(T)$ still decreases rapidly with increasing T
- \triangleright Only a qualitative indicator of deconfinement

Free energy of a charge pair

 \blacktriangleright Karsch, Laermann, Peikert, Nucl. Phys. **B605** (2001) 579.

- $N_f = 3$ with fixed $m_q = 0.1$. σ is the string tension.
- \triangleright Band of lines: Cornell phenomenological heavy quark potential

Strange quark number susceptibility

- \triangleright Also a qualitative indicator of deconfinement.
- $\blacktriangleright \ \ \chi_{\mathcal{S}} = \left\langle \mathit{N}^2_{\mathcal{S}} \right\rangle / (\mathit{VT})$ measures fluctuations in strangeness $\mathit{N}_{\mathcal{S}}$.
- At high T the strange degrees of freedom are light more fluctuations.

Dimensional Reduction

 \blacktriangleright Euclidean time boundary conditions

$$
A_{\mu}^{a}(\mathbf{x}, \tau) = A_{\mu}^{a}(\mathbf{x}, \tau + 1/T)
$$
periodic

$$
q(\mathbf{x}, \tau) = -q(\mathbf{x}, \tau + 1/T)
$$
antiperiodic

Fourier decomposition in imaginary time τ **is**

$$
A_{\mu}^{a}(\mathbf{x},\tau) = \sum_{n=-\infty}^{\infty} \exp(i\omega_{b,n}\tau) A_{\mu,n}^{a}(\mathbf{x}) \text{ for } \omega_{b,n} = 2\pi n \text{ T}
$$

$$
q(\mathbf{x},0) = \sum_{n=-\infty}^{\infty} \exp(i\omega_{f,n}\tau) q_{n}(\mathbf{x}) \text{ for } \omega_{f,n} = 2\pi (n + \frac{1}{2}) \text{ T}
$$

 \blacktriangleright Free-field Euclidean mass-shell condition

$$
p_x^2 + p_y^2 + p_z^2 + \omega_n^2 + m^2 = 0.
$$

Turning the Euclidean lattice on its side

In a Euclidean world, any direction can be called imaginary time. So swap z and τ and let $E = ip_z$.

 \blacktriangleright Free-field mass-shell condition

$$
E^2 = p_x^2 + p_y^2 + \omega_n^2 + m^2.
$$

 \triangleright Tower of 3D bosonic fields

$$
E_n^2 = p_x^2 + p_y^2 + m_b^2 + (2\pi nT)^2
$$

 \blacktriangleright Tower of 3D fermionic fields

$$
E_n^2 = p_x^2 + p_y^2 + m_f^2 + [2\pi(n + \frac{1}{2})\mathcal{T}]^2
$$

- \triangleright Three-dimensional Euclidean field theory
	- \blacktriangleright $A_{n,0}^a$ become scalar fields.
	- A_{n,i} are 3D vector fields.
	- \bullet q_n are effectively massive fermion fields.
- At high T all fermion fields have high mass regardless of m_f .
- \triangleright Only the $n = 0$ bosons are massless when $m_b = 0$.

Consequences of dimensional reduction

- ▶ Confining zero-temperature 3D Euclidean Gauge-Higgs field theory!
- \triangleright 3D coupling g √ T.
- \triangleright Area law for Wilson loop. Corresponds to space-like Wilson loop in 4D.
- \blacktriangleright Confinement effects for momenta less than g^2T .
- \triangleright Confined states in 3D correspond to spatial screening in 4D.

$$
\langle A(0)B(\textbf{r})\rangle\rightarrow \exp(-\mu r)/r
$$

- At high T for $A = \overline{q} \Gamma q$ we have $\mu \approx 2\pi T$.
- \triangleright QCD exhibits spatial confinement even at the highest T!

Consequences of dimensional reduction

 \blacktriangleright Thermodynamic potential in perturbation theory

$$
\Omega(\mathcal{T})=c_0(\mathcal{T})+\alpha_s c_1(\mathcal{T})+\alpha_s^{3/2}c_{3/2}(\mathcal{T})+\alpha_s^2c_2(\mathcal{T})+\ldots.
$$

- \blacktriangleright Nonperturbative contributions start at order $\alpha_s^3.$
- \blacktriangleright Volume of momentum space with $p < g^2\, T$ goes like $g^6\, T^3$.

Can hadrons survive in the quark plasma?

- \triangleright Static quark pair might still be bound: charmonium?
- \triangleright Could residual confinement effects stabilize resonances?
- \triangleright Wouldn't high temperatures destroy all resonances?

Spectral functions

 \triangleright Consider the thermal correlator

$$
\left\langle \mathcal{O}^{\dagger}(\mathbf{x},0)\mathcal{O}(\mathbf{y},\tau)\right\rangle
$$

 \triangleright Do spatial Fourier transform (conserved momentum)

$$
C(p,\tau,\mathcal{T})=\left\langle \mathcal{O}^{\dagger}(\mathbf{p},0)\mathcal{O}(\mathbf{p},\tau)\right\rangle
$$

 \triangleright Spectral decomposition

$$
C(p,\tau)=\frac{1}{2\pi}\int_0^\infty d\omega\,\rho(\omega,p,T)K(\omega,\tau,T)
$$

 \blacktriangleright Kernel function

$$
K(\omega, \tau, T) = \frac{\cosh \omega(\tau - 1/2T)}{\sinh(\omega/2T)}.
$$

 \blacktriangleright The spectral density $\rho(\omega, p, T)$ has peaks in ω at resonances.

Spectral functions

[Jakovac, Petreczky, Petrov, Velytsky, Phys.Rev. D75 (2007) 014506]

Perhaps charmonium survives at $1.2T_c$ but not at $2.4T_c$?.

Numerical challenge

 \triangleright Recall

$$
C(p,\tau)=\frac{1}{2\pi}\int_0^\infty d\omega\,\rho(\omega,p,T)K(\omega,\tau,T)
$$

- \blacktriangleright Note that $C(p, \tau, T)$ is measured only for discrete $\tau = 0, 1, \ldots, N_\tau - 1$
- \triangleright But $\rho(\omega, p, T)$ has values for a continuous ω .
- \blacktriangleright III-posed problem.
- \triangleright Need high precision and MANY imaginary time points. (Lattice with $a_t \ll a_s$ also good!)
- \triangleright Add extra constraints. A popular one goes by the name maximum entropy.
- \triangleright Used also to extract transport coefficients: electrical conductivity, shear and bulk viscosity, important for hydrodynamics.