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Why study high T and high density QCD?

I Early universe

I Dense stars
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Why study high T and high density QCD?

I Heavy ion collisions

I Intrinsic field theory interest

[Thanks CERN image]
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Phase structure in T and µ
I Confinement lost at high temperature or density
I “Quark-gluon plasma”
I Phase transition or crossover?
I Speculative phase diagram
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Phase structure in mud and ms

I Whether there is a phase transition depends on quark masses
I Speculative phase diagram
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Open questions

I What happens at high density?

I Does the critical end-point exist?

I Is it experimentally accessible?

I Is there a first order phase transition at very small nonzero mud?
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Lattice QCD to the rescue!
I These are nonperturbative

questions

I LQCD is the only
nonperturbative ab initio
method we have.

I BUT: Lattice QCD is
based on equilibrium
thermodynamics

I Heavy ion collisions are
dynamical.

I Relevant only where
thermal equilibrium is a
good approximation.

I Good for dense stars, early
universe, and some stages
in heavy ion collisions.
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Outline of lectures

1. Strong-coupling, high temperature limit and the Potts model
paradigm.

2. Deconfining transition in QCD

3. Chiral symmetry restoration in QCD

4. Connection with phenomenology
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Classic Wilson action

I Path integral: T = 1/(Nτa)

ZW = Tr exp(−H/T ) =

∫
[dU][dψdψ] exp(−S)

I S = SG + SF

SG =
6

g 2

∑
x,µ<ν

[1− ReTr UP(x ;µ, ν)/3]

SF =
∑
x

ψ̄(x)ψ(x)

− κ
∑
x,µ

[ψ̄(x)(1 + γµ)Uµ(x)ψ(x + µ̂) + ψ̄(x + µ̂)(1− γµ)U†
µ(x)ψ(x)]

I Conserved (Noether) current

Jµ(x) = κ[ψ̄(x)(1+γµ)Uµ(x)ψ(x+µ̂)−ψ̄(x+µ̂)(1−γµ)U†µ(x)ψ(x)]
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External point-charge source

I Introduce an external point charge g in the fundamental
representation, moving along the world line C .

I Continuum representation

δS = −ig

∮
C
λaAµadxµ

I For gauge invariance C must be closed.

I Lattice representation (γ−µ = −γµ; U−µ(x) = U†µ(x − µ̂))

Z =

∫
[dU][dψdψ] exp(−S)LC

LC = Tr
∏

x ,µ∈C
(1 + γµ)Ux ,µ
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Static charge

I The static charge worldline C is fixed at x, moving forward only
in τ .

I Product of time-like links, closing by periodicity in imaginary
time:

LC ∝ Tr
∏
τ

Ux,τ ;0

I Called a “Polyakov loop” (also, sometimes “Wilson line”).
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Gauge field at strong coupling, high T
References: L.G. Yaffe and B. Svetitsky, Phys. Rev. D 26, 963
(1982); T.A. DeGrand and C.D., Nucl. Phys. B225[FS9], 590 (1983)

I Taking soluble limits often provides insight into the workings of a
theory.

I Anisotropic lattice (at 6= as)

SG =
6as

atg 2

∑
x ,i

[1−Tr UP(x ; 0, i)/3]+
6at

asg 2

∑
x ,i>j

[1−Tr UP(x ; i , j)/3]

I High temperature: Nt = 1 so at = 1/T and at/as � 1. Drop
the space-space term.

I We have only U(x, 0) and U(x, i)

Tr UP(x ; 0, i) = Tr U0(x, 0)Ui (x)U†0(x + î)U†i (x)

I The trace takes its maximum value of 3 when
U0(x, 0) = z(x)I ∈ Z (3), the center of SU(3): {1, exp(±2πi/3)}.
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Gauge field at strong coupling, high T

I Appoximate the integral over the gauge fields by a sum over Z (3)

Z =

∫ ∏
x ,µ

[dUµ(x)] exp(SG )→
∑
zx

exp

 6as
g 2at

∑
x,i

Re
(
z∗x zx+î

)
I The theory becomes the three-state, 3D Potts model.

I Global Z(3) Symmetry: zx → Yzx for Y ∈ Z (3).
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Gauge field at strong coupling, high T
I Again

Z =
∑
zx

exp

 6as
g 2at

∑
x,i

Re
(
z∗x zx+î

)
I In a spin system, we would replace 6as/(g 2at) = J/TPotts

I So TPotts ∝ g 2 at fixed at/as .
I At fixed at/as we vary at = 1/TQCD by varying g 2.
I As g 2 → 0 asymptotic freedom says at → 0 so TQCD increases

while TPotts decreases.
I At low TPotts the spin system is in a ferromagnetic state.
I The order parameter is the magnetization 〈z〉.
I There is a first order magnetization phase transition. The

ordered phase corresponds to high TQCD.
I The order parameter corresponds to Tr U0(x).
I More generally, it is the “Polyakov loop”.

L(x) = P exp

[∫
igA0(x, τ)dτ ]

]
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Chemical potential

I Conserved charges Qf are flavor number (or baryon number).

I Grand canonical ensemble

ZW = Tr exp

(
−H/T +

∑
f

µf Qf /T

)
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Chemical potential

I Conserved charge density

ρf (x) = κ[ψ̄f (x)(1+γ0)U0(x)ψf (x+0̂)−ψ̄f (x+0̂)(1−γ0)U†0(x)ψf (x)]

I So we add to the action

µf Qf /T = µf

∫
dτQf =

∫
d4xµf ρf (x)

I Note this term is just like the time-like kinetic term in the action
except for a sign. We get a factor (1 + aµ) for forward hopping
and (1− aµ) for backward. It is more natural to use e±µa.

I So we replace

ψ̄(x)(1 + γ0)U0(x)ψ(x + 0̂) → ψ̄(x)(1 + γ0)U0(x)ψ(x + 0̂)eµa

ψ̄(x + 0̂)(1− γ0)U†0(x)ψ(x) → ψ̄(x + 0̂)(1− γ0)U†0(x)ψ(x)e−µa

I Note the the fermion determinant det M(µ) is not real now.
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Chemical potentials and Monte Carlo

I At nonzero chemical potential det[M(µ)] is complex.

I Can’t be used as a Monte Carlo probability weight.

I Phase oscillations grow with the volume of the system V .

I Can’t take the thermodynamic limit V →∞.
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Fermions at strong coupling, large mass, high T

I Wilson action. Anisotropic (at 6= as). Chemical potential µ.

SF =
∑
x

ψ̄(x)ψ(x)

− κ
∑
x

[ψ̄(x)(1 + γ0)U0(x)e−µatψ(x + 0̂) + ψ̄(x + 0̂)(1− γ0)U†0 (x)eµatψ(x)]

−
κat

as

∑
x,i

[ψ̄(x)(1 + γi )Ui (x)ψ(x + î) + ψ̄(x + î)(1− γi )U†i (x)ψ(x)]

I 1/κ = 6at/as + 2 + 2Mat
I High temperature: Nt = 1 and at/as = 1/(asT )→ 0. Drop the

space-like term.

I The fermion matrix is diagonal in space-time with values on each
spatial site

1− κ(1 + γ0)ze−µat − κ(1− γ0)z∗eµat
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Fermions at strong coupling, large mass, high T

I For large mass ⇒ small κ the fermion determinant becomes

exp

[
h0(κ, µ) + h(κ, µ)

∑
x

Rezx + ih′(κ, µ)
∑

x

Imzx

]
I For small κ we have

h(κ, µ) ≈ 24κ cosh(atµ) h′(κ, µ) ≈ 24κ sinh(atµ)
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Fermions at strong coupling, large mass, high T

I The quark mass corresponds to an external real magnetic field.
The chemical potential introduces an imaginary magnetic field

H = −J
∑
x,i

Re
(
z∗x zx+î

)
−
∑

x

[hRezx − ih′ Imzx]

for h ≈ 24κ cosh(atµ) and h′ ≈ 24κ sinh(atµ)

I The real external field weakens the phase transition and
eventually destroys it.

I The imaginary field further weakens it.
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Exercise

In mean field theory we consider the statistical mechanics of a single site,
assuming that the neighbors of the site take on the same mean value. So for
the Potts model we have a single-site partition function

Z (z̄) =
∑
z

exp[−H(z , z̄)/TPotts]

where the single-site H(z , z̄) is obtained from the full H by setting all spins
to the mean value z̄, except for one site, which carries variable spin z.

We then impose self-consistency by calculating the output mean value of the
spin on the single site and requiring that it equal the input mean value.

Do this for the 3D 3-state Potts model with h = h′ = 0, and show that
there is one real solution for low J/T and three real nonzero solutions for
sufficiently high J/T . (In the latter case, the middle one happens to be
unstable.) Then show that the transition is first order.

Maple, Mathematica, or gnuplot can help with the numerics here.
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3 state 3 D Potts model
T.A. DeGrand and C.D., Nucl. Phys. B225[FS9], 590 (1983)

I Magnetization vs. inverse Potts temperature with external field
h.

I The first order phase transition disappears with increasing field.
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3D flux tube model of QCD

A. Patel, Nucl. Phys. B 243, 411 (1984); Phys. Lett. 139B, 394
(1984);

I Sites: Z (3) charges nx ∈ {0, 1,−1}
I +1 = quark; −1 = antiquark.

I Links: Z (3) flux `x,i ∈ {0, 1,−1}
I Gauss’ Law∑

i

(`x,i − `x,−i ) mod 3 = nx

I Hamiltonian

H = σ
∑
x,i

|`x, i |+ m
∑

x

|nx|.

baryon meson

glueball

1

1

1

1−1
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Flux tube model at nonzero chemical potential
J. Condella and C. DeTar, Phys. Rev. D61, 074023 (2000).

I Grand canonical partition function (N =
∑

x nx)

Z =
∑
nx,`x,i

exp[−(H − µN)/T ]

I There is no complex phase problem at nonzero density here.

I The fluxtube model is equivalent to the Z (3) Potts model

I Not difficult to show. Use the Z (3) identity

1

3

∑
z

z` = δ`,0

to replace the Gauss’ Law Kronecker delta in the partition
function.

I Lesson: changing from a field basis to a color singlet basis cures
the complex phase problem in the high-T strong-coupling limit.
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Flux tube model at nonzero chemical potential
I In the field basis the complex phase comes from the imbalance

between forward time-like and backward time-like hopping,
combined with the presence of complex time-like gauge links.

ψ̄(x)(1+γ0)U0(x)e−µatψ(x +0̂)+ψ̄(x +0̂)(1−γ0)U†0(x)eµatψ(x)

I Integration over the time-like links enforces Gauss’ Law at each
lattice site.

I Changing from the field basis to the hadron basis eliminates the
complex phase.

I With SU(3), it is much more difficult to formulate the path
integral with a basis change because of the infinite number of
SU(3) irreps.

I Moreover, there will still be a fermion sign problem, just as with
electrons in condensed matter physics.

I Finally, strong coupling, large mass doesn’t capture chiral
symmetry.
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