NEUTRINOS
IN NUCLEAR PHYSICS

Ben Jones, University of Texas at Arlington



L [GeV ]

1016

Solar Potential

\ +*
*
. DAESALUS
_'Dﬂ‘a Bay
BNL-E776 CCFR/NuTeV

AY * t
*
o MiniBooNE
NOMAD/CHORUS
MINER/A
OscSNS CDHS

104 10" 10° 10 10 10

10

P, = sin“20sin” (1.27Am° L/ E)



Solar Potential

BNL-E776 CCFR/NuTeV
MiniBooNE

NOMAD/CHORUS

MINERvA
CDHS

P, = sin“20sin” (1.27Am° L/ E)



N *
DAEJALUS

\‘
Pﬂ‘; Bay

ooz BNL-E776 CCFR/NuTeV
vt o MiniBooNE ™~
NOMAD/CHORUS

MINERVA
0OscSNS CDHS

P, = sin“20sin” (1.27Am° L/ E)



Solar Potential

BNL-E776 CCFR/NuTeV

NOMAD/CHORUS

MINERVA
0OscSNS CDHS

P, = sin“20sin” (1.27Am° L/ E)



Solar Potential

DAEJALUS
Itya Bay

00 BNL-E776 CCFR/NuTeV
o MiniBooNE
NOMAD/CHORUS

MINERvA

0OscSNS CDHS

10° 10° 10 10

P, = sin“20sin” (1.27Am° L/ E)



>GEV NEUTRINOS

= To get GeV neutrinos, we have two options:

= Atmospheric, from cosmic ray air showers
= 4pi coverage
= From all baselines around the Earth
= Wide energy coverage (but steeply falling with E).

= Flux is what nature gives us.

= Man-made, from particle accelerators
= Directional beam.

= Precisely fixed baseline.
= Flux that can be controlled and manipulated.




ATMOSPHERIC NEUTRINOS

= Atmospheric neutrinos are
produced in air showers
initiated by cosmic rays in the
upper atmosphere.

These create copious hadrons
and muons that decay to
neutrinos.

For E<1TeV the Earth is
transparent to neutrinos, so
looking for “upward-going”
tracks or showers is a good
handle to search for
atmospheric neutrinos.
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SUPERKAMIOKANDE

20,000 ton water Cerenkov
detector —sees multi-GeV
atmospheric neutrinos which do

point back to source
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PRODUCTION OF ATMOSPHERIC NEUTRINOS

Lowest energy Higher energy Highest energy
Mostly atmospheric T Mostly atmospheric K Mostly astro / prompt
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1. Primary cosmic ray model
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ATMOSPHERIC FLUX PREDICTIONS

Fedynich et al, EPJWeb Conf. 99 (2015) 08001
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pi/K production ratio, spectral slope, nu/nubar ratio are all
challenging to predict a-priori.
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CROSS SECTIONS ACROSS ENERGIES

= At high energy, neutrino detection process switches from
CCQE and resonant scattering to deep inelastic scattering.

= Cross section uncertainties are thus far smaller in the high
energy regime. Appealing to study oscillations there, if we can!

A B Pl @l (L e

—

o

& 14|
1.2

|

0.5
06k
0.4
0.2|
0

C
o
L]
—
—
Ll
L

section FE, [

= DIS = Small
uncertainties.

v CIO0SS

Awful nuclear cocktail E, (GeV) @
from hell - challenging...



HOW TO STUDY HIGH E OSCILLATIONS

Primary cosmic ray energy spectrum

10* [
= We don’t currently have ) 4
accelerator neutrino beams at 10° LN
these energies. ; N
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= Atmospheric neutrinos are an 3
option. Y 107
“:'E 102
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= But those neutrinos are made by o5
cosmic ray interactions, and the
rate falls fast with energy. 01
10
= To measure ~100-1 TeV 9 I k2 ye"
neutrinos, need a very large 10
detector. .
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ICECUBE
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Data is collected here and managed research facili
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DIGITAL OPTICAL MODULES
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ASTROPHYSICAL NEUTRINOS

E &

IceCube observed the
flux of ultra-high-energy
astrophysical neutrinos
in 2013 and continues to
accumulate statistics and
identify sources.
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These are HESE (High Energy Starting Event) cascades.
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Photons are detected at DOMs with 125 m spacing
On-board DAQ digitizes the pulse and sends digital data to ICL at surface

Space and time information provide event geometry and direction
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Phys.Rev.Lett. 115 (2015) 8, 081102
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4 Phys.Rev.Lett. 115 (2015) 8, 081102
10 E 1 Ty T rn L] L] LU I I LR ] L} IIIIIH

Higher energy

Lower energy

(—WD—F—. Osc. length for standard neutrinos >> Earth
Sensitive to | diameter except at very lowest energies
standard |
oscillations Energy is too low for MISW resonance, so
- F r oscillations are vacuum-like
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IceCube latest result from Neutrino2024
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RCCELERATOR NEUTRINO EXPERIMENTS

Muon Monitors
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= Neutrinos are a ’tertiary beam?”:
= Protons hit a target to make hadrons
= Hadrons decay to make neutrinos

= Neutrinos travel though rock at end of decay pipe while everything else
1s absorbed.
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HADRONIC UNCERTAINTIES

= Flux uncertainties derive primarily from hadron production physics.
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= Dedicated test beam
experiments work to tune the
neutrino production codes in this
regime.

= The problem is far from solved.




THREE-FLAVOR OSCILLATIONS

= Technically all three neutrino masses participate in these
oscillations.
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= This actually offers a significant benefit — the possibility to
probe lepton-sector CP violation (CPV is impossible with only
two flavors participating)



THREE-FLAVOR OSCILLATIONS

= Technically all three neutrino masses participate in these
oscillations.

Matter Effect

. CP-violation
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= This actually offers a significant benefit — the possibility to
probe lepton-sector CP violation (CPV is impossible with only
two flavors participating)



NOVA
active scintillator calorimeters
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see significant energy from both
lepton and hadron systems:
“calorimetric” E, reconstruction

Neutrino
from
Fermilab

& functionally equivalent detectors

shared uncertainties mostly cancel

NOvVA

Fermilab to Ash River, USA
810 km
E~5GeV

Fermilab [10 - Ash River

810 km

T2K

water Cherenkov FD

see only lepton energy:
“kinematic” E, reconstruction

v -like

Hybrid gas TPC &
scintillator tracker ND

ND+FD shared uncertainties explicitly
fitted & constrained via model

JPARC to SuperK, Japan
295 km
E~200 MeV

o/ J-PARC



NOVA only: Phys. Rev. D106, 032004 (2022)

“assuming [O is true”

(does not include relative probability of 10 vs. NO)
T2K only: Eur. Phys. J. C83, 782 (2023) |
0.7 — —
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[ — NOVA Only Bayesian Cred. Int. Bayesian Cred. Int.
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Under the normal ordering, they are in tension.
Under the inverted ordering, they more or less agree.
But other experiments marginally disfavor the inverted ordering.

Future experiments like DUNE and HyperK will need to sort this out. {@)



DUNE

Sanford
Underground Fermilab
Research Facility

NEUTRINO
PRODUCTION

UNDERGROUND PARTICLE
PARTICLE DETECTOR DETECTOR

18 m

: 17 kton module
19 m 66 m (10 kton active volume)



NEUTRINOS AND ANTINEUTRINOS

= On changing from neutrinos to antineutrinos, both the sign of a
and the sign of delta in this equation changes.

sin2 (A;}l = aL)

P(v, = v,) =~ sin®f;sin®20;3- (Dot — al)? A
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+ COS2 923 sinz 2912 ﬁAél,
T]':Ie DUNE p 1.‘ogram 0.14 Neutrinos lacp=.ﬂ/2 0-14:- Antineutrinos .30P=.,d2
will operate in both 1285 km B -0 - 1285 km g
neutrino and 0.12fF  Normal Ordering i 0-12; Normal Ordering \ 8""’ : i

. . : O =
antineutrino modes o -
>

to try to untangle f :
these effects. 2=
o

Potential to
establish leptonic
CP violation >

2 3 4 5678 2 3 4 5678
Neutrino Energy (GeV) Neutrino Energy (GeV)



0K, TIME FOR R CHANGE OF GEAR...

(by special request of one of the NNPSS participants...) @



BEEST EXPERIMENT RetsT

= BeEST has recently put out a result that has generating much interest.
= Radioactive “Be atoms implanted in superconducting tunnel junctions.

= Measure the width of the electron capture spectrum and attempt to infer
the neutrino wave width based on its entanglement.

= This is the first direct attempt to measure the neutrino wavepacket width.




LAST MINUTE PROGRAM CHANGE

PHYSICAL REVIEW D

covering particles, fields, gravitation, and cosmology

Highlights Recent  Accepted Collections Authors Referees Search Press Al

Dynamical pion collapse and the coherence of conventional
neutrino beams

B.J.P. Jones
Phys. Rev. D 91, 053002 — Published 4 March 2015

(stuff I was going to
show on sterile
neutrinos - backups)

Since it’s the final lecture...

Direct Experimental Constraints on the Spatial
Extent of a Neutrino Wavepacket

Joseph Smolsky'", Kyle G Leach™?", Ryan Abells?, Pedro Amaro?,

Adrien Andoche®, Keith Borbridge!, Connor Bray',

\/ > hep-ph > arXiv:2404.19746

High Energy Physics - Phenomenology

[Submitted on 30 Apr 2024]

The Width of an Electron-Capture Neutrino Wave Packet

B.J.P. Jones, E Marzec, J. Spitz

PHYSICAL REVIEW D

covering particles, fields, gravitation, and cosmology

Highlights Recent  Accepted Collections  Authors Referees ~ Search Press

Width of a beta-decay-induced antineutrino wave packet

B. J.P. Jones, E. Marzec, and J. Spitz
Phys. Rev. D 107, 013008 — Published 27 January 2023

Damping of neutrino oscillations, decoherence and the
lengths of neutrino wave packets

Evgeny Akhmedov and Alexei Y. Smirnov

ad I'(]_V > hep-ph > arXiv:2209.00561

High Energy Physics - Phenomenology

[Submitted on 1 Sep 2022]

Comment on "Damping of neutrino oscillations,
decoherence and the lengths of neutrino wave packets" )

B.J.P. Jones




The neutrino’s quantum

fuzziness is beginning to ScienceNews

come into focus

Physicists set a limit on the uncertainty of the subatomic
particle's position

L3
'45

Sapapayaaee

So studying the size of neutrinos’ wave packets could help unveil the
connection between the everyday world of classical physics and the

strangeness of quantum physics, says Benjamin Jones, a neutrino physicist
at the University of Texas at Arlington who was not involved with the
experiment. “If you can predict something like this and then measure it, then
you really validate some of the ideas that people have about how the
classical world emerges from an underlying quantum reality,” he says. "And
that's what really got me excited about this in the first place.”




PLANE WAVES AND OSCILLATIONS

Many have identified problems with this picture. It implies:

1) Neutrino can be anywhere, at any time (and zero probability to be there!)
2) Superluminal transmission is possible

3) Perfect energy definition forbids oscillations.

4) Same energy or same momentum? Efc efc
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PROPAGATION WITH WAVEPACKETS

No process can make a neutrino of perfectly defined momentum.

Source makes a wave-packet with some momentum and some position width

Osc Max
l ml
m2
0 1&!2 15
U
e

a 50 100 150

= Phase velocity is not changed — so neither is oscillation length

= Wave-packet moves with group velocity of approx. ¢ for very light neutrinos



PROPAGATION WITH WAVEPACKETS

Because the different mass states have different group velocities, they go
at different speeds. Eventually they will separate and not oscillate any

more.
Source Osc Max
Re (V) i l 1
m

0.6
0 "E m2
0.2 A
|.& " L N 1 L ) ) ) ] ) L ) L 1 L
50 100 150

= This is sometimes called “decoherence” but I'll call it ““‘coherence
loss” to distinguish from beyond-standard-model decoherence.



50, HOW FAR TIL THAT HRPPENS??

To predict the coherence distance we need to know the wave packet width.

Some quantum
mechanics

Is our understanding of neutrino production processes sufficiently
descriptive to let us predict the wave packet width?

©



EXTERNAL WAVE-PACKET PICTURE

= Some progress was made by Beuthe, Akmedov +Smirnov :

= They calculated neutrino state emerging from a pion of a specified
width, alongside a specified detected muon
2 AOutput

H\>‘ Input

Specified final state

Decay

Lagrangian

Phys. Rept 375, 2-3, 105, 2003
But ... Phys.Atom.Nucl.72:1363-1381,2009

now there are two unknown
states, rather than one!



EXTERNAL WAVE-PACKET PICTURE

= Having done the calculation to go parent - neutrino,

= The favored approach to calculate the parent width is to...

= Wave our hands enthusiastically and make something up!

= The width of the incoming pion wave-packet must be:

1. The inverse of its mass width?

2. The mean-free path between collisions?

3. Something to do with its form factor / physical size?

4. The length of the decay region?

5. The amount of time the experimentalist wasn’t paying attention?
6. Very small / big / ... something?

_
©



EXTERNAL WAVE-PACKET PICTURE

= Having done the calculation to go parent - neutrino,

= The favored approach to calculate the parent width is to...

= Wave our hands enthusiastically and make something up!

= The width of the incoming pion wave-packet must be:

1.

2
3
4.
5
6

The inverse of its mass width?

The mean-free path between collisions?

Something to do with its form factor / physical size?

The length of the decay region?

The amount of time the experimentalist wasn’t paying attention?

Very small / big / ... something?

For every complex problem, there is an answer that
is clear, simple, elegant, and wrong (H.L.Mencken)



EXTERNAL WAVE-PACKET PICTURE

= Having done the calculation to go parent - neutrino,

= The favored approach to calculate the parent width is to...

= Wave our hands enthusiastically and make something up!

= The width of the incoming pion wave-packet must be:

1.

2
3
4.
5
6

Many people have strong feelings about their favorite. But we need a

The inverse of its mass width?

The mean-free path between collisions?

Something to do with its form factor / physical size?

The length of the decay region?

The amount of time the experimentalist wasn’t paying attention?

Very small / big / ... something?

For every complex problem, there is an answer that
is clear, simple, elegant, and wrong (H.L.Mencken)

rigorous recipe to separate the viable from non-viable options.

©



YOUNGS TWO-SLIT

source

I=[(|)]?
= (A + Blva+VB)|°

= [{(Ya|ta) + (WBlYE) + 2Re(a|vvp)|**




YOUNGS TWO-SLIT

EXPERIMENT What if we add an

environment?

source

B0 I = [([3)]?
= (A + Blva+VB)|°
= |(Yalva) + W¥BlYB) + 2R6<¢A|¢B>\2 50




YOUNGS TWO-SLIT

The particle becomes
entangled with the
environment via its interactions

. EA |’
S (YA > |Eyg >— |1ha > |[Eaq >
B > |Eo >— [Yp > |Ep >
The interference pattern now
depends on how much overlap
e there is between Ej, Ej
_ EB |’

| I = [(sh|)]?
= [(Yalva) + (YB|YB) + 2Re(alys)(EalEp)|™




YOUNGS TWO-SLIT

Extreme cases :

_ EA '

<EA’EB>:1
Fully quantum-
mechanical-looking
particles

_ EB |’

= |(Yalva) + (VBlYE) + 2Re( Al (EA|ER)|*™



YOUNGS TWO-SLIT

Extreme cases :

. EA |’

e <EA’EB>:O
Fully classical-looking
particles

_ EB |’

= |(alva) + (WBlYE) + 2Re( o) (EA|ER)|*



SEEING DECOHERENCE IN

PRACTICE

e.g. Talbot Lau
interferometry
with C.,
fullerenes

VOLUME 88, NUMBER 10 PHYSICAL REVIEW LETTERS 11 MarcH 2002

Matter-Wave Interferometer for Large Molecules

Bjorn Brezger, Lucia Hackermiiller, Stefan Uttenthaler, Julia Petschinka, Markus Arndt, and Anton Zeilinger*

Universitéit Wien, Institut fiir Experimentalphysik, Boltzmanngasse 5, A-1090 Wien, Austria
(Received 20 November 2001; published 26 February 2002)

This experiment has in fact been done!

countsin 5 s

[
=
=]
=

e g ere max- min
i visibility = —— =385 %
1000 y max+ min

b5 55.5 o6 6.5 a7 a7.5 o8
position third grating [pm]




Appl. Phys. B 77, 781-787 (2003)

Applied Physics B

L. HACKERMULLER
K. HORNBERGER

B. BREZGER"®

A. ZEILINGER

M. ARNDT™

DOI: 10.1007/s00340-003-1312-6

Decoherence in a Talbot-Lau interferometer:

Lasers and Optics

the influence of molecular scattering

Institut fiir Experimentalphysik der Universitit Wien, Boltzmanngasse 5, 1090 Wien, Austria

Environmental gasses are bled into the vacuum chamber. These cause
scattering interactions.

Entanglements generated with the environment encode “which way”
information and suppress coherent superpositions.
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]
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LOCALIZATION BY SCATTERING IN ENVIRONMENTS




LOCALIZATION BY SCATTERING IN ENVIRONMENTS

1. Quantum particles
will naturally delocalize

over time:
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LOCALIZATION BY SCATTERING IN ENVIRONMENTS

1. Quantum particles
will naturally delocalize

over time:
These compete, and it
drives the localization

2. But scattering with scale of quantum objects

the environment re- in their environments.
localizes them:

= =
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LOCALIZATION BY SCATTERING IN ENVIRONMENTS

1. Quantum particles

will naturally delocalize

over time:

j

= = =3
i

DD — O

Foundations of Physics Letters, Vol. 6, No. 6, p. 571-590 (1993)

APPARENT WAVE FUNCTION COLLAPSE
CAUSED BY SCATTERING

*one of my favorite

Max Tegmark papers by anyone ever

2. But scattering with
the environment re-
localizes them:

Cause of apparent Free 10pm Bowling
wave function collapse electron dust ball

300K air at 1 atm pressure 107°m 107Ym 10-%m
300K air in lab vacuum 107 m 10-¥m 10~'8m
Sunlight on earth 10° m 1072m 107'"m
300K photons 104 m 1072m 1071%m
Background radioactivity n/a 100"m 107%m
Quantum gravity 104 m 107°m 107%m
GRW effect 10¥%m  107°m  107%¥m

Cosmic microwave background 10°m  107®m 107%m
Solar neutrinos n/a n/a 1073 m




POSITION STATES OF A DECAYING PARTICLE

= The particle (in superposition of positions) emits a neutrino. Will the
neutrino state from each emitter add coherently (oscillate) or not?

Narrowly
Time separated
. < By lEp >=1
\
Widely separated
Time

< EA’EB b

©



POSITION STATES OF A DECAYING PARTICLE

= The particle (in superposition of positions) emits a neutrino. Will the
neutrino state from each emitter add coherently (oscillate) or not?

Narrowly
separated

< EA‘EB >=1

These ¢

Widely separated
< E» ’E g >=10

©




QUANTUM WIDTHS

= A quantum system thus has more than one notion of ’width”:
= A. How uncertain are you about its position?

= B. How uncertain would you be about its position if you knew all you
could about all the other particles in the Universe?

AN

It is B that dictates the coherence of oscillations



DENSITY MATRICES: =3 rvotni =3 0un) =ria

k

= A quantum system thus has more than one notion of ’width”:
= Diagonal. How uncertain are you about its position?

= Off-diagonal. How uncertain would you be about its position if you
knew all you could about all the other particles in the Universe?

AN

It is Off-diagonal width that dictates the coherence of oscillations

This information is elegantly encoded within a “reduced density matrix”:




LOCALIZATION SCALES

= What if there are cascading scales of delocalization?

©® @

Etc...
Nuclgon i.s Nucl.eus i.s Atom is Material is
localized in loca11z§d in localized in a localized in
a nucleus potential of material the basement
atom

How do you know which one to choose?



= There is an unambiguous recipe.

= Construct the total system density matrix including all of these
entanglement scales.

= Then trace out all non-observed degrees of freedom.

= The result will be a reduced density matrix which encodes the
relevant scale in its off-diagonal width.

©® @

Etc...
Nuclgon i.s Nucl.eus i.s Atom is Material is
localized in loca11z§d in localized in a localized in
a nucleus potential of material the basement
atom

Often, but not always, it will be the more localized scale in the problem*

= Don’t trust that intuition. Build the density matrix and find out.

(*just as an example, electron capture does not follow this rule-of-thumb)

©



PION DECAY CALCULATION

= In an experiment with a pion beam, interactions with decay-pipe gas
cause localization inversely proportional to momentum-transfer of those
interactions.

= The parent pion then kinematically transfers its width to the neutrino

= After the decay, the pion is gone. What matters is what the environment
“knew’” about where the pion was when it decayed.

i, )%-----! ________ __.Q

Beam pipe Detector

It is the momentum transfer in interactions and the time between
scatters, not simply the mean free path, that dictates the
localization scale in this system. @



1.5

Abs P
Re P

-0.5
-1.0
10! 1010 10° 108
(xg—21) /M

We will likely never
observe this effect with
the known neutrinos in
terrestrial experiments 2>

107

Distance / km

< Localizing effect is momentum
transfer from pion-air scattering in decay
pipe, calculable with the PAI model.
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BETA DECAY EFFECT

= Unlike pion decay, in an experiment with a beta source, the nucleus is
still there after the decay.

= The residual nucleus thus encodes the origin of the neutrino to within
about the nuclear size.

= It may also encode it to within the scale of inter-nucleon correlations.

There is something in the universe that
encodes the position of the neutrino
emission to at least this diameter

If not this one.

) i} = 1 1] 1 N-1\ 1 N-17"
From a’ toy model Aop(z) = 1A~ 1 > T\ 402, T 402 '
derivation =

Atom 1n material Nuclear size Nuclon correlations OE
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JUNO has the best hope of seeing

— 2.5 . . . ppe
this, but it looks very difficult.
Lae _2
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002 Monte Carlo of the nuclear wave
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Then need to integrate those dynamics over <‘>
all the damn fission branches!!



THE BEEST ELECTRON CAPTURE

MEASUREMENT

"Be in STJs reconstruct electron
capture spectrum very precisely.

Momentum width of peak implies
minimal possible wave packet size,
through Heisenberg principle.

(a)}
' BeEST i

{Nucleon  {Heavy nucleus { Interatomic
10-15 10-14 10-13 10-12 10-11 10-10
oL, x (m)
(b) BeEST OveE=0L,E

BCEST OIV'X = oLi’X

—
Combined oscillation
Daya Bay
eV Vg Electron (1s) Atomic

10-13 10-12 1/0'” ! 10-10 10~ Y—S 1077 10-6 10-5

Oy, x (m)
limit our prediction

ReEST

led
61 K-GS
5_
& i
N
(@)
E 31 A¥E
o
=
S 2
15 L-GS
L-ES ES
0 20 40 60 80 100 120

Energy [eV]

Peak width mainly determined here by
condensed matter effects.

< Alas, it is not yet sensitive to relevant
distance scales... (but exciting to try!)

@



ENVIRONMENTAL

DECOHERENCE AND
THE OBSERVER
PROBLEM

"\

= If you subscribe to the many-worlds interpretation, environmental .'
decoherence explains why different Everett branches do not interfere

with each other.

= For some, this seems sufficient resolution to the QM observer problem.

= For others (including Steven Weinberg, Roger Penrose, and many

others), there remains an observer problem associated with why

observers experience only one branch, and how the Born rule emerges,

that could require new physics beyond QM to resolve. @



NONUNITARY VB (amking)
EVOLUTION . oo .

Gravitation. 28 (5): 581-600

-

Penrose and others suggest that QM must
at some level become non-unitary, for
reasons associated with gravity.

They postulate that this adds the missing
ingredient “special sauce” to resolve the
observer problem.

Information is lost in scatters

This non-unitarity is testable with

neutrino oscillations. . ..
Metric curvature (Penrose/Diosi)

There are two mechanisms which slightly
give different phenomenology:

= Hawking / Wheeler (space-time foam
creates microscopic black holes that sap
information from neutrino wave function)

e Ht js different because t is different

= Penrose / Diosi (metric curvature affects
direction of time and hence quantum phase) §@)



< === Unperturbed ==+ Averaged oscillations — - 1:1 flavors
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VBH DECOHERENCE

= Tested at IceCube using high energy
atmospheric neutrinos.

= There is an unknown ener

! ] scaling: well
motivated options are N=

and N=2.

= Limits span natural Planck scale expectations
over much of the viable parameter space.

Given no complete theory of quantum

ravity,
hard to rule it out absolutely. Still, O(1 Og)
advance isn’t nothing 2>

naturephysics

Neutrinos probe quantumgravity
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PENROSE DECOHERENCE

= The Penrose model is a bit more
complicated, since the actual size of the
wave function entangled with a metric
configuration, and this affects the rate
of collapse.

= Since we have technology to predict
the wave packet widths, we can now
also predict the rate of this effect.

= Tentatively, seems like the IceCube
data confronts this model, though a
proper calculation of wave packet
widths in atmospheric neutrinos would
be needed to be conclusive -

= (If you want to collaborate on this with
me, let me know!)

aI'<1V > hep-ph > arXiv:2405.03954 Help | Advai

High Energy Physics - Phenomenology
[Submitted on 7 May 2024]

Collapse of Neutrino Wave
Gravitational Reduction

B.J.P. Jones, O.H. Seidel

Functions under Penrose

Accepted, PRD

Predicted width
Wavepacket separation

V¥ Spatial collapse (Effect 1+2)
¥ Momentum drift (Effect 3)
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PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections  Authors Referees Search Press About E

COLLAPSE RADIATION —

Search for Spontaneous Radiation from Wave Function Collapse in
the MaJORANA DEMONSTRATOR

1. J. Arnquist et al. (Masorana Collaboration)
Phys. Rev. Lett. 129, 080401 — Published 16 August 2022; Erratum Phys. Rev. Lett. 130, 239902 (2023)

= Finally, if wave functions collapse
stochastically, some models suggest that nature physics
would be equivalent to an “acceleration”,
and hence electrons in matter would radiate.

Explore content v About the journal v Publish with us v Subscribe

nature > nature physics > articles > article

Article | Published: 07 September 2020

Underground test of gravity-related wave function

= This radiation has been sought by Majorana collapse
Demonstrator and others Sandro Donadi ™, Kristian Piscicchia &, Catalina Curceanu, Lajos Diési, Matthias Laubenstein & Angelo
) Bassi ™

= The effect was not seen at the level estimated 5 *
for given Penrose-scale collapses. -
8
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0SCILLATION ANOMALIES : LSND

Ami, >> Ami,, Ams,

i) 35 B
: |
protons L%J 30| ® Beam Excess
£ RRXS p(Vu—ﬁe,e“)n
§25 : S peetn
20 | S other
I —_——
15|
10 1

4

T+ stop in material, then decay:

+ 4+ 20 25 30 35 40 45 50 55 60
poo—r e Vel E, MeV

Very small intrinsic Ve background @



NON-OBSERVATION AT KARMEN

= Shorter baseline, lower beam N - ]
power non-observation of I/ % I ]
appearance using very similar —
approach to LSND. "c 10
<J

= Karmen Squeezes available
parameter space andis
responsible for hammering ’
out the high mass regions

from the globally allowed - ey (90% CL)7
pa anti counter i LSND (99% CL) ]
inner shield LgND 69070 6|_§
'_A%/j \ _
— N 10 & E
I - *
SATA I ]
£ i ;s‘ . ’I 0_2 | [ ‘ | I I ‘ | N || 1 I |
Fa— Gd,0,-paper —4 -3 -2 —1
central detector module of 10 10 10 10 ]

central detector

sin2719



0SCILLATION ANOMALIES : MINIBOONE
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MINIBOONE’S FINAL DATASET

= MiniBooNE continued to accumulate
statistics — SM now rejected at
>5sigma.

= With anomalous flavor change apparent in
both neutrino and antineutrino modes.

= There are well known challenges of
modelling GeV neutrino interactions
= But - no reasonable model has been able

to explain MiniBooNE effect in term of
nuclear effects to date.

» The MiniBooNE effect is more
consistent with sterile neutrinos than
with the standard model.

= And the sterile neutrino models
MiniBooNE likes are also liked by LSND.

= On the other, it is arguably not really
consistent with either SM or SM+steriles.
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uBooNE

nBooNE _
; RUN 8617 SUBRUN 46 EVENT 2328

NuMI DATA: RUN 1D811, EVENT 2549. APRIL §, 2817.

HBooNE _

BNB Run: 6622 Subrun: 96 Event: 4829 E Run 3493 Event 41075, October 23", 2015

uBooNE‘__,.

Run 3469 Event 53223, October 21", 2015 ;I.W BNE Data Run 20248 Subrun 210 Event 10515 11m BNB Data Run 22298 Subrun 74 Evenl 3723




MICROBOONE LEE RESULTS

» MicroBooNE did not validate the MiniBooNE low E excess:

leNpOm v, selection 0.0 1e0pO0m v, selection
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CONNECTION BETWEEN CHANNELS

If sterile neutrinos were to explain the electron
neutrino appearance anomalies...

vy to ve appearance
sin220 e = 4 |Ues|2|Up4)2

Ve disappearance vy disappearance

Then it would be mandatory to see signatures at
some level in both electron and muon neutrino

disappearance channels. . 9 ) 2

sin’ 26, = HUul*(1 = |Uul®),

©



MUON NEUTRINO DISAPPEARANCE

= So far, no observation of muon
neutrino disappearance

connected with sterile neutrino

oscillations from any
experiment.

= Strong negative results from
IceCube, SuperKamiokande,
MINOS and MINOS+.
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STERILE NEUTRINOS IN MATTER

= Sterile neutrinos do not interact with matter AT ALL!

= Thus new MSW-type effects are to be expected.

Uy & Ve e T Ve s T Ve e T g s T
W= z° z°
N F:nlﬂ//xplnsﬁ F:nlﬂ//xplnsﬁ

Electron flavor mu / tau flavor Sterile flavor

For full phenomenology : Esmali and Smirnov, JHEP 1312 (2013) 014 @



MSW RESONANT
STERILE NEUTRINOS

= Am? too large for resonance in the Sun

* Much higher energy neutrinos and antineutrinos are produced in

cosmic ray air showers

= They cross the Earth, with active species feeling the matter potential

9
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MSW RESONANT STERILE NEUTRINOS

Oscillation Probability
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PREDICTING THE
MSW OSCILLATION

At these energies, have refractive (MSW)
phenomena, and also significant
incoherent scatter cross section.

Have to include both effects to predict

survival probability - and they are non- 07

trivially coupled 0.6
0.5

- numerically solve flavor evolution 0.4

master equation through Earth density

profile for truth-level oscillation 03

solution. 0.2
0.1
0.0

nuSQulDs:
https://github.com/arguelles/nuSQulIDS

Neutrinos at world best fit

Dpacity effect

Vacuum-like
oscillation

Antineutrinos at world best fit

> Opacity effect

log, o[ E/GeV)

: 7_ MSW resonance
= ‘L/Vacuum-like

oscillation

-08 -06 -0D4 -0.2 0.0
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