High Temperature and Density in Lattice QCD:

Strong-coupling, high temperature limit and the Potts model paradigm

http://www.physics.utah.edu/~detar/int12/

C. DeTar

University of Utah

August 6-10, 2012

Why study high T and high density QCD?

- \blacktriangleright Early universe
- \blacktriangleright Dense stars

Why study high T and high density QCD?

- \blacktriangleright Heavy ion collisions
- \blacktriangleright Intrinsic field theory interest

[Thanks CERN image]

Phase structure in T and μ

- \triangleright Confinement lost at high temperature or density
- \blacktriangleright "Quark-gluon plasma"
- \blacktriangleright Phase transition or crossover?
- \blacktriangleright Speculative phase diagram

Phase structure in m_{ud} and m_s

- \triangleright Whether there is a phase transition depends on quark masses
- \blacktriangleright Speculative phase diagram

Open questions

- \triangleright What happens at high density?
- \triangleright Does the critical end-point exist?
- \blacktriangleright Is it experimentally accessible?
- If Its there a first order phase transition at very small nonzero m_{ud} ?

Lattice QCD to the rescue!

- \blacktriangleright These are nonperturbative questions
- \blacktriangleright LQCD is the only nonperturbative ab initio method we have.
- \triangleright BUT: Lattice QCD is based on equilibrium thermodynamics
- \blacktriangleright Heavy ion collisions are dynamical.
- \blacktriangleright Relevant only where thermal equilibrium is a good approximation.
- \blacktriangleright Good for dense stars, early universe, and some stages in heavy ion collisions.

Outline of lectures

- 1. Strong-coupling, high temperature limit and the Potts model paradigm.
- 2. Deconfining transition in QCD
- 3. Chiral symmetry restoration in QCD
- 4. Connection with phenomenology

Classic Wilson action

$$
\blacktriangleright \text{ Path integral: } T = 1/(N_{\tau}a)
$$

$$
Z_W = \text{Tr} \exp(-H/T) = \int [dU][d\psi d\psi] \exp(-S)
$$

 $S = S_G + S_F$

$$
S_G = \frac{6}{g^2} \sum_{x,\mu < \nu} [1 - \text{Re Tr } U_P(x;\mu,\nu)/3]
$$
\n
$$
S_F = \sum_{x} \bar{\psi}(x)\psi(x)
$$
\n
$$
- \kappa \sum_{x,\mu} [\bar{\psi}(x)(1+\gamma_\mu)U_\mu(x)\psi(x+\hat{\mu}) + \bar{\psi}(x+\hat{\mu})(1-\gamma_\mu)U_\mu^\dagger(x)\psi(x)]
$$

▶ Conserved (Noether) current

$$
J_{\mu}(x) = \kappa [\bar{\psi}(x)(1+\gamma_{\mu})U_{\mu}(x)\psi(x+\hat{\mu}) - \bar{\psi}(x+\hat{\mu})(1-\gamma_{\mu})U^{\dagger}_{\mu}(x)\psi(x)]
$$

External point-charge source

- Introduce an external point charge g in the fundamental representation, moving along the world line C.
- \triangleright Continuum representation

$$
\delta S = -ig \oint_C \lambda^a A_a^\mu dx_\mu
$$

- \triangleright For gauge invariance C must be closed.
- ► Lattice representation $(\gamma_{-\mu}=-\gamma_{\mu};\; U_{-\mu}(\mathsf{x})=U_{\mu}^{\dagger}(\mathsf{x}-\hat{\mu}))$

$$
Z = \int [dU][d\psi d\psi] \exp(-S)L_C
$$

\n
$$
L_C = \text{Tr} \prod_{x,\mu \in C} (1 + \gamma_{\mu}) U_{x,\mu}
$$

Static charge

- \triangleright The static charge worldline C is fixed at **x**, moving forward only in τ .
- \triangleright Product of time-like links, closing by periodicity in imaginary time:

$$
L_C \propto \text{Tr} \prod_{\tau} U_{\mathbf{x},\tau;0}
$$

 \triangleright Called a "Polyakov loop" (also, sometimes "Wilson line").

Gauge field at strong coupling, high T

References: L.G. Yaffe and B. Svetitsky, Phys. Rev. D 26, 963 (1982); T.A. DeGrand and C.D., Nucl. Phys. B225[FS9], 590 (1983)

- \triangleright Taking soluble limits often provides insight into the workings of a theory.
- Anisotropic lattice $(a_t \neq a_s)$

$$
S_G = \frac{6a_s}{a_t g^2} \sum_{x,i} [1 - \text{Tr } U_P(x; 0, i)/3] + \frac{6a_t}{a_s g^2} \sum_{x,i>j} [1 - \text{Tr } U_P(x; i, j)/3]
$$

- \blacktriangleright High temperature: $N_t = 1$ so $a_t = 1/T$ and $a_t/a_s \ll 1$. Drop the space-space term.
- \triangleright We have only $U(\mathbf{x}, 0)$ and $U(\mathbf{x}, i)$

$$
\mathsf{Tr}\ U_P(x;0,i)=\mathsf{Tr}\ U_0(\mathbf{x},0)U_i(\mathbf{x})U_0^\dagger(\mathbf{x}+\mathbf{\hat{i}})U_i^\dagger(\mathbf{x})
$$

 \blacktriangleright The trace takes its maximum value of 3 when $U_0(x, 0) = z(x)I \in Z(3)$, the center of $SU(3)$: $\{1, \exp(\pm 2\pi i/3)\}.$

Gauge field at strong coupling, high T

 \triangleright Appoximate the integral over the gauge fields by a sum over $Z(3)$

$$
Z = \int \prod_{x,\mu} [dU_{\mu}(x)] \exp(S_G) \to \sum_{z_{\mathbf{x}}} \exp \left[\frac{6a_s}{g^2 a_t} \sum_{\mathbf{x}, \mathbf{i}} \text{Re} (z_{\mathbf{x}}^* z_{\mathbf{x}+\hat{i}}) \right]
$$

- \blacktriangleright The theory becomes the three-state, 3D Potts model.
- ► Global Z(3) Symmetry: $z_x \rightarrow Yz_x$ for $Y \in Z(3)$.

Gauge field at strong coupling, high T

 \blacktriangleright Again

$$
Z = \sum_{z_{\mathbf{x}}} \exp \left[\frac{6a_{\mathbf{s}}}{g^2 a_{\mathbf{t}}} \sum_{\mathbf{x}, \mathbf{i}} \text{Re} \left(z_{\mathbf{x}}^* z_{\mathbf{x} + \hat{i}} \right) \right]
$$

 \blacktriangleright In a spin system, we would replace $6a_s/(g^2 a_t) = J/T_{\text{Potts}}$

- ► So $T_{\text{Potts}} \propto g^2$ at fixed a_t/a_s .
- \blacktriangleright At fixed a_t/a_s we vary $a_t = 1/T_{\rm QCD}$ by varying g^2 .
- ► As $g^2 \rightarrow 0$ asymptotic freedom says $a_t \rightarrow 0$ so \mathcal{T}_{QCD} increases while T_{Potts} decreases.
- \triangleright At low T_{Potts} the spin system is in a ferromagnetic state.
- \triangleright The order parameter is the magnetization $\langle z \rangle$.
- \triangleright There is a first order magnetization phase transition. The ordered phase corresponds to high T_{QCD} .
- \triangleright The order parameter corresponds to Tr $U_0(\mathbf{x})$.
- \blacktriangleright More generally, it is the "Polyakov loop".

$$
L(\mathbf{x}) = P \exp \left[\int i g A_0(\mathbf{x}, \tau) d\tau \right]
$$

Chemical potential

- **Conserved charges** Q_f **are flavor number (or baryon number).**
- \blacktriangleright Grand canonical ensemble

$$
Z_W = \text{Tr} \exp\left(-H/T + \sum_f \mu_f Q_f/T\right)
$$

Chemical potential

 \triangleright Conserved charge density

 $\rho_f({\mathsf{x}}) = \kappa [\bar{\psi}_f({\mathsf{x}})(1\!+\!\gamma_0)U_0({\mathsf{x}})\psi_f({\mathsf{x}}\!+\!{\hat{0}})\!-\!\bar{\psi}_f({\mathsf{x}}\!+\!{\hat{0}})(1\!-\!\gamma_0)U_0^\dagger$ $\psi_0(x)\psi_f(x)$

 \triangleright So we add to the action

$$
\mu_f Q_f / T = \mu_f \int d\tau Q_f = \int d^4x \mu_f \rho_f(x)
$$

- \triangleright Note this term is just like the time-like kinetic term in the action except for a sign. We get a factor $(1 + a\mu)$ for forward hopping and $(1-a\mu)$ for backward. It is more natural to use $e^{\pm \mu a}.$
- \triangleright So we replace

$$
\begin{array}{ccc}\bar{\psi}(x)(1+\gamma_0)U_0(x)\psi(x+\hat{0})&\to&\bar{\psi}(x)(1+\gamma_0)U_0(x)\psi(x+\hat{0})e^{\mu a}\\ \bar{\psi}(x+\hat{0})(1-\gamma_0)U_0^\dagger(x)\psi(x)&\to&\bar{\psi}(x+\hat{0})(1-\gamma_0)U_0^\dagger(x)\psi(x)e^{-\mu a}\end{array}
$$

 \triangleright Note the the fermion determinant det $M(\mu)$ is not real now.

Chemical potentials and Monte Carlo

- At nonzero chemical potential det $[M(\mu)]$ is complex.
- \triangleright Can't be used as a Monte Carlo probability weight.
- \triangleright Phase oscillations grow with the volume of the system V.
- ► Can't take the thermodynamic limit $V \to \infty$.

Fermions at strong coupling, large mass, high T

 \triangleright Wilson action. Anisotropic $(a_t \neq a_s)$. Chemical potential μ .

$$
S_F = \sum_{x} \overline{\psi}(x)\psi(x)
$$

\n
$$
- \kappa \sum_{x} [\overline{\psi}(x)(1+\gamma_0)U_0(x)e^{-\mu a_t}\psi(x+\hat{0}) + \overline{\psi}(x+\hat{0})(1-\gamma_0)U_0^{\dagger}(x)e^{\mu a_t}\psi(x)]
$$

\n
$$
- \frac{\kappa a_t}{a_s} \sum_{x,i} [\overline{\psi}(x)(1+\gamma_i)U_i(x)\psi(x+\hat{i}) + \overline{\psi}(x+\hat{i})(1-\gamma_i)U_i^{\dagger}(x)\psi(x)]
$$

$$
\blacktriangleright \ 1/\kappa = 6 a_t/a_s + 2 + 2 M a_t
$$

- ► High temperature: $N_t = 1$ and $a_t/a_s = 1/(a_s T) \rightarrow 0$. Drop the space-like term.
- \triangleright The fermion matrix is diagonal in space-time with values on each spatial site

$$
1-\kappa(1+\gamma_0)ze^{-\mu a_t}-\kappa(1-\gamma_0)z^*e^{\mu a_t}
$$

Fermions at strong coupling, large mass, high T

► For large mass \Rightarrow small κ the fermion determinant becomes

$$
\exp\left[h_0(\kappa,\mu)+h(\kappa,\mu)\sum_{\mathbf{x}}\mathrm{Re}z_{\mathbf{x}}+ih'(\kappa,\mu)\sum_{\mathbf{x}}\mathrm{Im}z_{\mathbf{x}}\right]
$$

For small κ we have

$$
h(\kappa,\mu) \approx 24\kappa \cosh(a_t\mu) \quad h'(\kappa,\mu) \approx 24\kappa \sinh(a_t\mu)
$$

Fermions at strong coupling, large mass, high T

 \triangleright The quark mass corresponds to an external real magnetic field. The chemical potential introduces an imaginary magnetic field

$$
H = -J\sum_{\mathbf{x},i} \operatorname{Re}\left(z_{\mathbf{x}}^* z_{\mathbf{x}+\hat{i}}\right) - \sum_{\mathbf{x}} \left[h\operatorname{Re} z_{\mathbf{x}} - i h'\operatorname{Im} z_{\mathbf{x}}\right]
$$

for $h \approx 24\kappa \cosh (a_t \mu)$ and $h' \approx 24\kappa \sinh (a_t \mu)$

- \blacktriangleright The real external field weakens the phase transition and eventually destroys it.
- \blacktriangleright The imaginary field further weakens it.

Exercise

In mean field theory we consider the statistical mechanics of a single site, assuming that the neighbors of the site take on the same mean value. So for the Potts model we have a single-site partition function

$$
Z(\bar{z}) = \sum_{z} \exp[-H(z,\bar{z})/T_{\text{Potts}}]
$$

where the single-site $H(z, \bar{z})$ is obtained from the full H by setting all spins to the mean value \bar{z} , except for one site, which carries variable spin z .

We then impose self-consistency by calculating the output mean value of the spin on the single site and requiring that it equal the input mean value.

Do this for the 3D 3-state Potts model with $h = h' = 0$, and show that there is one real solution for low J/T and three real nonzero solutions for sufficiently high J/T . (In the latter case, the middle one happens to be unstable.) Then show that the transition is first order.

Maple, Mathematica, or gnuplot can help with the numerics here.

3 state 3 D Potts model

T.A. DeGrand and C.D., Nucl. Phys. B225[FS9], 590 (1983)

 \triangleright Magnetization vs. inverse Potts temperature with external field h.

 \blacktriangleright The first order phase transition disappears with increasing field.

3D flux tube model of QCD

A. Patel, Nucl. Phys. B 243, 411 (1984); Phys. Lett. 139B, 394 (1984);

- \triangleright Sites: $Z(3)$ charges $n_x \in \{0, 1, -1\}$
- $+1$ = quark; -1 = antiquark.
- \triangleright Links: $Z(3)$ flux $\ell_{\mathbf{x},i} \in \{0, 1, -1\}$
- \blacktriangleright Gauss' Law

$$
\sum_i (\ell_{\mathbf{x},i} - \ell_{\mathbf{x},-i}) \mod 3 = n_{\mathbf{x}}
$$

 \blacktriangleright Hamiltonian

$$
H = \sigma \sum_{\mathbf{x}, \mathbf{i}} |\ell_{\mathbf{x}}, \mathbf{i}| + m \sum_{\mathbf{x}} |n_{\mathbf{x}}|.
$$

Flux tube model at nonzero chemical potential

- J. Condella and C. DeTar, Phys. Rev. D61, 074023 (2000).
	- \blacktriangleright Grand canonical partition function $(N = \sum_{\mathbf{x}} n_{\mathbf{x}})$

$$
Z = \sum_{n_{\mathbf{x}}, \ell_{\mathbf{x}, \mathbf{i}}} \exp[-(H - \mu N)/T]
$$

- \triangleright There is no complex phase problem at nonzero density here.
- \triangleright The fluxtube model is equivalent to the $Z(3)$ Potts model
- \triangleright Not difficult to show. Use the $Z(3)$ identity

$$
\frac{1}{3}\sum_z z^{\ell} = \delta_{\ell,0}
$$

to replace the Gauss' Law Kronecker delta in the partition function.

 \triangleright Lesson: changing from a field basis to a color singlet basis cures the complex phase problem in the high- T strong-coupling limit.

Flux tube model at nonzero chemical potential

 \triangleright In the field basis the complex phase comes from the imbalance between forward time-like and backward time-like hopping, combined with the presence of complex time-like gauge links.

 $\bar{\psi}({\mathsf{x}})(1\!+\!\gamma_0)U_0({\mathsf{x}})e^{-\mu{\mathsf{a}}_t}\psi({\mathsf{x}}\!+\!{\hat{\mathsf{0}}})\!+\!\bar{\psi}({\mathsf{x}}\!+\!{\hat{\mathsf{0}}})(1\!-\!\gamma_0)U_0^\dagger$ \int_0^{\dagger} $(x)e^{\mu a_t}\psi(x)$

- \triangleright Integration over the time-like links enforces Gauss' Law at each lattice site.
- \triangleright Changing from the field basis to the hadron basis eliminates the complex phase.
- \triangleright With $SU(3)$, it is much more difficult to formulate the path integral with a basis change because of the infinite number of $SU(3)$ irreps.
- \triangleright Moreover, there will still be a fermion sign problem, just as with electrons in condensed matter physics.
- \triangleright Finally, strong coupling, large mass doesn't capture chiral symmetry.