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Free energy of a static charge
I Polyakov loop operator

L(x) = P exp

[∫
igA0(x, τ)dτ

]
I Expectation value

〈L(x)〉 =

∫
[dU]L(x) exp[−Seff(U)]/

∫
[dU] exp[−Seff(U)].

I This operator builds a static external point source, so the
expectation value gives the difference in free energy between the
ensemble plus an additional static charge and the unmodified
ensemble.

exp(−F0/T ) = 〈L〉
I Actually F0 = F0(a,T ) depends on the lattice spacing and

temperature.
I F0(a,T ) is ultraviolet divergent (∼ const/a), just as in QED.
I Usually, we renormalize so F0(T ) ≡ F0(a,T )− F0(a,T0) + const
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Exercise
The Wilson fermion action for a fermion of bare mass m is

SF =
∑
x,x′

ψ̄(x)M(x, x′ψ(x′) =
∑
x

ψ̄(x)ψ(x)

− κ
∑
x,µ

[ψ̄(x)(1 + γµ)Uµ(x)ψ(x + µ̂) + ψ̄(x + µ̂)(1 − γµ)U†
µ(x)ψ(x)].

where κ = 1/(8 + 2ma). The fermion propagator is M−1(x , x ′).
Note that M = 1− κH, where H is called the “hopping matrix”. For large
bare mass (small κ) [1− κH]−1 can be evaluated as a geometric series
(hopping parameter expansion). Find the propagator in leading order in κ
for a static quark over the time interval [0, t].

The partition function in the presence of a static quark at x is∫
[dU] exp(−S) Tr M−1(x, 1/T ; x, 0) where the trace of the propagator is

over color and spin.

So show that exp(−F0/T ) is proportional to the Polyakov loop operator,
where F0 is the free energy of a static quark, i.e.,the difference in the free
energies of the ensembles with the static quark and without.
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Free energy of a pair of static charges

I Found through

exp[−F (R,T , a)/T ] =
〈

L(x)L†(x + R)
〉

I At zero T this is the same as the static quark potential V (R).

I Confinement R →∞: F (R)→ σR (area law with area R/T ).

I Dynamical quarks screen the charges, so we always have,
asymptotically,

F (R,T , a)→ 2F0(a,T )
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Static quark free energy
I Free energy of a static quark and antiquark pair V (T ,R)
I Consider R →∞: V (T ,R)→ 2Fq(T )
I Pure glue: Fq(T ) is infinite at low T — confined
I Finite at high T — deconfined. First-order phase transition.

R R

Low T High T

I With sea quarks: Fq(T ) is finite at all T .
I If quarks are light enough, only crossover.

RR

Low T High T
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Static quark free energy
I In the case illustrated below, the quarks are not infinitely massive
I Fq(T ) still decreases rapidly with increasing T
I Only a qualitative indicator of deconfinement
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Free energy of a charge pair
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I Karsch, Laermann, Peikert, Nucl.Phys. B605 (2001) 579.

I Nf = 3 with fixed mq = 0.1. σ is the string tension.

I Band of lines: Cornell phenomenological heavy quark potential

C. DeTar (U Utah) INT Summer School 2012 August 6-10, 2012 7 / 16



Strange quark number susceptibility

I Also a qualitative indicator of deconfinement.

I χs =
〈
N2
s

〉
/(VT ) measures fluctuations in strangeness Ns .

I At high T the strange degrees of freedom are light – more
fluctuations.
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Dimensional Reduction

I Euclidean time boundary conditions

Aa
µ(x, τ) = Aa

µ(x, τ + 1/T ) periodic

q(x, τ) = −q(x, τ + 1/T ) antiperiodic

I Fourier decomposition in imaginary time τ is

Aa
µ(x, τ) =

∞∑
n=−∞

exp(iωb,nτ)Aa
µ,n(x) for ωb,n = 2πn T

q(x, 0) =
∞∑

n=−∞
exp(iωf ,nτ)qn(x) for ωf ,n = 2π(n + 1

2
) T

I Free-field Euclidean mass-shell condition

p2
x + p2

y + p2
z + ω2

n + m2 = 0.
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Turning the Euclidean lattice on its side
In a Euclidean world, any direction can be called imaginary time. So
swap z and τ and let E = ipz .

I Free-field mass-shell condition

E 2 = p2
x + p2

y + ω2
n + m2.

I Tower of 3D bosonic fields

E 2
n = p2

x + p2
y + m2

b + (2πnT )2

I Tower of 3D fermionic fields

E 2
n = p2

x + p2
y + m2

f + [2π(n + 1
2
)T ]2

I Three-dimensional Euclidean field theory
I Aa

n,0 become scalar fields.
I Aa

n,i are 3D vector fields.
I qn are effectively massive fermion fields.

I At high T all fermion fields have high mass regardless of mf .
I Only the n = 0 bosons are massless when mb = 0.
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Consequences of dimensional reduction

I Confining zero-temperature 3D Euclidean Gauge-Higgs field
theory!

I 3D coupling g
√

T .

I Area law for Wilson loop. Corresponds to space-like Wilson loop
in 4D.

I Confinement effects for momenta less than g 2T .

I Confined states in 3D correspond to spatial screening in 4D.

〈A(0)B(r)〉 → exp(−µr)/r

I At high T for A = q̄Γq we have µ ≈ 2πT .

I QCD exhibits spatial confinement even at the highest T !
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Consequences of dimensional reduction

I Thermodynamic potential in perturbation theory

Ω(T ) = c0(T ) + αsc1(T ) + α
3/2
s c3/2(T ) + α2

s c2(T ) + . . . .

I Nonperturbative contributions start at order α3
s .

I Volume of momentum space with p < g 2T goes like g 6T 3.
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Can hadrons survive in the quark plasma?

I Static quark pair might still be bound: charmonium?

I Could residual confinement effects stabilize resonances?

I Wouldn’t high temperatures destroy all resonances?
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Spectral functions

I Consider the thermal correlator〈
O†(x, 0)O(y, τ)

〉
I Do spatial Fourier transform (conserved momentum)

C (p, τ,T ) =
〈
O†(p, 0)O(p, τ)

〉
I Spectral decomposition

C (p, τ) =
1

2π

∫ ∞
0

dω ρ(ω, p,T )K (ω, τ,T )

I Kernel function

K (ω, τ,T ) =
coshω(τ − 1/2T )

sinh(ω/2T )
.

I The spectral density ρ(ω, p,T ) has peaks in ω at resonances.
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Spectral functions
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[Jakovac, Petreczky, Petrov, Velytsky, Phys.Rev. D75 (2007) 014506]

I Perhaps charmonium survives at 1.2Tc but not at 2.4Tc?.
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Numerical challenge

I Recall

C (p, τ) =
1

2π

∫ ∞
0

dω ρ(ω, p,T )K (ω, τ,T )

I Note that C (p, τ,T ) is measured only for discrete
τ = 0, 1, . . . ,Nτ − 1

I But ρ(ω, p,T ) has values for a continuous ω.

I Ill-posed problem.

I Need high precision and MANY imaginary time points. (Lattice
with at � as also good!)

I Add extra constraints. A popular one goes by the name
maximum entropy.

I Used also to extract transport coefficients: electrical conductivity,
shear and bulk viscosity, important for hydrodynamics.
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